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ABSTRACT Despite progress made in the accuracy and robustness of the dense matching technique in past
years, efficient occlusion detection remains an open problem. In this paper, we present a two-step occlusion
detection method to remove false matches in dense matching fields. First, a statistical dense matching
method is developed by considering the correspondence between the grids to identify most occlusion regions.
Second, to handle the potential misjudgment match in the occlusion boundary, a double-threshold filtering
method is first used to reduce the noise in the grid image, which ensures that the gradient operator can
accurately extract the boundary grid in the grid image; then, misjudgment matches in the boundary grid
region are corrected based on the triangulation with descriptors. The results of the experiments comparing
the proposed method and existing occlusion detection methods by, respectively, using the MPI-Sintel and
KITTI datasets’ test sequence show that the proposed method has higher accuracy and better robustness.

INDEX TERMS Dense matching, occlusion detection, motion statistics, triangulation.

I. INTRODUCTION
Dense matching aims at determining the dense correspon-
dence between two consecutive frames. It plays an impor-
tant role in image processing and has been widely used in
many vision tasks, including dense stereo reconstruction [1],
optical flow estimation [2], object recognition [3], object
tracking [4], and image retrieval [5]. Despite an abundance
of literature related to this topic, obtaining a reliable dense
correspondence field remains a challenging problem mainly
because of illumination change, repetitive patterns, geometric
deformation, and occlusions. This paper addresses the issue
of removing false matches caused by occlusions in dense
correspondence fields.

To obtain dense matching fields, the patch-based meth-
ods have been the most used approach. The goal of this
approach is to find one or more nearest neighbor matches
between image patches. A serious challenge in this approach
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is the computational complexity as the graph-based [6]
method or the belief propagation [7] method become very
slow for many applications when the image resolution
is high or the database image is large. The PatchMatch
algorithm [8] and its improved versions [9]–[11] have repre-
sented a powerful breakthrough in this field. It brings almost
two orders of magnitude faster than the mentioned above
approaches and has similar accuracy. The core idea behind
this breakthrough is to transform this large search problem
into random search methods that exploit the local coher-
ence of image patches. Although the efficiency of computing
the dense correspondence field has advanced remarkably,
the computed nearest neighbor field is often very noisy which
is mainly caused by the matching ambiguities and occlusions.

The research of PatchMatch-based matching algorithms
mostly focused on reducing the ambiguity of image patches
and computation complexity. They are typically intro-
duced advanced data structures such as propagation-assisted
KD-trees [11], CSH [10] and RIANN [12], or designed effi-
cient search strategies like hierarchical architecture [13], [14],
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FIGURE 1. Illustration of the false matches in the occlusion region.
(a) and (b) are the means of two consecutive images and the ground truth
of occlusions, respectively. (c) shows the occlusion detection results of
the forward-backward consistency checking method. The regions
surrounded by the red squares indicate several occluded regions. We can
see that most false matches are located in the occluded region.

to improve the efficiency of the algorithm. However,
the occlusion detection of the matching field is an indis-
pensable component of generating high-quality dense cor-
respondence fields. Few studies have investigated methods
of improving the efficiency of this step. Typically, the puta-
tive correspondence field contains a large number of false
matches, in addition to a limited number of true matches.
These false matches can be approximately divided into two
parts, one is a small number of false matches due to the
ambiguity of image patches, and the other is a large num-
ber of false matches due to occlusions. One of the most
important reasons is that occlusions are often not explicitly
defined in many matching algorithms, and then patches in the
occluded region may randomly match that of other regions
and even interfere with the correct correspondence in the
neighborhood of occluded regions. Fig. 1 indicates the results
of a forward-backward consistency checking method when
processing dense correspondence fields with a large number
of false matches. The results reveal that most false matches
are obviously located in the occluded region compared to the
ground truth of occlusions. In this context, most matching
algorithms [14]–[22] depend on the forward-backward con-
sistency check method to detect occlusions. If the backward
and forward flow is constant, the pixel will be considered as
non-occluded. However, this cross-checking method may not
be reliable for some cases. For instance, the flow of mutually
corresponding pixels in the occluded region may be zero,
while it will be considered as true correspondences using
cross-checking; another case exists in the low-texture region-
multiple pixels may correspond to the same pixel-which
means that there are many erroneous mutual correspon-
dences and they are difficult to detect using cross-checking.
Besides, this method must calculate the bidirectional flow,
which is highly time-consuming for some advancedmatching
algorithms.

