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ABSTRACT The spaceborne synthetic aperture radar (SAR) system working at P-band, is vulnerable to the
ionospheric effect. The ionospheric scintillationwill introduce randomphase fluctuations into the SAR signal
and deteriorate the imaging performance. In this paper, a minimum-entropy autofocusing method based on
the intelligent optimization strategy is proposed to compensate for the scintillation phase error in spaceborne
P-band SAR images. A refined particle swarm optimization (Re-PSO) is proposed to provide an intelligent
strategy in SAR autofocusing. Compared with the traditional minimum-entropy autofocusing methods,
the proposed Re-PSO algorithm is a heuristic method which has extremely strong exploring abilities to the
global optimum. The genetic multi-crossover operator and the gradient accelerator are utilized to improve
the convergence property of the basic PSO. Furthermore, since the isolate strong scatterers are not required
in minimum-entropy SAR autofocusing, the proposed method has strong robustness. The simulations on
point and area targets validate the effectiveness and better performance of the proposed method.

INDEX TERMS Autofocusing, ionosphere, P-band, particle swarm optimization (PSO), synthetic aperture
radar (SAR), scintillation, minimum-entropy.

I. INTRODUCTION
The P-band synthetic aperture radar (SAR) maintains out-
standing capabilities in penetration which can be widely
applied in biomass measurement, agriculture observation and
military surveillance [1]–[3]. Represented by the BIOMASS
system, a tendency of developing the spaceborne P-band SAR
system has risen up for the past few years [4].

The spaceborne SAR signal propagating through the iono-
sphere electron density irregularities suffers the ionospheric
deterioration, including the background ionosphere effect and
the scintillation [5]–[9]. The background ionospheric effect
can be effectively compensated by the prior knowledge of
the total electron content [10], [11] or by other technologies
[12], [13]. The ionospheric scintillation which is introduced
by small scale irregularities (less than 10 km), typically
occurs at equator and polar regions, from sunset until mid-
night [14], [15]. The scintillation-induced signal amplitude
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and phase fluctuations will introduce signal decorrelation
within the synthetic aperture and further degrade the azimuth
resolution. As a consequence of the randomness of the
scintillation phase error, a data-driven autofocusing method
is highly required in P-band SAR scintillation mitigation.
The scintillation phase error which is usually considered as
a phase screen, shows spatial variation both in range and
azimuth. In our work, the spatial variation is dealt with the
image segmentation along the range.

In previous works, the phase gradient autofocusing (PGA)
which is proposed to estimate the motion phase error in air-
borne SAR imaging [17] is well studied. The autofocusing
performance of PGA highly depends on the isolated strong
scatters in SAR images. However, the scintillation effect leads
to the rise of the peak side lobe ratio (PSLR) and the integral
side lobe ratio (ISLR) of point scatters. This will weaken the
SAR image contrast and make it more difficult to select the
strong scatters in scintillation-contaminated images. Conse-
quently, the robust of PGA algorithm is limited in SAR scin-
tillation mitigation. J. Chen and Z. Li reported that the PGA
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algorithm is not effective anymore when the signal-to-clutter
ratio (SCR) is lower than 16 dB [18]. It is widely acknowl-
edged that the well-focused SAR image has the lower image
entropy than the defocusing SAR image. Thus, the minimum-
entropy criterion is also widely applied in SAR and inverse
SAR (ISAR) autofocusing [19]–[25]. In Wang’s work [22],
the derivative of the image entropy function is applied to
minimize the image entropy. However, in real applications,
this algorithm is easy to meet the premature convergence
and get stuck in local optima. The Newton optimization
method is applied by T. Zeng to minimize the SAR image
entropy by calculating the second-order derivative of image
entropy function [23] and the same idea is utilized to miti-
gate the scintillation in GEO SAR imaging [24]. This algo-
rithm only works when the second-order derivative is positive
and it is also unable to escape from the local minimum.
In J. Wang’s work [25], an adaptive-order polynomial phase
model is introduced to minimize the SAR image entropy
through the iteration, however the parameter optimization
strategy is not efficient in [25]. Since the random of the scin-
tillation phase error, a high-order polynomial phase model
is required for compensation. For this reason, an intelligent
and efficient optimization strategy is required to deal with the
huge search space and time complexity.

