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ABSTRACT Several features have been developed to characterize the land cover in synthetic aperture radar
(SAR) data with speckle noise. Feature extraction has become an essential task for SAR image processing.
However, how to preserve the original intrinsic structural information and enhance the discriminant ability
to reduce the impact of noise is still a challenge in this area. In this paper, using a clustering method to
maintain the nonlocal information in images and tensors with the ability to preserve spatial neighborhood
structure information, a new cluster-based tensorial semisupervised discriminant analysis (CTSDA) method
is proposed for feature extraction of SAR images. In the CTSDA, the block clustering algorithm is employed
to generate several high-order clustering tensors of multifeature SAR images, which preserves the intrinsic
nonlocal spatial information and neighborhood structure. In the multiple manifold structures of the cluster
tensors, the improved discriminant analysis enhances the feature discrimination by considering the local
structure and labeled and unlabeled information through the Laplace matrix, and the fusion of tensor
algebraic analysis and improved discriminant analysis produces multiple new projection directions of the
cluster tensors. Finally, feature extraction is achieved by rearranging the projected cluster tensors. The
experimental results on the simulated SAR data and four real SAR images demonstrate the superiority of
the proposed method over several state-of-the-art approaches.

INDEX TERMS Feature extraction, nonlocal, tensor, semisupervised discriminant analysis, SAR.

I. INTRODUCTION
Synthetic aperture radar (SAR) is an activemicrowave remote
sensor that can penetrate the cloud layer and is less affected
by atmospheric attenuation. SAR images contain speckle
noise and strong scattering points, which makes SAR image
classification very difficult. Over the past few years, several
features have been developed for SAR classification, such
as texture features [1], [2], geometrical features [3], [4],
visual features [41], edge features [5], [6], spatial rela-
tions [7], [8], and combinations of multiple features [9]– [11].

The associate editor coordinating the review of this manuscript and
approving it for publication was Guitao Cao.

Consequently, feature extraction has become an essential task
in SAR image processing. However, how to preserve the orig-
inal intrinsic structural information and enhance the discrimi-
nant ability to reduce the impact of noise is still a challenge in
this area. Therefore, several feature extraction methods [12]
have been proposed to address this challenge, which extract
the features of effective information from high-dimensional
space into low-dimensional space through a projection. These
methods can be classified as nonlinear or linear. Several
nonlinear methods, such as Laplacian eigenmaps (LE) [13]
and t-stochastic neighbor embedding (TSNE) [14], have been
developed. LE use a local perspective to build the relationship
between data, and TSNE tries to keep the distribution of
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data unchanged and maintains a strict segmentation interface.
Neither of these methods has an explicit expression, so new
samples cannot be expanded, and they lack discrimination.
The linear manifold learning methods include principal com-
ponent analysis (PCA) [15] and linear discriminant analysis
(LDA) [15], [16]. PCA aims tomaximize the mutual informa-
tion between the original high-dimensional data sets, regard-
less of the label information. LDA aims to simultaneously
find a projection matrix to maximize the trace of the between-
class scatter matrix and minimize the trace of the within-class
scatter matrix in the projected subspace, but local informa-
tion cannot be embodied. In addition, there are other feature
extraction methods, such as sparse and low-rank representa-
tion [17]–[20]. But traditional feature extraction methods are
vector-based methods, and they ignore the global correlation
and spatial relationship among neighboring pixels. Because
the matrices of SAR images must first be unfolded into a one-
dimensional vector structure, the reshaping process breaks
the natural structure of the image.

Therefore, tensor-based methods have been proposed
because they can preserve the overall spatial structure,
and they have been applied in several areas, including
biological [21] and medical research [22], facial recog-
nition [23], [24], natural image processing [25], hyper-
spectral image analysis [26]–[28], [42] and PolSAR image
processing [29], [30]. Lower rank tensor approximation
(LTRA) [26] is an extension of PCA to higher-order data
sets that assumes strong global correlations in the spatial
and feature domains. Tensor locality preserving projection
(TLPP) [28] can effectively embed the spatial structures and
feature information into low-dimensional space simultane-
ously using a projection matrix. In these studies, a high-order
tensor is used to express the research object to calculate the
specific amount in the data processing. The greatest advan-
tage of doing so is that the structural characteristics of the
original data are fully maintained, and the global correlation
and spatial information among neighboring pixels are fully
used. However, these tensor methods simply apply the gray
value information, considering that the spatial information is
not comprehensive, and lack discrimination. Furthermore, all
of the methods are essentially based on the hypothesis that
the data are drawn from a low-dimensional subspace.

