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ABSTRACT In order to solve the problem of low accuracy of the U-Net in cardiac ventricular segmentation,
we propose an improved U-net named LU-Net by the following three methods. First, in order to improve the
efficiency and effectiveness of extracting the features of the original image, we combine U-net with SE-Net
model. This model reweights the channels of the feature map, which can give higher weight to the useful
information and lower weight to the invalid information. Second, in order to alleviate the extent of losing
the pixel-location information when using the encoder to dawn sample, we combine multi-scale input with
U-net’s encoder. Third, in order to solve the problem of low accuracy in traditional U-net, we replace the
transposed convolution layer, used by the traditional U-Net’s encoder during upsampling, with an unsampling
layer. During the process of unsampling, it can put pixels to their original location using the pixel-location
information reserved by the encoder during the sampling process, which can reduce errors caused by losing
pixel-location information. Besides, using the unsampling layer during unsampling can also avoid producing
checkerboard artifacts during transposed convolution and improve the segmentation accuracy. To verify the
effectiveness of LU-Net, we apply it to the ACDC Stacom 2017 dataset. The experimental results show
that the evaluation criteria of prediction results are 92.4%, 86.4%, and 92.5% on Dice coefficient, Jaccard
similarity coefficient, and F1-ccore respectively, which are better than U-Net, SegNet, and IU-Net and
remarkably better than the traditional neural convolution network model, FCN8s.

INDEX TERMS Cardiac ventricular segmentation, U-Net, reweight, multi-scale input, unsampling.

I. INTRODUCTION
Medical images play an extremely important role in disease
diagnosis. In recent years, with the continuous development
of medical imaging technology and computing technology,
image processing technology for medical images has gradu-
ally become an important research field, in which medical
image segmentation is a research direction with high clin-
ical application value [1]. Medical image segmentation is
a complex and essential step in the field of medical image
processing and analysis. Its purpose is to segment the parts of
the medical image with certain special meanings and extract
relevant features to provide disease diagnosis with a basis and
help doctors to diagnosis more accurately [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Haruna Chiroma.

Imaging methods commonly used in cardiovascular dis-
eases include computed tomography magnetic resonance
imaging, echocardiography, etc. The current gold standard is
based on non-invasive MRI (cine MRI) calculation of clini-
cal indicators, such as ejection fraction, ventricular volume,
myocardial mass, etc., to analyze and infer cardiac function.
Calculating clinical indicators relies on the doctor’s precise
manual segmentation of cardiac MRI images, which is time
consuming and laborious. Moreover, different doctors may
not have the same segmentation results on the same MRI
image and the same doctor may also have different results in
the two segmentation processes [3]–[5]. Therefore, the fast
and accurate automatic segmentation of cardiac MRI images
will help doctors diagnose cardiovascular disease accurately.

In recent years, with the development of deep learning,
medical image processing models based on convolutional
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FIGURE 1. Full convolutional neural network learn to combine coarse,
high layer information with fine, low layer information. Layers are shown
as grids that reveal relative spatial coarseness.FCN-32s upsamples stride
32 predictions back to pixels in a single step.FCN-16s combines
predictions from both the final layer and the pool4 layer,lets our net
predict finer details, while retaining high-level semantic information.
FCN-8s combines the predictions of the last layer and the pool4 layer, and
combines the results with the pool3 layer prediction to further improve
the accuracy.

neural networks have been widely used in different medical
fields and have achieved quite good results. Medical image
segmentation is the most common research direction among
them and convolutional neural network is one of the most
common automatic segmentation models. Compared with
traditional algorithms, image segmentation methods based on
convolutional neural networks, such as FCN [6], U-Net [7],
SegNet [8], IU-Net [9] etc., have achieved better performance
in accuracy. The convolutional neural network algorithm is
characterized by the ability to perform multiple nonlinear
transformations on images by convolution kernels to extract
higher-level abstract features without the need for artifi-
cial feature design for different scenes. In addition, in the
image segmentation process, the convolutional neural net-
work enhances the robustness of feature extraction through
techniques such as local join and weight sharing.

II. RELATED WORKS
This section discusses the deep learning models associated
with LU-Net, including FCN, U-Net, SegNet and SE-Net.