Aiming to solve those pre-mentioned problems, this paper
combines the statistical matching constraint and triangula-
tions of an image into a two-step occlusion detection method
to remove false matches in dense matching fields. In our
approach, first we propose a statistical matching frame-
work in which the grid size is allowed to change, and a
statistical dense matching method is used to identify most

occlusion regions. Then, based on the observation of the
boundary grid, we describe a triangulation-based misjudg-
ment correction method to improve the accuracy of occlu-
sion detection further. First, we propose a double-threshold
filtering method to ensure the accuracy of the extraction
of grid boundaries. Next, we use a descriptor-based tri-
angulation to correct misjudgment matches in the extrac-
tion region. Although triangulation-based methods have been
used in [23], our approach is different. The extraction region
might follow the real occlusion boundaries more closely,
which makes triangulation more accurate, and measurements
based on the descriptor data can also improve the accuracy of
the triangulation.

In summary, we make the following contributions:
1) We propose a two-step occlusion detection method
(TSOD) that combines the statistical matching constraint and
triangulations of an image.We show that TSOD is an effective
approach to remove false matches that arise from occlu-
sions in dense matching fields. 2) We propose a statistical
dense matching method which extends the applicable range
of the statistical matching model from robust correspondence
field to dense correspondence field. Furthermore, misjudg-
ment correction based on the triangulation with descriptors
can achieve more accurate results by utilizing the extrac-
tion occlusion boundary and the measurement based on the
descriptor data. 3) We experimentally show that the proposed
method performs better than the forward and backward con-
sistency checkmethod on the challenging datasetsMPI-Sintel
and KITTI.

The remainder of this paper is organized as follows.
Section II reviews related work. In Section III, we present a
two-step occlusion detection method to remove false matches
in dense matching fields. In Section IV, we present and
compare results of numerical experiments conducted on test
sequences of MPI-Sintel and KITTI datasets using the pro-
posed method and other representative methods. Our conclu-
sions are provided in Section V.

II. RELATED WORK
It is beyond the scope of this paper to review the entire
literature on image matching. We refer to previous literature
[24]–[26] for a detailed overview of image matching algo-
rithms. Instead, we review the work most related to our
method. In particular, we will focus on the work that
addresses occlusions in the dense correspondence field.

One common approach to detect occlusions is to compare
forward and backward motion estimates based on motion
symmetry between image sequences. Some algorithms try
to exploit this property to model occlusions in the dense
stereo matching. Luo and Burkhardt [27] proposed using
cooperative bidirectional matching to detect discontinuities
and occlusions and incorporate them into the cost function.
Sun et al. [28] proposed a model based on the symmetric
visibility constraint to handle occlusions for more general
scenes. Some algorithms propose to extended the consistency
check method based on the characteristic of its algorithm.
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FIGURE 2. Overview of the proposed TSOD algorithm. Given two images, we compute dense matches using CPM [14]. We use the statistical
dense matching method to detect most false matches (Coarse Detection) and correct misjudgment matches using a descriptor-based
triangulation (Fine Detection).

Hu et al. [14] performed a forward-backward consistency
check on each level of the pyramid based on the proposed
hierarchical matching framework, which can help to detect
occlusions and remove outliers. Bailer et al. [13] proposed to
check the consistency of the forward flow via the backward
flow with different patch radii, which enhances its robustness
to some extent. In the optical flow community, this symmetry
property [29]–[31] is also exploited to model occlusions to
extrapolate flow fields in the occluded region. Some algo-
rithms [32], [33] use the symmetry of image sequence to
detect occlusion regions and inpaint these areas using sur-
rounding intensities and gradients. Xiao et al. [34] proposed
to use the squared image residue to enhance the robust-
ness of the bidirectional consistency checking and explicitly
introduce an occlusion term to balance the energy loss in
the variational optical flow model. Although the enhanced
version of the cross-checking method is effective in occlusion
detection, as the analysis in Section I, it exists an inevitable
problem that the motion in the occluded or the low-texture
region is inconsistent.

Several algorithms do not rely on motion symmetry to
detect occlusions. Zitnick and Kanade [35] proposed to iden-
tify occlusions by examining the magnitude of the converged
match values in conjunction with the uniqueness constraint.
Min and Sohn [36] proposed to determine candidate sets of
occluded regions by geometric and photometric constraints
and assign a reasonable cost function to detect occlusions
further. Others infer occluded regions based on the unidi-
rectional flow and low-level image data. Strecha et al. [37]
proposed a probabilistic framework to estimate occlu-
sions by using the histogram of occluded pixel intensities.
Glocker et al. [38] proposed triangulations to exactly com-
pute local affine warps and incorporating triangle motions
into higher-order likelihood terms. Inspired by this work,
Kennedy and Taylor [39] divide the image into discrete tri-
angles to describe occlusions and use the motion information
of the triangle to optimize the computation of the flow fields.
Zhang et al. [23] proposed an improved numerical quadra-
ture scheme that is used to handle the resulting occlusions
effects via the comparison of data cost between quadrature
points and triangles, but the accuracy of methods based on

triangulation largely depends on the locating of the motion
boundary.