The previous research built the foundation of our work,
but the improvements still need to be accomplished to make
the algorithm intelligent and parallel computational. In this
paper, the scintillation mitigation is modeled as an optimiza-
tion problem by using the image entropy function as the
objective function. The goal of optimization is to minimize
the image entropy by correcting the SAR image with the
compensation phase. The parametric model is applied for
the compensation phase and this will significantly reduce the
dimensions of search space. A refined particle swarm opti-
mization (Re-PSO) method is proposed for the polynomial
compensation phase model to optimize its parameters. The
PSO is a heuristic optimal algorithm inspired by the social
behavior in bird flocks [26]–[28]. During the evolution of
swarm, the particles explore the search space driven by the
individual and social knowledge. In the swarm, each parti-
cle has the ‘‘position’’ and the ‘‘fitness’’ properties. In our
work, the position of particles is defined as the parameters
of the polynomial phase model and the fitness is defined as
the corresponding image entropy. Since each particle has the
independent searching ability, the PSO is suitable for parallel
computation which makes it more efficient. Finally, the point
and area target simulations are performed to present a com-
prehensive validation of the effectiveness of the proposed
algorithm.

II. MINIMUM-ENTROPY AUTOFOCUSING FOR SAR
IMAGES WITH SCINTILLATION EFFECT
A. SCINTILLATION EFFECT AND SAR IMAGE ENTROPY
The ionospheric scintillation is produced by small-scale elec-
tron density irregularities in the ionosphere. The turbulence of
ionospheric irregularities will introduce phase and amplitude

FIGURE 1. The observation geometry of spaceborne SAR with ionospheric
scintillation phase screen.

fluctuations into the tranionospheric SAR signals. In recent
papers, a statistical research based on the Advanced Land
Observing Satellite / Phased Array type L-band Synthetic
Aperture Radar (ALOS/PALSAR) equatorial images reports
that nearly 14 % of the observed images are contaminated by
scintillation effect [15], [16]. The geometry of the spaceborne
SAR and the scintillation phase screen is shown in Figure 1,
where Hsat is the height of the radar platform and Hiono is the
equivalent height of the phase screen which is set as 350 km.
As the radar beam scanning over the phase screen within the
acquisition time, the phase error is introduced when the signal
penetrates the phase screen.

The scintillation phase error within the synthetic aperture
leads to the signal decorrelation and the azimuth defocus-
ing. Since the well-focused SAR image has lower entropy,
the minimum-entropy criterion is applied to carry out the
autofocusing. Like other autofocusing methods, our work
also assumes that the phase error is the same in different range
positions and compensates the azimuth phase error with a
single filter. Actually, the scintillation phase screen shows
spatial variation both in range and azimuth. In real appli-
cations, the SAR image is segmented into several patches
along the range to limit the spatial variation. The minimum-
entropy autofocusing guarantees the algorithm can well adapt
to each image patch, because it doesn’t need to select the
strong scatters. The phase compensation on SAR image is
performed in range-Doppler domain as follow

g (m, n) =
1
M
·

M−1∑
k=0

G′ (k, n)

× exp
(
j
(
8(k)− ϕ̂ (k)

))
exp

(
j
2π
M
mk
)

(1)

where m and n are the indexes of image in the azimuth and
range time domain.M and N are the azimuth and range sam-
ples. 8(k) and ϕ̂ (k) are the ionospheric scintillation phase
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error and the compensation phase, respectively. G′ (k, n)
is the SAR signal before compensation in range-Doppler
domain and k is the index of Doppler frequency. The SAR
image entropy is expressed as follow

E (g) = ln S −
1
S

M∑
m=1

N∑
n=1

|g (m, n)|2 ln |g (m, n)|2 (2)

S =
M∑
m=1

N∑
n=1

|g (m, n)|2 (3)

where E (g) is the SAR image entropy and S is a constant
which represents the power of image. Above all, the aim of
our work is to minimize the image entropy by searching and
compensating the scintillation phase error.