Tensors embody all of the spatial information, but in prac-
tice, a data set is often not describedwell by a single subspace.
Therefore, it is more reasonable to consider data lying on a
mixture of multiple low-dimensional subspaces, with each
subspace fitting a subgroup of data. Corresponding to the
following conditions, in the spatial domain, the arrangement
of land covers is disordered, and a global correlation is not
always guaranteed. In other words, there is a nonlocal spatial
correlation, so simply projecting all of the data in the high-
dimensional space to one low-rank space is not appropriate,
and the classification results of the feature extraction are not
desirable. In reality, there is little labeled information, and a
large amount of data is unlabeled, so the information about
the two should be fully utilized.

Inspired by the issues presented above, the study of
clustering and semisupervised feature extraction based on
a multifeature tensor framework facilitates SAR land cover
classification. Using tensors as a whole frame, the semisuper-
vised method [31], [32] is considered to learn the character-
istics, which can use a small number of labeled samples and
many unlabeled samples to estimate the intrinsic manifold
structure of the data. To better reflect the distribution of sam-
ples, clustering is used to maintain the nonlocal information.
In addition, the multimanifold local geometry structure is
reflected through improved discrimination analysis.

Finally, a feature extractionmethod, cluster-based tensorial
semisupervised discriminant analysis (CTSDA), is proposed
for SAR classification, which considers the discrimination of
multiple manifold structures. The contributions of themethod
are summarized as follows. 1) Unlike traditional vector-based
methods, which treat each sample as an independent item,
the samples in the CTSDA are represented in a tensor form,
which can preserve the original spatial neighborhood infor-
mation. 2) Traditional feature extraction methods consider
that all samples are on the same manifold distribution, while
the samples of the CTSDA are distributed in several unique
small manifold distributions; each manifold structure gen-
erated by CTSDA reflects the local and nonlocal structure
information about the image. 3) Traditional tensor feature
extraction methods usually only use pixel gray values and
generate a single tensor projection factor matrix in the third
dimension; however, CTSDA uses multiple feature fusion
expressions of the SAR image in the tensor projection and
generatesmultiple new tensor projection factor matrices. This
approach generates multiple projection directions in the third
dimension, which better preserves the separation between
the classes and greatly improves feature separability. 4) The
improved discriminant analysis in CTSDA is semisupervised,
preserves the local geometric structure to describe the within-
class compactness and between-class separability on mul-
tiple manifolds, and combined with labeled and unlabeled
information, results in significant feature discrimination.
In addition, based on well-established search engines used for
scientific research, such as Web of Knowledge and Google
Scholar and to the best of our knowledge, this study is one of
the few that have focused on the classification of nonpolar-
ized SAR data using the tensor feature extraction technique.

The remainder of this paper is organized as follows.
Section II describes the related work, and Section III presents
the theory of the proposed method in detail. Section IV evalu-
ates the experimental results with simulated and real data with
performance analyses. Section V presents the conclusions of
this paper.

II. RELATED WORK
The first part of this section presents a fundamental intro-
duction to the tensor algebra, which will provide theoretical
foundations for the following discussions. The second part
of this section introduces the conventional feature extraction
method LDA of manifold learning.
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A. BASIC TENSOR ALGEBRA
Tensor algebra [33] is a high-dimensional extension of matrix
algebra. Usually, a matrix of three or more dimensions is
defined as a tensor. LetX be a tensor of size I1×I2×· · ·×Im;
the order of X is m, and the nth dimension (or mode) of X is
the size of In.
Similar to the Frobenius norm of a matrix, the norm of a

tensor X ∈ RI1×I2×···×Im is the square root of the sum of the
squares of all of its elements, or the inner product with itself,
and it is defined as

‖X‖F =
√
〈X,X〉 =

√√√√√ I1∑
i1=1

I2∑
i2=1

· · ·

Im∑
im=1

X2
i1i2···im

. (1)