Our work is related to GMS [40]. GMS has significantly
improved the efficiency of removing false matches in sparse
matching fields via matching statistics, but the results are
often too noisy with regard to the dense correspondence field.
We count the number of neighborhood matches for each grid-
cell based on the correspondence between the grids, which is
shown to improve the performance of the statistical match-
ing constraint in dense correspondence fields. Our work is
related to [23] in terms of using triangulation. We explicitly
provide detection regions that may follow the real motion
boundaries more closely than other methods [23], [38], [39],
and we use the measurement based on the descriptor data as
occlusion costs, which are shown to improve the performance
of the triangulation in occlusion detection. In this paper,
a two-step occlusion detection method combining the statisti-
cal matching constraint and triangulations is proposed, which
can improve the efficiency of detecting occlusions in dense
matching fields.

III. TWO-STEP OCCLUSION DETECTION
In this section, we present our occlusion detection method,
TSOD, and discuss its main features. TSOD is constituted by
twomain procedures: coarse detection based on the statistical
matching constraint and fine detection based on the triangula-
tion with descriptors. An overview of the TSOD algorithm is
given in Fig. 2.We first discuss the statistical matching model
in Section III-A and then detail the coarse detection procedure
for dense correspondence fields in Section III-B. Finally,
we describe the fine detection procedure which is constituted
by misjudgment region extraction and triangulation-based
correction, in Section III-C.

A. MATCHING STATISTICS MODEL
The statistical matching model is essentially a statistical
formulation for motion smoothness based on the number
of neighboring matches. For a pair of images taken from
different views of the same 3D scene, a descriptor matching
implies a pixel (descriptor point) in one image is identi-
fied as the same point in the other image. If the motion is
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smooth, neighboring pixels and features share similar motion.
Therefore, the assumption of motion smoothness indicates
a neighborhood around a true match to view the same 3D
location. Likewise, the neighborhood around a false match
views geometrically different 3D location.

Matching statistics is performed under the assumption that
a single false match occurring in the true match region is a
small probability event. For a single match, the number of
supporting matches around its neighborhood is counted using
a statistical formulation, and then if this number is greater
than the desired threshold, this match is judged to be correct
and vice-versa. Grid technology can effectively improve the
real-time and robustness of this model. According to the
structure of the grid framework, descriptors in the image
correspond to each grid-cell. Then, the matching statistics
procedure is performed to counting the number of matches
in the neighborhood of each grid-cell. Matching statistics
and grid framework constitute the main components of the
GMS algorithm. We refer readers to [40] for more detailed
information.

GMS has shown clear advantages in the detection of false
matches in robust correspondence fields. However, if the
GMS algorithm is applied to the dense correspondence field,
the resulting correspondence field remains a large number of
misjudgment matches. In the GMS algorithm, most descrip-
tors in a single grid-cell correspond to a single grid-cell,
because robust descriptor such as the SIFT descriptor [41]
typically manifest as visual characteristics of the cluster in
the image. Therefore, this algorithm still works well only by
considering the grid-pair with the highest number of matches.
However, for the dense correspondence field, descriptors in
a single grid-cell typically correspond to multiple grid-cells,
and each grid-pair contains a similar number of matches.
Consequently, the result with the GMS method will engen-
der many misjudgment matches. Fig. 3 indicates the corre-
spondence between the grids under different correspondence
fields, which reveals the limitation of the GMS algorithm
for the dense correspondence field. To address this issue,
we introduce a statistical dense matching method, which can
effectively detectmost falsematches in dense correspondence
fields.

FIGURE 3. The illustration of the correspondence between the grids
under different correspondence fields. Blue squares denote a 3 ∗ 3
grid-cell neighborhood and red squares in the amplified image denote
uniform grid-cells with m×m descriptors. a and b denotes grid
correspondences in robust and dense correspondence fields, respectively.

B. MATCHING STATISTICS FOR DENSE
CORRESPONDENCE FIELDS
For a dense correspondence field, let X =

{
X1,X2...XQ

}
indicate all matches, where Q denotes the total number of
image pixels, each match Xi =

{
di, d ′i

}
defines a corre-

spondence between a descriptor (pixel point) di ∈ I1 and a
descriptor d ′i ∈ I2. According to the analysis in Section I,
we define our goal of occlusion detection as removing false
matches from X .