B. POLYNOMIAL MODEL FOR COMPENSATION PHASE
Based on the aforementioned discussion, the minimum-
entropy autofocusing can be considered as an optimization
problem, which is described as follow

ϕ̂ = argmin
ϕ̂

[
Eg
(
ϕ̂
)]
M×1 (4)

where the compensation phase ϕ̂ =
[
ϕ̂1, . . . , ϕ̂k , . . . , ϕ̂M

]
is a M-dimensional vector and the azimuth sample M
can be several thousand for a real SAR image. However,
a M-dimensional optimization is not operational because the
searching space of parameters is too big which will cause an
unendurable waste of time. As a consequence, a parametric
polynomial model is applied to fit the compensation phase
which is expressed as follow

ϕ̂ =

D∑
d=2

αd
f da

max
(
f da
) (5)

where D is the highest order of polynomial and αd is the
coefficient of the dth order phase. fa =

[
−

PRF
2 , . . . , 0, . . . ,

PRF
2

]
M×1 is the Doppler frequency sequence. The zero and

first order terms are ignored because these terms will not
lead to the azimuth defocusing. The max

(
f da
)
is utilized

as the denominator to normalize the high-order phase term
which will improve the sensitivity of the algorithm to the
variation of the polynomial coefficients. By using the poly-
nomial model in (5), the dimension of search space is signif-
icantly decreased from M to D, which makes the algorithm
operational.

III. REFINED PARTICLE SWARM OPTIMIZATION
A. THE BASIC PSO ALGORITHM
The particle swarm optimization takes the inspiration from
the cognitive ability and the social behavior of the bird and
fish flocks. The swarm is a multi-agent distributed system
organized by particles (swarm individuals). The evolution of
particle is motivated by its individual and social cognition.
All the particles tend to move towards the position with
better fitness and finally converge to the global optimum in
search space. In this paper, the position of the ith particle is

defined as αi = [αi1, αi2, . . . , αiD]D×1 which is the coeffi-
cient sequence of phase polynomial. The fitness of particle is
defined as the value of the image entropy, so the better fitness
means the lower image entropy in this paper (The aim of the
algorithm is to search the global minimum). The update of
particle’s velocity and position in iteration follows{

vk+1i = ωvki + c1ξ
(
pkbest − α

k
i

)
+ c2η

(
gkbest − α

k
i

)
αkC1i = αki + vk+1i

(6)

where vki and vk+1i are the velocity of particle in kth and
(k + 1)th iteration, respectively. pkbest and gkbest are the ‘‘per-
sonal best’’ and the ‘‘global best’’ positions. pkbest refers to
the position of individual best fitness in history and gkbest
is the position of global best fitness in history. c1 and c2
are the learning factors (also called acceleration coefficient)
which govern the acceleration ability towards the personal
best position and the global best position. c1 controls the
self-learning ability as well as c2 controls the social-learning
ability. ω is called the inertia weight which keeps the particle
maintaining its velocity in the previous iteration. ξ and η are
the random numbers generated from a uniform distribution in
[0, 1]. Some literatures [30]–[32] have claimed that a dynam-
ical adjustment of inertia weight and learning factors may
dramatically improve the convergence properties of PSO.
In this paper, the inertia weight and the learning factors are
calculated as follow

c1 =
(
c1f − c1i

)
·

iter
Iter_max

+ c1i

c2 =
(
c2f − c2i

)
·

iter
Iter_max

+ c2i

ωi = ωmax −
ωmax − ωmin

Iter_max
× iter (7)

where iter is the number of current iteration and Iter_max
is the max iteration time. In this paper, we set c1f = 1.5,
c1i = 2.5, c2f = 2.5, c2i = 1.5, an asynchronous time-
varying learning factor enables the particles to obtain the
better exploration ability at the beginning of iteration and the
better exploitation performance in the final stage. The inertia
weight parameters are set as ωmax = 0.9 and ωmin = 0.4.
A linear decreasing inertia weight will lead to overall lowest
errors [30].