Fully Convolutional Network (FCN) [6], shown in Fig. 1,
is an end-to-end network model that classifies images at
the pixel level to solve semantic level image classification
problems.The FCN uses the transposed convolution at the end
of the network to upsample the feature map generated by the
last convolution to the resolution of the original picture and
segment the image by producing a prediction for each pixel.
Palit et al. [10] proposed the use of improved FCN for bioglial
cell segmentation, greatly reducing image segmentation time
and significantly improving accuracy. Li et al. [11] proposed
combining the traditional watershed algorithm with FCN to
eliminate useless non-edge pixels and improve the efficiency
of segmentation.

FIGURE 2. Original U-net structure diagram. The arrow pointing to the
right means convolution, the downward arrow means pooling,
the upward arrow means upconvolution.

Although the FCN model is simple and efficient, there are
still some problems. For example, the FCN uses the convo-
lution pooling operation multiple times during the downsam-
pling process, which results in loss of the picture details and
the unsatisfied segmentation result. Many subsequent image
segmentation models are based on FCN, such as U-Net,
SegNet.

Ronneberger et al. [7] proposes an improved full convolu-
tional neural network structure U-Net, which was originally
used for cell segmentation. Its structure is shown in Fig. 2.
U-Net consists of the encoder on the left and the decoder
on the right. The encoder is a typical convolutional neural
network structure, which is composed of convolutional layer,
batch normalization layers and pooling layers. The decoder
consists of convolutional layers and deconvolution layers.
The U-Net encoder is downsampled in total of 4 times. Sym-
metrically, the decoder also performs corresponding upsam-
pling 4 times to restore the feature map obtained by the
encoder to a picture with the same size of original picture.
U-Net adopts the idea of cascading higher-order features
and shallow features. When the right-side decoder performs
upsampling, the feature maps on the encoder side of the
corresponding level are concatenated by matrix cascading.
This operation is beneficial to supplement the missing pixel
position information during the convolution process, thereby
improving the segmentation accuracy. Yang et al. [12]
proposed to segment the short-axis MRI of the heart by
coupling a U-shaped convolutional neural network and a
deformation model. Cong and Zhang [13] explored the rela-
tionship between the image segmentation mechanism of deep
neural networks and the channel in the network model.
Based on the conclusions obtained, the hyperparameters in
the U-shaped convolutional neural network were artificially
designed. Zheng et al. [14] proposed a heart segmentation
algorithm combining U-Net with spatial propagation. These
methods have high accuracy and robustness for heart slices at
different locations and different periods.

Badrinarayanan et al. [8] proposes a kind of U-Net network
model SegNet, which is similar in structure to U-Net. It also
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FIGURE 3. An illustration of the SegNet architecture. There are no fully
connected layers and hence it is only convolutional. A decoder upsamples
its input using the transferred pool indices from its encoder to produce a
sparse feature map(s). It then performs convolution with a trainable filter
bank to densify the feature map. The final decoder output feature maps
are fed to a soft-max classifier for pixel-wise classification.

contains an encoder and a decoder. Its structure is shown
in Fig.3. The left encoder uses the first 13 layers of the
VGG16 model for downsampling and the right decoder maps
the encoded feature map to the input resolution. Different
from U-Net, the SegNet encoder retains the position infor-
mation of the pixel in the upper-level feature map during
the downsampling process, that is, the pooled index. The
decoder combines the pooling during the upsampling process.
The index is used to perform nonlinear upsampling, which
eliminates the need for the decoder to learn the upsampling
process. Therefore, compared with U-Net, SegNet can not
only accurately restore the position of pixels, improve the seg-
mentation accuracy, but also reduce the training parameters
and shorten the training time. Tang et al. [15] applied SegNet
to gland medical image segmentation to improve the clinical
diagnosis efficiency of colon cancer. Kumar et al. [16] com-
bined U-Net and SegNet to propose a SegNet-based U-Net
hopping connection to combine fine multi-scale information
for better tissue boundary recognition.

Hu et al. [17] proposes a network structure Squeeze-and-
Excitation Networks (SE-Net) that considers the relationship
between feature channels. The module structure is shown
in Fig.4. Roy et al. [18] integrated the SE-Net module into
multiple existing image segmentation network structures. The
segmentation capabilities of different network structures have
been improved to varying degrees. SE-Net adopts the ‘‘fea-
ture recalibration’’ strategy, which is to learn the importance
of each channel in the feature map through network training,
to enhance the useful features according to the importance
level and suppress the features that are not useful. In SE-Net,
it mainly includes three operations: Squeeze, Excitation and
Reweight. The Squeeze operation uses the global pooling
method to convert the feature map into a feature vector.
The Excitation operation uses two fully connected layers to
form a gating mechanism for each feature channel. Finally
the Reweight operation weights the weight of the Excitation
output and the feature map.