Matricization, or unfolding, is defined as the process of
unfolding a tensor into a matrix. The mode-n unfolding
of a tensor X ∈ RI1×I2×···×Im is denoted by X(n) ∈
RIn×(I1I2···In−1In+1···Im). The obtained matrix X(n) can also be
regarded as the n-mode-flattened tensor X.
The n-mode product of a tensor X ∈ RI1×I2×···In×···×Im

and a matrix U ∈ RJ×In is a tensor denoted as Y of size
I1 × · · · × In−1 × J × In+1 × · · · × Im, which is expressed as

Y = X×n U ⇔ Y(n) = UX(n). (2)

where×n denotes themode-n tensor-matrix product operator,
and Y(n) denotes the mode-n matricization of the resulting
m-order tensor Y.

Tucker decomposition is a widely used method of ten-
sor decomposition, which expresses higher-order singular
decomposition. This tensor decomposition is denoted as
follows:

X = C ×1 U1 ×2 U2 × · · · ×n Un =
n∏
i=1

C ×i Ui (3)

where C is the core tensor, and Ui, i = 1, . . . , n is the
factor matrix, which is the matrix of eigenvectors associated
with the covariance matrix X(i)XT(i), where X(i) is the mode-i
unfolding matrix of tensor X.

B. LINEAR DISCRIMINANT ANALYSIS
LDA [34] searches for a projection matrix that makes the
data points of different classes far from each other while
requiring data points of the same class to be close to each
other after the projection. Suppose we have a set of n sam-
ples {xi, i = 1, · · · , n} belonging to c classes. The objective
function of LDA is as follows:

Popt = argmax
P

PT SbP
PT SwP

, (4)

Sb =
c∑

k=1

nk
(
µ(k) − µ

) (
µ(k) − µ

)T
, (5)

Sw =
c∑

k=1

( nk∑
i=1

(
x(k)i − µ

(k)
) (

x(k)i − µ
(k)
)T)

, (6)

St = Sb + Sw =
n∑
i=1

(xi − µ) (xi − µ)T . (7)

where P is the projection matrix, nk is the number of samples
in the kth class, µ is the total sample mean vector, µ(k) is
the average vector of the kth class, x(k)i is the ith sample in
the kth class, Sw is the within-class scatter matrix, Sb is the
between-class scatter matrix, and St is the total scatter matrix.

III. THE PROPOSED METHOD
This section presents the proposed tensor-based feature
extraction method in two parts.

A. TENSOR MODELING BASED ON CLUSTERS
The starting point for our model is the multifeature selection
of SAR image X , which has a size of I1 × I2. Because
SAR images are affected by speckle noise, the pixels’ gray
values cannot be used directly. According to [35], a gray-
level co-occurrence matrix (GLCM) that can express the rich
texture of SAR images is adopted, whichmakes full use of the
imaging mechanism and the statistical characteristics of SAR
images. Mean filtering [36] is used to smooth the SAR image.
To protect the sharp edge of the SAR image, median filtering
is used to capture the properties in the SAR image [36]. For
each pixel xij in an SAR image X , many texture feature statis-
tics can be calculated using theGLCM. Four feature statistics,
namely, contrast, correlation, homogeneity and energy, are
selected to express the image pixel, and they are calculated in
the four directions required by GLCM: 0◦, 45◦, 90◦ and 135◦.
These directions are used because each measure tends to
be independent of other co-occurrence statistics. In addition,
each statistic is insensitive to gray level shifts [35]. The mean
and median are also calculated in four directions: 0◦, 45◦, 90◦

and 135◦. Because the range of gray values is different from
that of the probability values, the mean value and median
value must be normalized, while the original probability
value of the GLCM is retained. Based on the general form
of multikernel learning [37], the mean and median values
are multiplied by weight coefficients for the transformation,
which makes their values fall within the range of [0], [1].
Then, three types of features [35], [36] are concatenated to
form a 24-dimension feature vector, at 0 degrees, the four
GLCM values of contrast, correlation, homogeneity and
energy are represented successively, as well as themean value
and themedian value. Then the above six values are expressed
at 45, 90 and 135 degrees. That is