The first step of our approach is the construction of a
grid framework for the matching field X . The grid reso-
lution of dense correspondence fields needs to be higher
than that of robust correspondence fields, and more grid-
cells can improve match localization. However, the overhigh
grid resolution will reduce the number of descriptors in each
grid-cell and thus separability of true and false matches.
Therefore, we divide an image into discrete squares, where
each square is constituted bym×m descriptors. We will show
that parameter m can help balance the accuracy and running
time of occlusion detection.

After the construction of the grid framework for dense
matching fields, we perform the statistical matching measure
for rejecting grid-cells that contain false matches. In the one-
to-many grid correspondence, we first calculate the case of
the one-to-one grid correspondence. To improve the robust-
ness of this model, we selected a k×k neighborhood to count
the number of matches within the grid-cell neighborhood.
For the purpose of convenience, denote Sij as the supporting
matching score for grid-pair {i, j}:

Sij =
K∑
n=1

∥∥R(Xinjn )
∥∥ (1)

whereK is the number of disjoint grid-cells in the k×k neigh-
borhood, ‖·‖ denotes the count operation on the matching
grid-pair, R(Xinjn ) represents the neighborhood around the
grid-pair {i, j}, and Xinjn is the number of matches between
grid-cells {in, jn}. This statistical measure of one-to-one grid
correspondence obviously provides insufficient information
to judge if all the descriptors in a grid-cell are correct. Here,
we define the sum of all grid-pairs scores as the final score Sf
of the grid-cell:

Sf =
H∑
h=1

Shij (2)

where Shij denotes the score of each grid-pair, which is cal-
culated by Eq. (1), and H denotes the number of grid-pairs.
Matching statistics is performed on the one-to-many grid
correspondence. This is a necessary operation to ensure the
validity of the neighborhood matching statistics for each
grid-cell.

After counting the neighborhood scores of grid-cell,
we can judge if every grid-cell is correct by comparing the
total score Sf with the desired threshold. In practice, more
descriptors require more neighborhood matching supports.
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FIGURE 4. Comparison of results of occlusion detection. From left to
right: The sequences of ambush_6 and temple_3 from the MPI-Sintel
dataset; from top to bottom: The mean of two consecutive images,
ground truth of occlusions, results of article [40] and results of the
proposed method.

The threshold under the one-to-many grid correspondence is
related to both the number of grid-pair and the number of
descriptors in the grid-cell. Different from [40], we define the
sum of every grid-pair threshold as the desired threshold τf ,
that is:

τf = αf ·

H∑
h=1

√
nh (3)

where nh represents the number of matches for each grid-pair,
and αf is obtained via experimentation to ensure the confident
rejection of the wrong grid-cell. In addition, executing this
operation for all grid-cell, the false grid-cells are obtained
for Sf ≤ τf . Fig. 4 shows results of occlusion detection on
several typical sequences with obvious occlusions from the
MPI-Sintel database by using the proposed method or the
method presented in [40]. A visual comparison of the results
indicates that the proposed method provides better perfor-
mance that of the method [40].

C. MISJUDGMENT CORRECTION OF BOUNDARY
GRID REGIONS
The grid framework helps improve the performance of the
algorithm, but for the dense correspondence field, it also
can bring misjudgment matches in some grid-cells, espe-
cially those located at the boundary of occlusion regions.
Fig. 5 shows that grid-cells at the occlusion boundary typ-
ically contain a certain amount of misjudgment matches.
We use the following procedure to deal with these misjudg-
ment matches. First, we extract the boundary of the false grid
region that contains misjudgment matches. Afterward, we use
the descriptor-based triangulation to correct these matches.

FIGURE 5. Illustration of grid-cells in the occlusion boundary. Blue
squares denote the boundary of the occlusion region.

FIGURE 6. The illustration of several noises in the grid image.
a and b denote the amplified images of small holes in the false grid
region and isolated grid-cells in the true grid region, respectively. In the
amplified images, red circles denote the erroneous holes and red
triangles denote the isolated grid-cells.

1) BOUNDARY EXTRACTION OF FALSE GRID REGIONS
LetG(x, y) indicate a binary image of grid judgments. T (x, y)
and F(x, y) respectively denote true and false grid-cell set,
where (x, y) indexes the location of grid-cell in the grid
image. For the binary image, detecting changes in inten-
sity to find boundaries can be accomplished using gradient
operators, such as the Soble operator. However, there exists
noise in the grid image that may result in deviations from
the real boundary and the additional correction computation,
especially small holes in the false grid region and isolated
grid-cells in the true grid region. Fig. 6 illustrates the close-up
view of the details of noises. Hence, to ensure the accuracy
of the boundary grid extraction, the grid image needs to be
filtered to reduce noise.