When the FCN8s, U-Net, SegNet and other network mod-
els use the convolution kernel to extract features in the

FIGURE 4. The squeeze-excitation block is a computational unit that can
be constructed for any given transformation. The model calculates the
feature map weights by squeeze and excitation to obtain the feature
vector. Finally, the weighting operation of the two is performed.

encoder, the image pixel position information will be lost to
some extent, which leads to inaccurate pixel restoration posi-
tion in the decoder and the inaccurate segmentation boundary.

III. LU-NET MODEL
In order to improve the accuracy of neural network image
segmentation, the following two aspects should be empha-
sized. Firstly, the encoder needs to learn how to extract more
efficient abstract information during the downsampling pro-
cess to make the pixel classification more accurate. Secondly,
during the upsampling process, when the decoder expands the
high-order feature map to the original image resolution, it is
necessary to more accurately restore the pixel points to the
corresponding positions of the original image.

In order to improve the efficiency of U-Net in extracting
features during the downsampling process, We integrate the
SE-Net module into the U-Net encoder. Themethod performs
weighting operations on the channel, emphasizes effective
information and suppresses invalid information, which not
only improves the validity of the extracted features, but also
reduces the amount of calculation.

During the encoding and decoding process of U-Net,
convolution and pooling operations will lose some valu-
able details, resulting in inaccurate segmentation boundaries.
In response to this problem, we make improvements to the
U-Net model. Firstly, the model generates feature maps of
different scales at the input end of the U-Net encoder, and
then concatenates them with the feature maps of the corre-
sponding scales generated by the pooling layer in the encoder
to realize multi-scale input. Secondly, in the upsampling
process of the U-Net decoder, the pixel is restored according
to the pixel pooling information retained by the downsam-
pling, which can reduce the error of the pixel position in the
upsampled feature map and compensate for the loss of pixel
position information caused by the convolution and pooling
operations.

A. FUSION OF U-NET AND SE-NET MODULES
The main function of the SE-Net module is to improve the
effectiveness of feature extraction. Therefore,the fusion of
U-Net and SE-Net is implemented by performing a feature
weighting operation before each pooling operation in the
U-Net downsampling process. As shown in Fig.5, Two 3× 3
convolutions extract the input features, obtain feature maps
and then pass the feature maps to the SE-Net module. Firstly,
global pooling is performed to obtain the feature vector
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FIGURE 5. In the encoder, U-Net and SE-Net are combined by adding
SE-Net modules in front of each pool layer.

FIGURE 6. In the encoder, the input is convolved and downsampled to
form feature maps of different scales, and then merged into
corresponding layers respectively.

corresponding to the feature maps, and then the feature vector
is input to two consecutive fully connected layers to obtain
a set of weight values between 0 and 1. Finally, the weight
values are multiplied with the feature maps to obtain new
feature maps with weight information.

B. MULTI-SCALE INPUT
Multi-scale input can compensate for missing pixel location
information for convolution and pooling operations. We con-
catenate the feature maps after each pooling operation in
the U-Net downsampling process. The structure is shown
in Fig.6. The convolution layer with a kernel size of 2 × 2
and a step size of 2 is subjected to downsampling oper-
ation to obtain feature maps of different scales. The fea-
ture maps of different scales are combined with the output
of the previous pooled layer to generate the input of the
corresponding layer.

C. IMPROVED UPSAMPLING METHOD
The original U-Net upsampling process uses deconvolution
to magnify the feature map resolution. In the deconvolution
process, some pixels are likely to cause uneven overlap, that
is, some regions havemore abstract results than other regions.
Especially when the size of the convolution kernel cannot
be divisible by the step size, the deconvolution will have
uneven overlap. When calculated in two-dimensional space,
uneven pixel overlap occurs on the horizontal axis and the
vertical axis, causing chessboard artifacts and affecting the
final segmentation result. We replace the deconvolution in
the original U-Net with a combined convolution of 3 × 3
and 1 × 1. In addition, the network model is upsampled by
the inverse unpooling operation. Structure shown in Fig. 7.
The improved network records the position information of the
pixel when the encoder is downsampling. When the upsam-
pling is performed, the unpooling operation directly returns
the pixel data to the original position, which compensates for
the loss of detail caused by the pooling layer in the encoder
reducing the feature map.