B. GRADIENT ACCELERATOR
Like other evolution optimization algorithms, the basic PSO
algorithm searches the parameter space by using particle
swarm with the random strategy without considering the
mathematical properties of the problem. However, in practi-
cal cases, the gradient of the objective function may contains
the important information. Inspired by the steepest descent
algorithm [33], the opposite gradient is the steepest descent
direction of the objective function which can serve as an
accelerator in evolution.

In our experiment, we found that the basic PSO with-
out gradient acceleration will increase the blindness during
the evolution. It will finally lead to a huge waste of time
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∂Eg (αi)
∂αid

=
1

S ·M
· Im

{
M−1∑
k=0

(
f da

max
(
f da
)) N−1∑

n=1

G (k, n)
M−1∑
m=0

[
1+ ln |g|2

]
· g∗ · exp

(
j
2π
M
mk
)}

(9)

and the particles may fail to converge into the global opti-
mum at the end of iteration. Consequently, the gradient
information of the image entropy function is utilized in our
algorithm to make the particle’s evolution more effective
and pertinence. The gradient of objective function corre-
sponds to the particle’s position is described as ∇Eg (αi) =[
∂Eg(αi)
∂αi1

,
∂Eg(αi)
∂αi2

, . . . ,
∂Eg(αi)
∂αiD

]T
. Based on (2) ∼ (5), the first

order derivative of the image entropy function corresponds to
the dth order coefficient in αi is given as follow

∂Eg (αi)
∂αid

=
1
S

M∑
m=1

N∑
n=1

[
1+ ln |g (m, n)|2

] ∂|g (m, n)|2
∂αid

(8)

where αid is the dth order coefficient in αi. Since |g (m, n)|2 =
g∗ (m, n) g (m, n), and G (k, n) = G′ (k, n) · exp

(
−jϕ̂ (k)

)
,

where g∗ (m, n) is the conjugate of g(m, n) and G′ (k, n)
is the range-Doppler domain expression of g′ (m, n) in last
iteration. The gradient of the objective function is derived
from (9), as shown at the top of this page, which is illustrated
at the bottom of this page. The particles are updated along the
opposite gradient direction with a specific probability in iter-
ations. The step length is obtained from the one-dimensional
search. In this paper, the parabolic method is applied to
obtain the optimal step length.With the gradient acceleration,
the effectiveness and convergence capability of the algorithm
are highly improved.

C. GENETIC MULTI-CROSSOVER OPERATOR
AND TABU SEARCH
The basic PSO also suffers the premature convergence which
is mainly caused by the rapid flow of pheromone in the
swarm. Consequently, many literatures have been proposed
to improve the original PSO, such as Dynamic Multi Swarm
PSO [34], and Comprehensive Learning PSO [35]. In our
work, the genetic multi-crossover operator is applied to
increase the diversity of the swarm when the algorithm is
trapped in local minimum or tends to immovable. The genetic
multi-crossover is proposed in [36]. This operator is firstly
applied to determine some parameters in a controller design
problem. The principles of the multi-crossover operator are
just like the gene exchange between different chromosomes,
which is expressed as follow

χ ′1 = χ1 + η (2χ1 − χ2 − χ3) (10)

where χ1, χ2, χ3 are the ‘‘chromosomes’’ of particles which
are randomly selected from the swarm. In our work, the chro-
mosome refers to the particle’s position. We define that χ1
is selected as the premier parent which has the worst fitness
among the selected chromosomes. The chromosome χ1 is
updated by (10). This operator will increase the diversity

of the swarm and help some of the particles escape from
the local optimum. When the algorithm gets stuck into the
local optimum, the multi-crossover operator is introduced to
dominate some of the particles’ evolution with a specific
probability. In this paper, we design that if the algorithm
loops over 10 times without finding a better solution then this
operator is introduced.