Fij = (

0
◦
GLCM︷ ︸︸ ︷

f 0
◦

ij1 , f
0
◦

ij2 , f
0
◦

ij3 , f
0
◦

ij4 ,

0
◦
Mean,Median︷ ︸︸ ︷
f 0
◦

ij5 , f
0
◦

ij6 , · · · ,

· · · ,

135
◦
GLCM︷ ︸︸ ︷

f 135
◦

ij19 , f 135
◦

ij20 , f 135
◦

ij21 , f 135
◦

ij22 ,

135
◦
Mean,Median︷ ︸︸ ︷

f 135
◦

ij23 , f 135
◦

ij24 ),

i = 1, 2, · · · , I1, j = 1, 2, · · · , I2, (8)

where Fij represents the feature vector of each pixel, and
f d
◦

ijn , n = 1, 2, · · · , 24, d = 0, 45, 90, 135 represents one
feature value; since there are six different feature values
in each direction, there are a total of 24 feature values.
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FIGURE 1. Tensor formulation of SAR data with various features.

The expression of features fully takes into account the spatial
relationship of image pixel through GLCM value, while data
validity and edge information are respectively reflected by the
mean and median values obtained through filtering. The three
types of features are independent and complementary to each
other. Then, a third-order tensor F ∈ RI1×I2×I3 is constructed
by the feature vectors of Fij, and expressed as follows:

F =


F11 F12 · · · F1I2
F21 F22 · · · F2I2
· · · · · · · · · · · ·

FI11 FI12 · · · FI1I2

 , (9)

where I1 and I2 denote the spatial dimensionality of the image
size, I1 denotes the row height, I2 denotes the column width,
and I3 denotes the feature dimensionality, which is 24 in this
case. The expressed data in tensor form retains the original
data spatial neighborhood information. Fig. 1 shows a tensor
structure diagram.

For the SAR data set, if a tensor representation is not
used, the global spatial correlation is usually not guaran-
teed in a particular application, but the local spatial correla-
tion is available within a local neighborhood, except in the
boundary areas between different land covers. SAR data also
have another property in the spatial domain called nonlocal
correlation, which is based on the fact that different areas
may have the same land covers. In this paper, to utilize
the nonlocal spatial correlation of SAR images, the local
spatial correlation is also considered. The proposed method
uses clusters to build the tensor model, segments the original
SAR image into blocks, classifies the blocks into groups
using the unsupervised clustering algorithm of K-means clus-
tering, and reconstructs a new tensor representation.

Let F ∈ RI1×I2×I3 be an SAR data set with the features
presented above, which is regarded as a third-order tensor
corresponding to the SAR image. To utilize the properties of
local spatial correlation, the tensor F is segmented into many
blocks in the spatial domain with the fixed windowW1×W2.
Each block is a third-order subtensor SFkl ∈ RW1×W2×I3 ,
where 1 ≤ k ≤ m, 1 ≤ l ≤ n, m = dI1/W1e, n = dI2/W2e,
and d.e is a rounding function. Each pair of subtensors is
mutually exclusive, and all of the subtensors cover the global
tensor. Therefore, each subtensor can explore not only the
local spatial similarity but also the global correlation across

all of the feature items of the SAR data. Thus, the global
image tensor is expressed in the matrix form of blocks, each
of which is a subtensor composed ofW1 ×W2 feature eigen-
vectors, we have

F '


SF11 SF12 · · · SF1n
SF21 SF22 · · · SF2n
...

...
...

...

SFm1 SFm2 · · · SFmn

 . (10)

In the later clustering process, block form can keep local
neighborhood information. To exploit the nonlocal spatial
correlation, the patches with similar spatial structures must be
identified. Therefore, a fourth-order tensor F̂ ∈ RW1×W2×I3×f

is constructed based on the subtensors SFkl in F, where
f = m × n is the number of all subtensors, W1 and W2 are
the spatial sizes of the subtensors, which are the dimensions
of the window described above, and I3 is the feature dimen-
sionality number. Then, F̂ is converted into a matrix denoted
as F̂ ∈ R(W1×W2×I3)×f , and the unsupervised clustering
algorithm is employed to cluster F̂ into q groups. The kth
group is denoted as the matrix GFk ∈ R(W1×W2×I3)×Tk ,
k = 1, 2, · · ·, q, F̂ =