FIGURE 7. In the decoder, we replace the deconvolution layer in the
original U-Net with the combined convolutional layer of 3 × 3 and
1 × 1, and use unsample to restore the feature map size.

In addition, in order to further alleviate the problem of
gradient disappearance, we use batch normalization plus
ReLU activation processing for the convolutional layer
in the network. In summary, the overall structure of the model
is shown in Fig.8.

IV. EXPERIMENT SETTINGS
A. DATASET
The dataset uses the ACDC Stacom 2017 Challenge dataset,
which is short-axis cine MRI of 150 patients obtained from
an MR scanner using different magnetic field strengths (1.5T
and 3.0T) at the University Hospital of Dijon. The cine
MRI of 100 patients was tagged by two medical experts.
We divided the 100 patients’ MRI with pixel annotations in
the ACDC Stacom 2017 Challenge dataset into a training set
and validation set in a 7:3 ratio. In addition, the cine MRI of
remaining 50 patients is used as a test set.

1) DATA ENHANCEMENT
In order to make the training samples cover more target
features, avoid over-fitting caused by insufficient training
samples and improve the generalization ability of the algo-
rithm, we have enhanced the data of the training set sam-
ples, including image flip, brightness and contrast random
transformation. The above method is randomly added to each
picture in the training set.

2) RESIZE
TheMRI images in the dataset are collected by different med-
ical imaging devices, so the image resolution is inconsistent.
We use bilinear interpolation to unify image resolution to
256× 256 [19].

B. CONFIGURATIONS
The deep learning framework we use is pytorch [20] 0.4.0.
The experiment uses GPU acceleration, the GPU is config-
ured as a single GeForce GTX 1080TI, CUDA is 9.0 and
cuDNN is 7.1. We did not load the pre-training model during
the training process. The convolution kernel initialized the
parameters using the 0-1 random normal distribution method.
The model optimizer uses Adam [21], the initial learning rate
is 0.001, the loss function uses CrossEntropyLoss, the batch
input size is 8 and the training round is 100 rounds. The learn-
ing rate attenuation method is used in the training process, the
initial learning rate is used in 1 to 80 rounds, 10% of the initial
learning rate in 81-90 rounds and 1% of the initial learning
rate in 91-100 rounds.
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FIGURE 8. LU-Net model.

FIGURE 9. Average dice similarity coefficients of different network
models on five test samples.

FIGURE 10. Average Jaccard similarity coefficients of different network
models on five test samples.

C. EVALUATION CRITERIA
1) DICE SIMILARITY COEFFICIENT
Dice Similarity Coefficient (DSC) can be used to measure the
coincidence degree between the actual segmentation result
and the theoretical segmentation result. Its value ranges

FIGURE 11. Average F-Score of different network models on five test
samples.

from 0 to 1. The closer to 1, the better the pixel classification
effect of the model. The definition is as follows:

DSC =
2 |A ∩ B|
|A| + |B|

(1)

where A and B respectively represent the theoretical segmen-
tation results of expert annotations and the actual segmenta-
tion results of the proposed method.

2) JACCARD SIMILARITY COEFFICIENT
The Jaccard similarity coefficient can be used to measure
the similarity between the actual segmentation result and the
theoretical segmentation result. Its value ranges from 0 to 1.
The closer to 1, the better the pixel classification effect of the
model. The definition is as follows:

J (A,B) =
|A ∩ B|
|A ∪ B|

(2)

where A and B respectively represent the theoretical segmen-
tation results of expert annotations and the actual segmenta-
tion results of the proposed method.
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FIGURE 12. Different model test results.

3) F-SCORE
F-scores can be used to measure model accuracy. The
F1 score takes into account the accuracy and recall rate of the
pixel classification model and can be regarded as a weighted
average of the model accuracy and recall rate. The value
ranges from 0 to 1. The closer to 1, the better the pixel
classification effect of the model. The definition is as follows:

Fβ =
(1+ β2)PR
β2(P+ R)

(3)

where β is the parameter, we set β = 1. P is the accuracy
rate,

P =
A ∩ B
B

(4)

R is the recall rate,

R =
A ∩ B
A

(5)

A and B respectively represent the theoretical segmentation
result of the expert labeling and the actual segmentation result
of the method.