During the evolution, the particles may step into some
local areas with very bad fitness, which can be regarded as
the ‘‘marsh’’ in search space. To prevent the particles from
stepping into the marsh area for the second time, the tabu
search is applied to help the particles keep away from the
area with bad fitness. If the particle does not satisfy the tabu
criterion, its information will be recorded in the tabu list and
its velocity will be updated by (11). In the next iteration,
we will check all the particles if their positions are too close
to the recorded data in the tabu list. The local minimum
positions are also recorded in the tabu list to prevent the
other particles being trapped again. The punished particle will
update its velocity by (11) instead of directly being removed
from the swarm.

vkC1iL = c1ξ
(
pkbest − α

k
iL

)
+ c2η

(
gkbest − α

k
iL

)
(11)

Here we drop the inertia term in (6) and only keep the
cognitive and learning parts. Note that the tabu list has a
limited length and needs to be updated. When the tabu list
overflows, the old records will be replaced by the new data.
By utilizing the multi-crossover operator and the tabu search,
the performance of the Re-PSO is highly improved than the
basic PSO algorithm.

D. STRUCTURE OF THE Re-PSO ALGORITHM
In PSO, each particle is defined as an independent indi-
vidual with self and social cognition. In our experiment,
each particle is defined as a class type variable which has
four attributes defined as P.position, P.velocity, P.fitness
and P.pbest . Among them, P.position and P.velocity are
the particle’s position and velocity in the current iteration,
respectively. P.fitness represents the particle’s fitness and
P.pbest is the particle’s best position in history. The swarm is
also defined as a class type variable which contains S.pool,
S.population, S.gbest , S.fitness and S.gb_fitness. S.pool is a
list which contains all the particles and S.gbest is the global
best position of the swarm in history. S.population is the
swarm population. S.fitness is the global best fitness in the
current iteration and S.gb_fitness is the global best position
in history which is calculated by S.gbest . These two attributes
are used to determine if the image correction is needed in
current iteration (obviously, the phase compensationwill only
be performed when a better solution is found). ω, c1 and
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FIGURE 2. The flowchart of the proposed Re-PSO algorithm.

c2 are the factors calculated in iteration. Pa and Pb are the
probabilities of particles to be selected for the gradient accel-
erator and the multi-crossover operator. Note that since the
image entropy is regarded as the particle’s fitness, the lower
entropy corresponds to better fitness. In other words, our
aim is searching the lowest fitness in the search space. The
flowchart of the proposed Re-PSO algorithm for scintillation
mitigation is shown in Figure 2 and the detailed process is
described in pseudocode as follow:

IV. SIMULATION
A. SCINTILLATION PHASE SCREEN SIMULATION
The ionospheric scintillation is caused by the ionospheric
irregularities in Fresnel scale. The stochastic dispersion hap-
pens to the radar waves when they penetrate the small scale
ionospheric irregularities. Since the random propagation of
refracted radio waves in ionospheric irregularities, the scin-
tillation shows significant randomness and spatial variation.

Consequently, the ionospheric scintillation is simulated by its
power spectrum based on the phase screen theory. The Rino
power law spectrum [37] has been proved by real measured
data and also used in the global ionospheric scintillation
model (GISM). Therefore, in this paper, the Rino power
law spectrum and SAR scintillation simulator proposed by
Carrano [29] are applied to simulate the scintillation effect.
The Rino’s power spectral density is described as follow

8(κ) =
r2e λ

2sec2 (θ) · CsL · a · b[
q0 +

(
Aκ2x + Bκxκy + Cκ2y

)](p+1)/2 (12)

CsL = CkL
(

2π
1000

)p+1
(13)

where λ is the wavelength of SAR signal and re is the classical
electron radius. L0 is the outer scale and q0 = 2π

/
L0

is the corresponding wave number. Both CsL and CkL are
the indexes of scintillation strength and their relationship
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Algorithm 1 Minimum-Entropy Autofocusing Based on
Re-PSO
Require: Input Image: g; Particles: P.velocity, P.position,

P.pbest , P.fitness; Swarm: S.pool, S.gbest ,
S.population, S.fitness, S.gb_fitness.