For holes in the region of the false grid-cell, we use
hole area and similarity measure as a double-threshold to
determine whether they are noise. One measure to detect
erroneous holes is to compute a distance, D(ḡ, ū), between
the average color of all the grid-cell in the hole region, ḡ,
and the average color of grid-cell ū. In practice, ḡ and ū in
an n-dimensional vector, according to the Euclidean distance,
D(ḡ, ū) is defined as:

D(ḡ, ū) = ‖ḡ− ū‖ =
[
(ḡ− ū)T (ḡ− ū)

] 1
2

(4)

Another measure is the hole area Area4. Since some of the
small holes are at the edge of the occlusion boundary, Area4
is calculated via a basic region-growing algorithm based on
4-connectivity. In the right column of Fig. 6, the area of
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a shows several erroneous hole regions at the edge of the
boundary. The double-threshold divides T (x, y) into true and
false sets

{
FT (x,y), TT (x,y)

}
as follows:

T (x, y) ∈

{
FT (x,y) if Area4 < τa AND D(ḡ, ū) < τs

TT (x,y) otherwise
(5)

where τa and τs respectively denote the area and the similar-
ity measure threshold. By setting a proper double-threshold,
the noise in the grid image can be well filtered. In our exper-
iment, we set τa as follows:{

τa = 2+ 100× Number−1

τa = min(τa, 10)
(6)

where Number is the number of descriptors in the grid-cell,
min is the minimization operation, and τs is experimentally
determined. In practice, we first use the area threshold to
detect erroneous holes and then use the similarity measure
to detect remaining holes further.

The detection of isolated false grid-cells is also based
on the region-growing algorithm. To preserve some the tiny
and semi-continuous occlusion boundary, we select a n × n
neighborhood as a growing region of each false grid-cell
and count the number of all isolated grid-cells that meet
the growing condition, as shown in b in Fig. 6 where the
growing region of each red triangle is set to a n × n neigh-
borhood. Let Si denote the number of isolated false grid-cells
in the neighborhood. By executing the filtering operation for
false grid-cells, the isolated false grid-cells are obtained for
Si < τi, where τi indicates the threshold of the isolated grid-
cell, which is set to no more than 5 in our experiment.

FIGURE 7. Example of misjudgment correction. From left to right: The
sequences of ambush_6 and temple_3 from the MPI-Sintel dataset; from
top to bottom: Results of grid filtering, results of boundary extraction,
results of misjudgment correction.

After filling the wrong hole and removing the isolated
false grid-cell, we perform the boundary extraction of false
grid regions using the Sobel operator. As shown in Fig. 7,
the double-threshold measure can effectively reduce noise
in the grid image, ensuring that the gradient operator can
accurately extract the occlusion boundary that contains mis-
judgment matches.

2) MISJUDGMENT CORRECTION BASED
ON TRIANGULATION
Matches on the occlusion boundary are vital for subsequent
motion estimation. In this section, we will focus on how to
correct misjudgment matches in the boundary grid. Triangu-
lations of an image is considered to be an effective method
of detecting motion occlusions during the variational optical
flow computation [23]. This method typically constructs a
set of discrete triangles along low-level image data such as
image edges or the motion boundary and then determines
occlusions by comparing the data changes between triangle
regions and embedded pixels. Obviously, the performance of
this approach depends on the locating of themotion boundary.
In fact, the occlusion region obtained by the proposed method
may follow realmotion boundary regionsmore closely. Based
on these, we use triangulations to correct the misjudgment
matches from the extracted boundary region.

FIGURE 8. Illustration for triangulations of the occlusion boundary. The
triangulation is constituted by the white lines and green squares, where
green squares denote vertex points of triangles.

For the extracted region, we first construct discrete trian-
gles to cover all descriptors in this region. Since this step is
a ‘‘fine detecting’’ for the matches in the boundary region,
we set each independent triangle to contain three descrip-
tors to ensure that it is within the grid-cell. Fig. 8 shows
the schematic of the triangulation. After the construction of
triangles, we perform a data comparison between triangle
regions and embedded pixels. Let 1Dd indicate the data
changes of the descriptor between consecutive frames. It is
thus defined as:

1Dd = ‖D (x + u)− D (x)‖2 (7)

where ‖·‖2 denotes the operation of the Euclidean dis-
tance, and x = (x, y)T represents a descriptor location and
u = (u, v)T is the displacement of each descriptor in the
x- and y-directions between consecutive frames. According
to the definition of the descriptor data change, the data change
1DT of the triangle is deduced as:

1DT =
∥∥DT1 − DT2∥∥2 (8)

where DT1 and DT2 respectively denote the data of three
descriptors in the corresponding triangle between I1 and I2.