D. EXPERIMENTAL RESULTS AND DISCUSSION
To verify the effectiveness of the improved method in this
paper, we used four network models for comparative experi-
ments. The comparison network models are FCN8s, SegNet,
U-Net, and IU-Net.

TABLE 1. Comparison of test results of different models.

The above four networks were trained on the ACDC Sta-
com 2017 Challenge data set and ventricular MRI image
segmentation verification was performed. The test results of
different network models are shown in TABLE 1. In the case
of the Dice coefficient as the evaluation standard, the method
of this paper is 3.2%, 2.3%, 1.9% and 1.4% higher than
FCN8s, SegNet, U-Net and IU-Net respectively. In the case of
the Jaccard similarity coefficient as the evaluation standard,
the method of this paper increased by 5.0%, 3.6%, 3.1%
and 2.3% compared with FCN8s, SegNet, U-Net and IU-Net
respectively. In the case of F1-Score as the evaluation stan-
dard, the method of this paper increased by 3.1%, 2.0%, 1.7%
and 1.4% compared with FCN8s, SegNet, U-Net and IU-Net
respectively.

The above experimental results were obtained on the entire
complete dataset. In order to more intuitively demonstrate
the image segmentation performance of different network
models on individual samples, we used a short-axis cine MRI
of five patients to segment. Figure 9-11 show the quanti-
tative evaluation criteria for the segmentation results of the
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various network models on these five test samples. As can be
seen from the figure, LU-Net has the lowest Dice coefficient
of 0.912 in the five examples, the highest is 0.960, the lowest
Jaccard coefficient is 0.851, the highest is 0.896, the lowest
F-Score is 0.912, and the highest is 0.961. The three evalu-
ation indicators obtained by LU-Net are significantly better
than the other four network models.

Figure 12 shows the comparison of the optimal predictions
for different models. Experiments show that the segmentation
results of IU-Net and our method are significantly better
than those of FCN8s, SegNet and U-Net. Compared with
FCN8s, SegNet, U-Net and IU-Net, LU-Net is more sensi-
tive to edge pixels and the segmentation contour is clearer.
Comparing the segmentation results in the third column and
the seventh column in Fig. 9, it can be seen that in the
segmentation tasks of the left ventricular cavity and the left
ventricular wall, the edge of the segmentation results obtained
by FCN8s, SegNet and U-Net is not high. Experiments show
that during the encoding and decoding process, FCN8s, Seg-
Net and U-Net will lose valuable detail information, which
will result in poor recognition of the boundary of adjacent
regions. The multi-scale input and anti-pooling layer replace-
ment transposed convolution adopted in LU-Net enhances
the left ventricular and left ventricular wall edge informa-
tion by making up for the missing pixel position informa-
tion of convolution and pooling operations, which improves
the model to the left ventricle. The edge recognition ability
of the cavity and left ventricular wall. In the segmentation
task of the right ventricle, because the color of the right
ventricle is close to the background color, IU-Net cannot
make accurate segmentation. However, the SE-Net module
used in the LU-Net encoder can extract more effective infor-
mation, which makes the segmentation effect significantly
better.

E. CONCLUSION
We propose an improved U-shaped convolutional network
model and apply it to the ventricular segmentation problem
in practical medical image analysis. The FCN8s, SegNet,
U-Net and IU-Net models lose image detail information
during continuous upsampling and downsampling, mak-
ing the segmentation effect of the model on the edge
unsatisfactory. The improved U-shaped convolutional neu-
ral network improves the feature extraction efficiency by
multi-scale input and fusion SE-Net module on the encoder
side. The anti-pooling method is used for upsampling at
the decoder end to obtain more accurate feature informa-
tion and pixel position information. In addition, the use of
batch normalization and ReLU activation functions can fur-
ther optimize network weights and improve model perfor-
mance. The final experiment proves that the method has
92.4%, 86.3% and 92.5% of the Dice coefficient, Jaccard
detailed coefficient and F1-Score, respectively, which is bet-
ter than SegNet, U-Net and IU-Net, which is obviously better
than FCN.
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