1: function PSO.initialize( )
2: end function
3: function PSO.implement(Swarm)
4: Set Iter_max, Pa, Pb, δ, k = 0, µ = 0.
5: for k = 1 : Iter_max do
6: Update P.pbest , P.fitness.
7: Calculate inertia weight ωi and learning factors
c1, c2 by (7).

8: if rand(0,1) < Pa then
9: Calculate ρ = −∇E (α) by (9) and search the

step length λ by parabolic method.
10: Based on steepest decent theory, P.velocity =

λ× ρ, P.position = P.position+ λ× ρ
11: else if P.fitness < δ then
12: Update the P.velocity and P.position as basic

PSO by (6).
13: else
14: Push the particle into tabu list and update the

P.velocity and P.position by (11).
15: end if
16: Add all the particles into S.pool and update

S.fitness.
17: if S.fitness < S.gb_fitness then
18: S.gb_fitness ← S.fitness, calculate ϕk with

S.gbest by (5) and compensate gk by (1).
19: else
20: µ = µ+ 1
21: if µ > 10 then
22: Update the swarm by multi-crossover

operator with Pb and set µ = 0.
23: end if
24: end if
25: k = k + 1
26: end for
27: end function

is shown in (12). p is the spectral index and θ is the inci-
dent angle. Both a and b are structural scaling factors of
irregularities along and vertical to the magnetic field. A, B
and C are the coefficients referring to the transmit direction
and the geomagnetic field. Their complete expressions have
been detailedly discussed in [29] and we will not make the
extension here. What’s more, the κ =

(
κx , κy

)
is the trans-

verse wavenumber refers to the penetration point on the phase
screen.

The orbit, radar system and the ionospheric parameters are
listed in Table 1. The parameter settings refer to the discus-
sion in [15]. Note that the scintillation strength and the spec-
tral index are selected in a range to illustrate a comprehensive
verification of the algorithm’s performance. A simulation of

TABLE 1. Radar system and ionospheric parameters.

FIGURE 3. A simulation of scintillation phase screen.

TABLE 2. PSO Parameters.

FIGURE 4. The imaging result on point array target.

scintillation phase screen is shown in Figure 3, in the case of
CkL = 1033, p = 5. As is shown in Figure 3, the scintillation
phase screen shows significant spatial variation both in range
and azimuth. Thus, the image segmentation is applied along
the range to restrict the spatial variation in an endurable level.
The simulation methods on area and point target basically
follow the description in [29]. The PSO parameters used in
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FIGURE 5. The azimuth slices of the scintillation imaging and autofocusing results of target A, B and C.
(a) target A before and after autofocusing. (b) target B before and after autofocusing. (c) target C before and
after autofocusing.

FIGURE 6. Autofocusing performance comparisons between our method and other minimum-entropy
autofocusing algorithms. (a) comparison of target A. (b) comparison of target B. (c) comparison of target C.

this paper are listed in Table 2. As is discussed above, the c1,
c2 andω dynamically change in iteration.Pa and Pb dominate
the probabilities of the gradient accelerator and the multi-
crossover operator. The polynomial dimension is defined as
D = 15 to fit the high order terms in the scintillation phase.

B. POINT TARGET SIMULATION
The point target simulation provides a quantitative anal-
ysis of the autofocusing performance of the proposed
Re-PSO algorithm. In this section, the autofocusing perfor-
mance of our method is demonstrated and comparisons with
[22] and [24] are presented to verify the advantages of our
method. Finally, the Monte-Carlo simulation is performed to
find out the effective boundary of the proposed algorithm.
The point target simulation is carried out based on a
5 km× 5 km point array target as is shown in Figure 4. Three
point targets locating at different positions are selected to ana-
lyze the autofocusing performance of the proposed algorithm.
As is shown in Figure 4, the three targets are named as target
A, target B and target C, respectively. The ideal azimuth and
range resolutions are 4.4807 m and 4.3839 m, respectively.