After calculating the data change of triangles and descrip-
tors, we perform the misjudgment correction based on these
data change. We use the following procedure. First, we deter-
mine the location of each triangle in I2 by using the corre-
spondence field and the location of each triangle in I1, and
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then judge whether these triangle regions are embedded by
other pixels. Since each triangle can be considered as an
independent motion unit, the triangle is deemed to be non-
occlusion when no embedding occurs. For each triangle in the
boundary region R, when embedding occurs, we determine
the occlusion of triangles from extracted boundary regions by
the following criteria:

if 1DT > 1Dd AND d ∈ R,
the descriptor embedded is a misjudgment match

if 1DT < 1Dd AND T ∈ R,
the descriptors in T are misjudgment matches.

(9)

Fig. 9 shows an example of misjudgment correction and
results of occlusion detection on two typical sequences with
obvious occlusions from theMPI-Sintel database by using the
proposed method or the method presented in [23]. A visual
comparison of the results indicates that the proposed method
provides better performance than that of the method in [23].

FIGURE 9. Comparison of results of occlusion detection. From left to
right: The sequences of ambush_6 and temple_3 from the MPI-Sintel
dataset; From top to bottom: results of the proposed method and results
of the article [23].

IV. EXPERIMENTS AND ANALYSIS
This paper focuses on using the TSOD method to remove
false matches that are caused by occlusions in dense match-
ing fields. To verify the validity of the proposed method,
we test the proposedmethod in two state-of-the-art datasets to
compare with several occlusion detection methods to make a
convincing evaluation. For comparison purposes, we use the
same dense matching algorithm to generate input matches.
CPM [14] is a PatchMatch algorithm based on a coarse-to-
fine strategy, and it can quickly produce dense and accurate
input matches. In the CPM method, the sample interval of
the descriptor is set to 1 to produce the dense correspon-
dence field, and the other parameters required are set to the
default values provided. In the case of the proposed method,
we set parameters fixedm = 3, k = 3, αf = 6.5 for the dense
statistical matching procedure and τs = 18, n = 3 for
the misjudgment correction procedure. Fig. 10 provides an
overview of the proposed method. All algorithms were run
in Visual Studio 2015 on a PC with an Intel Core i5-2410M,
2.30 GHz CPU with a single-core implementation.

In the following, we first introduce a measure of perfor-
mance for occlusion detection in Section IV-A. Section IV-B

FIGURE 10. Overview of the TSOD method.

then runs the proposed method on two challenging datasets
in comparison with several occlusion detection methods.
In Section IV-C, we compare and analyze the evaluation
results. Finally, we analyze the effects of inputs and parame-
ters on the performance of the algorithm in Section IV-D.

A. ERROR MEASURE
For a quantitative evaluation of the proposed method,
we employ omission rate (OR) and false rate (FR) as the mea-
surement of performance for occlusion detection. Wherein,
OR indicates the ratio of the number of undetected occlusion
points to the total number of the pixels in the occlusion
regions of the image, and FR indicates the ratio of the num-
ber of the non-occlusion point that is erroneously detected
as the occlusion point to the total number of the pixels in
the occlusion regions of the image. The error measurement
formulation is defined as follows:

OR =
Nomission
Nocc

× 100% (10)

FR =
Nfalse
Nocc

× 100% (11)

where Nomission denotes the number of the undetected occlu-
sion point, Nfalse denotes the number of the non-occlusion
point that is erroneously detected as the occlusion point and
Nocc denotes the total number of the pixels in the occlusion
regions of the image.

B. RESULTS FROM THE MPI-SINTEL AND KITTI DATASETS
In this section, we test the proposed method using sequences
from the MPI-Sintel dataset [42]. The MPI-Sintel dataset is a
challenging evaluation dataset based on an animated movie
and contains several typical motion forms, such as large
displacement motion, motion occlusion, non-rigid motion,
and complex scene. We thus run our method on the training
set of the MPI-Sintel dataset for comparison with several
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FIGURE 11. Comparison of results with several occlusion detection methods. From left to right: The sequences of ambush_7,
cave_2, temple_2, ambush_5, cave_4, and alley_2 from the MPI-Sintel dataset; from top to bottom: The mean of two consecutive
images, ground truth of occlusions, results of GMS, results of FBCC, results of TBOD, and results of TSOD.