Due to the spatial variation of the scintillation phase screen,
each target in Figure 4 suffers different scintillation phase
error both in range and azimuth. The azimuth slice of the scin-
tillation imaging and autofocusing results of the three point
scatters when CkL = 1033, p = 5 are shown in Figure 5.

Since the ionospheric scintillation mainly induces the
azimuth degeneration [15], only the azimuth slices are
demonstrated in Figure 5. The range segmentation is utilized
to restrict the range variation of scintillation phase error.
It is obvious that the scintillation-induced azimuth decorre-
lation leads to the broadening of mainlobe and the asym-
metric sidelobe. The distortion in range is not as serious
as azimuth, thus the autofocusing only performs along the
azimuth. As is shown in Figure 5 (a) and (b), target A and tar-
get B are perfectly refocused (Point A: PSLR = −12.51 dB
ISLR = −9.63 dB, Point B: PSLR = −13.01 dB
ISLR = −9.93 dB). For target C in Figure 5 (c), the asym-
metric sidelobe still exists in autofocusing result due to the
residual high-order phase error. The PSLR and ISLR of
target C are −11.43 dB and −9.31 dB, respectively. The
autofocusing performance comparisons on these three tar-
gets are illustrated in Figure 6. The comparisons are carried
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TABLE 3. The statistical data on PSLR, ISLR and azimuth resolution of the point target imaging results from Monte-Carlo simulation.

FIGURE 7. The statistical histogram of the particles’ fitness (entropy) in different iterations, the red histograms show the results of Re-PSO
and the blue histograms show the results of basic PSO. (a) 50 iterations. (b) 100 iterations. (c) 150 iterations. (d) 200 iterations.

out between our method (Re-PSO) and the existing
minimum-entropy autofocusing methods proposed in [22]
(ME 1) and [24] (ME 2). Note that the same range seg-
mentation strategy is applied for all these three autofocusing
methods. Comparing with ME1 and ME2, the proposed Re-
PSO method shows better autofocusing performance in these
three cases which are demonstrated as the preservation of the
mainlobe and the suppression of sidelobes. The comparisons
validate that the Re-PSO is able to escape from the local
minimum to get better solutions than traditional minimum-
entropy autofocusing methods.

The Monte-Carlo simulation is carried out to verify the
performance of the proposed algorithm in different scintil-
lation conditions. The simulations are iteratively performed
for 100 times in each scintillation condition and the statisti-
cal results are illustrated in Table 3. From Table 3, we can
know that with the increasing of the scintillation strength
and spectral index, the PSLR and ISLR suffer more seri-
ous degeneration. The azimuth imaging resolution slightly

decreases when CkL = 1033 and dramatically decrease when
CkL = 1034. It is shown in Table 3 that the proposed algo-
rithm maintains excellent autofocusing performance when
CkL ≤ 3 × 1033, p ≤ 5. The PSLR and ISLR of the auto-
focusing results start to degrade until CkL ≥ 1034. However,
the improvements of azimuth resolution after autofocusing
are still significant even in strong scintillation conditions. The
Monte-Carlo simulation validates that the proposed Re-PSO
algorithm maintains effectiveness when CkL ≤ 3 × 1033,
p ≤ 5.
Furthermore, the convergence properties of the Re-PSO

algorithm proposed in this paper are discussed and validated
in Figure 7. In Figure 7, the statistical histograms demonstrate
the distribution of the particles’ fitness by the Re-PSO and
the basic PSO in different iteration. In this case, the ideal
SAR image entropy (without scintillation effect) is E0 =
3.981 and the contaminated image entropy (before autofo-
cusing) is Eiono = 4.887. As is shown in Figure 7 (a),
the evolution result of the Re-PSO (red histogram) shows
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FIGURE 8. The area target simulation. (a) original SAR image. (b) scintillation imaging result. (c) autofocusing result with Re-PSO.

FIGURE 9. The locally magnified images of the area target simulation. (a) original SAR image. (b) scintillation imaging result.
(c) autofocusing result with Re-PSO.

better convergence than the basic PSO in the 50th iteration.
This means the gradient accelerator plays an important role
in the evolution at early stages. In the following evolution
stages, as a consequence of the dynamic inertia weight and
learning factors, the particles of the Re-PSO show better
exploration performance than the basic PSO. After 150 iter-
ations, most of the particles of the Re-PSO have converged
to the global minimum position. However, the convergence
performance of the basic PSO is much poorer. The genetic
multi-crossover operator is applied to increase the diversity of
the swarm with a proper probability when the evolution tends
to frozen. The tabu search helps the particles keep away from
the bad position and the discovered local minimum. Finally,
the Re-PSO converges to Egb = 4.012 after 300 iterations
comparing with the result E ′gb = 4.162 after 500 iterations of
the basic PSO. These results validate the better autofocusing
performance of the Re-PSO proposed in this paper. The com-
parisons in Figure 7 show that the Re-PSO algorithm has both
the better convergence ability and the better autofocusing
performance.

C. AREA TARGET SIMULATION
Due to the lack of operating spaceborne P-band SAR sys-
tem, the area target simulation is carried out by using the

radar cross-section (RCS) of an 1000× 1000 pixels airborne
P-band SAR image acquired in Longmen, China, 35.51N ◦,
110.62E◦. A group of low orbit satellite parameters listed
in Table 1, are applied to carry out the simulation of a
P-band spaceborne SAR system. The ideal imaging result is
shown in Figure 8 (a). The simulation of scintillation phase
screen follows the descriptions in [30]. The simulation is
carried out in the case of CkL = 3 × 1033, p = 4. The size
of the simulating phase screen is 22.40 km in azimuth and
4.43 km in range. As is shown in Figure 3, the spatial phase
variation in range cannot be neglected. Consequently, image
segmentation is applied to limit the range variation of phase
screen. In our work, the segmentation length in range is set
as 200 m which will meet the requirements of computation
efficiency and autofocusing performance. The scintillation
imaging result and the autofocusing result with the proposed
Re-PSO algorithm are shown in Figure 8 (b) and Figure 8 (c).
The ideal SAR image entropy in Figure 8 (a) is 12.082.
The entropy of scintillation-contaminated SAR image and the
autofocusing result are 12.468 and 12.114, respectively. The
image entropy amelioration validates the effectiveness of the
proposed Re-PSO algorithm quantitatively. Comparatively,
the autofocusing results of ME1 and ME2 are 12.368 and
12.342 that also indicates the better performance of Re-PSO.
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To present a more clear demonstration, the locally magnified
images of the scintillation-contaminated SAR image and the
autofocusing result are shown in Figure 9. The locally mag-
nified images are selected in the bottom right corner of the
scene. It is shown in Figure 9 (b) that the increase of ISLR
and PSLR induced by scintillation cause the image blur and
the decrease of SAR image contrast. By using the proposed
Re-PSO autofocusing algorithm the azimuth blur is refocused
and the degeneration of ISLR and PSLR are significantly
mitigated.

V. CONCLUSION
The P-band SAR system will be seriously deteriorated by
ionospheric scintillation when the radio waves penetrate the
ionospheric irregularities. In this paper, an intelligent iono-
spheric scintillation mitigation method is proposed based on
the minimum-entropy autofocusing. The scintillation mitiga-
tion is considered as an optimization problem and a Re-PSO
algorithm is proposed to provide a heuristic optimal solution.
Compared with the traditional optimization method like the
Newton method and the steepest descent method, the PSO
algorithm provides a cognitive and parallel searching strategy
that is able to evade the local minimum. The gradient accel-
erator and the genetic multi-crossover operator are utilized to
improve the convergence ability and prevent the premature
convergence. The tabu list is used to punish the bad evolution
and prevent the particles from plunging into the local min-
imum for the second time. Finally, the simulation validates
the effectiveness and better autofocusing performance of the
proposed method. The Monte-Carlo simulation indicates that
the proposed autofocusing method maintains effectiveness in
the moderate scintillation condition. We hope this paper may
provide a new viewpoint for the scintillation mitigation and
the same idea may also be further applied in SAR or ISAR
image autofocusing.
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