TABLE 1. OR/FR results of eight training sequences from the MPI-Sintel dataset.

methods: GMS [40], triangulation-based occlusion detec-
tion (TBOD) [23] and the forward-backward consistency
check (FBCC). Fig. 11 respectively shows the mean of two
consecutive images, ground truth of occlusions, and the visual
results of the compared methods for the evaluation sequences
of the MPI-Sintel dataset. As can be seen from Fig. 11,
the GMS method can identify most occlusion regions, but at
the same time, results also contain a large number of false
detections. The FBCC method is useful in occlusion detec-
tion due to the bidirectional checking, but in the low-texture
region, there still exists some false detections. In contrast,
the result of the TBODmethod contains less false detections,
but there exists an apparent omission detection for the motion
occlusion of the tiny image structure, such as the results of
the ambush_3 and temple_3 training sequences. The pro-
posed method shows better results than the GMS and TBOD
method, and the result of the proposed method has fewer false
detections in low-texture regions than the FBCC method.

For a quantitative comparison, Table 1 summarizes results
of OR and FR of occlusion detection of eight training
sequences from the MPI-Sintel dataset. In Table 1, the FR
of the GMS method is high above that of other methods,
which indicates there exist many errors in the detection result.
The OR of the TBOD method is high above that of other
methods for most evaluation sequences, which indicates that
the TBOD method cannot effectively identify the motion

occlusion region in the image sequences. The FR of the
FBCC method is much lower than the GMS method, and
the OR of FBCC is lower than TBOD, which indicate that
the FBCC method has certain robustness. The TSOD method
shows better performance than the FBCC method on both
OR and FR, especially that the FR of TSOD is approximate
twice as low as that of FBCC, which indicates there exist
fewer errors in the detection results. In conclusion, the per-
formance of TSOD better than the above three occlusion
detection methods, which indicates the proposed method can
detect occlusions of the image sequence more completely and
ensure the accuracy of the detection results.

Although the MPI-Sintel dataset enables a fair evaluation
for the comparison method of occlusion detection, we addi-
tionally apply the proposed method on other evaluation
sequences in the KITTI dataset [43], [44] to ensure a per-
suasive comparison with the other compared methods. The
KITTI dataset was created from a platform on a driving car
and contains images of city streets. We choose sequences of
the KITTI dataset that contain several typical motion forms,
such as motion occlusion, large displacement motion, and
complex scene.

Fig. 12 respectively shows the mean of two consecu-
tive images, ground truth of dense occlusions (computed
with [23]), and the visual results of the compared methods
for the evaluation sequences of the KITTI dataset. The results
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FIGURE 12. Comparison of results with several occlusion detection methods. From left to right: The sequences of 000002, 000016,
000167, 000169 from the KITTI-2015 dataset; from top to bottom: The mean of two consecutive images, ground truth of occlusions,
results of GMS, results of FBCC, results of TBOD, results of TSOD.

of the GMS method contain a large number of detection
errors, which indicates this method is not suitable for the
dense matching fields. The TBODmethod exists a significant
omission detection for some motion occlusion regions, such
as the cyclist and car in the 000002 sequence. The FBCC
method can identify most motion occlusion regions, but there
exist many errors in the low-texture region. The results of
the proposed method show good visual performance for the
detection of the motion and low-texture regions.

TABLE 2. OR/FR results of four training sequences from the
KITTI-2015 dataset.

Table 2 exhibits detailed comparative results of OR
and FR of several occlusion detection methods for the
KITTI-2015 [44] evaluation sequences. As can be seen,
the FR of the GMS method and the OR of the TBOD method
are highest among the four occlusion detection methods,
and the FR of the FBCC method is much higher than that
of the proposed method. Evidence shows that the proposed
method can effectively detect motion occlusion and has cer-
tain robustness for the real scenario sequence.

C. COMPREHENSIVE EVALUATION AND ANALYSIS
To comprehensively evaluate the proposed method, we
respectively calculate the average omission rate (AOR) and

average false rate (AFR) of GMS, TBOD, FBCC, and
the proposed method for 20 training sequences from MPI-
Sintel [42], KITTI-2012 [43], and KITTI-2105 [44] datasets.

TABLE 3. AOR/AFR results of compared methods for three training
datasets.

From Table 3, we can see that the omission rate of the
proposed method is lower than other occlusion detection
methods. More importantly, the proposed method leads to a
significant degradation in the false rate, especially that the FR
of TSOD is approximately two and a half times lower than the
FR of FBCC. Evidence shows that the proposed method can
detect motion occlusion regions more completely for image
sequences in different scenes, and has higher accuracy and
robustness than GMS [40], TBOD [23], and FBCC.

D. PERFORMANCE ANALYSIS
To get a better understanding of the performance of the
proposed method, we evaluate the impact of different input
matches, the procedure of misjudgment correction and the
parameters of grid size m on the results of occlusion
detection of the proposed method. To facilitate quantitative
evaluation of the proposed method, we used the perfor-
mance measure of optical flow algorithms [45], the average
angular error (AAE) and the average endpoint error (AEE),
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to evaluate the occlusion detection performance of the pro-
posed method. Simultaneously, for fair comparison, we use
EpicFlow [17] to interpolate matching correspondences that
are handled by using the proposed method to a dense opti-
cal flow, which is the same as the interpolate procedure in
the state-of-the-art optical flow algorithm. The performance
analysis of the proposed method is tested on a subset of the
clean-version training set of the MPI-Sintel dataset.

To evaluate the robustness of the proposedmethod, we gen-
erate input matches using three matching methods, where of
all are tailored to the problem of optical flow estimation. The
first choice is DeepMatching approach (DM) [21], which has
shown excellent performance for large displacement motion
in optical flow computation. The second choice is Discrete-
Flow (DF) [22], which uses explicit regularization to obtain
pixel-accurate optical flow fields. The last choice is the recent
CPM approach [14], which can quickly produce dense accu-
rate matching correspondences. We perform occlusion detec-
tion with the proposed method on three input matches and
use EpicFlow [17] to generate a dense flow field. To further
test the robustness of the proposed method, we add various
levels of matching noise to input matches and evaluate the
performance of the proposed method. Fig. 13 clearly shows
the robustness of the proposed method under several dense
input matches with different levels of matching noise. Not
only that, the proposed method improves the accuracy of the
flow field for the three optical flow algorithms, which shows
the effectiveness of the proposed method.

FIGURE 13. The robustness of the TSOD method.

Next, we evaluate the validity of misjudgment correc-
tion (MC), boundary grid extraction (BGE), and descriptor-
based triangulation (DBT) on the MPI-Sintel dataset.
To demonstrate the benefits of these procedures in the
proposed method, we utilized these procedures as addi-
tional operations during misjudgment correction. Table 4 and
Table 5 report the comparison of AAE results on sequences
ambush_4, cave_2, cave_4, market_2, and alley_2 from
the MPI-Sintel dataset thoroughly, where − denotes that
these operations are not performed. As shown in Table 4,

TABLE 4. Comparison of the proposed method with different operations:
‘‘MC’’, ‘‘BGR’’, and ‘‘DBT’’.

TABLE 5. Comparison of the proposed method with different descriptors.

misjudgment correction improves the accuracy of the results
of occlusion detection significantly, which indicates MC cor-
rects a certain amount of misjudgment matches.Misjudgment
correction with BGE leads to an enhancement in performance
because BGE also removes a certain amount of noise while
extracting regions of boundary grids. DBT improves the
accuracy of the triangulation, which indicates that descriptor-
based triangles effectively represent the data change of
the occluded region in the image. In addition, we com-
pare the performance of the proposed method for the tri-
angulation based on four different descriptors: SIFT flow
(SIFT-F) [46], Complete Rank Transform (CRT) [47], Census
Transform (CT) [48] and RGB.We choose the Euclidean dis-
tance between descriptors as the data change. Table 5 shows
the performance of each descriptor for the five training
sequences from the MPI-Sintel dataset. We can see that
SIFT-F is the best performer.

FIGURE 14. Effect of different grid sizes on the proposed method. Note
that m = 3 hardly impairs accuracy but leads to acceptable running time.

We also report the average running time and AEE of
the proposed method with different grid sizes m. As shown
in Fig. 14, the small grid size improves the performance
because it canmore efficiently represent themotion occlusion
region, which makes the procedure of matching statistics
more accurate. However, a small grid size leads to a high
computation complexity, especially at m = 2. We find that
m = 3 hardly impairs accuracy but leads to acceptable
running time.
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V. CONCLUSION
In this paper, we present an efficient two-step occlusion
detection method to remove false matches in dense matching
fields. It contains two major steps: the coarse detection based
on the statistical matching constraint and the fine detection
based on triangulations of an image. In the first step, most
occluded regions are accurately identified by using a statis-
tical dense matching method. This method is developed by
considering the correspondence between the grids. Second,
to improve the accuracy of occlusions detection, we describe
a misjudgment correction method based on the triangula-
tion with descriptors. In this method, the region that may
contain misjudgment matches is extracted by using a double-
threshold filtering and a gradient operate. Then misjudg-
ment matches in the extraction region are corrected based on
the triangulation with descriptors. We conduct comparative
experiments using the test sequences of the MPI-Sintel and
KITTI datasets. The results show that the proposed method
provides higher accuracy and robustness than typical existing
occlusion detection methods.
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