{
GF1,GF2, · · ·,GFq

}
, where Tk is

the number of subtensors in the kth group, and
q∑

k=1
Tk = f ,

and q is the number of groups. Finally, GFk is converted
to a fourth-order tensor denoted by GFk ∈ RW1×W2×I3×Tk ,
k = 1, 2, · · ·, q, then

F̂ =
{
GF1,GF2, · · ·,GFq

}
. (11)

Thus, all of the subtensors are clustered into different
groups. The whole image is expressed by a four-order tensor
F̂ ∈ RW1×W2×I3×f , which is composed of a number of
four-order group tensors GFk ∈ RW1×W2×I3×Tk . The fourth
dimension is the number of contained three-order subtensors
SFkl ∈ RW1×W2×I3 . This formal expression embodies the
non-local relations of space.

B. KEY PART OF THE CTSDA ALGORITHM
This part presents the second half of the CTSDA method
based on the abovementioned feature expression, fusing
improved discriminant analysis and multilinear tensor tech-
niques together. The second half of the CTSDA method is
referred to as TSDA in the following discussion. For the
clusters of subtensors presented above, TSDA is employed
to project the clusters into a low-rank space and find a
low-dimensionality feature representation. TSDA attempts
to estimate a low-rank desired component YTSDAk from the
noisy GFk to mitigate or limit the effects of speckle noise
and to reduce much of the redundancy in the feature tensor.

In this section, based on the expression formulation of LDA
in tensor modality [33]. F ∈ RI1×I2×I3 is an SAR data set
with the features described above, the matrix F(3) of LDA is
equivalent to the three-mode-flattenedmatrix ofF. According
to formula (2) of tensor algebra [33], the equivalent of the
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image reshaping can be written as follows:

YSDA(3) = BF(3) ⇔ YSDA = F×3 B, (12)

where YSDA ∈ RI1×I2×C is the third-order tensor holding
the c projection features obtained by LDA, ×n is the n-mode
product operator, which generalizes the product between a
tensor and a matrix along the n mode, and B is the projection
matrix. Similarly, according to formula (2), for each cluster
tensor GFk ∈ RW1×W2×I3×Tk , k = 1, 2, · · ·, q, the matrix
GFk(3) is equivalent to the three-mode-flattened matrix
of GFk , which gives

Yk(3)=BkGFk(3) ⇔ Yk=GFk ×3 Bk , k = 1, 2, · · ·, q,

(13)

The matrix operation is transformed into tensor operation
expression, which facilitates the application of matrix in ten-
sor processing. Where Yk ∈ RW1×W2×p×Tk is the four-order
tensor holding the p projection features obtained by improved
LDA in the kth cluster tensor, and Bk ∈ Rp×I3 represents the
projection matrix, which derivation is illustrated below.

In the kth cluster tensor, xki represents a sample in the
kth cluster tensor. To construct the within-class graph,
according to the form of heat kernel with Euclidean norm in
literature [40], the weight matrix is defined as

W kw
ij =

{
exp(−

∥∥xki − xkj∥∥2 /t) if lablelki = lkj
0 otherwise

, (14)

The weight function is a strictly monotonically decreasing
function with respect to the distance between samples xki
and xkj.
According to the purpose of the objective function (4),

samples from the same class are close, and inspired by the
linear representation of LE [13], [40], local structures are pre-
served, the within-class graph-preserving criterion is defined
as

argminBTk XkLkwX
T
k Bk , (15)

where Lkw = Dkw − W kw is a Laplacian matrix, and Dkw is
a diagonal degree matrix with Dkwii =

∑
jW

kw
ij . Xk represents

the sample matrix in the kth cluster tensor.
For the between-class graph, Mk represents the classes’

centers in the kth cluster tensor, Mk = [mk1,mk2, · · · ,mkc],
where mki is the mean value of the samples belonging to the
ith class, and c is the number of classes in the kth cluster
tensor. According to the form of heat kernel with Euclidean
norm and (5), the weight matrix between the class centers
reflects multiple manifolds and is defined as

W kb
ij = exp

(
−
∥∥mki − mkj∥∥2 /t) . (16)

The purpose of the weight in (16) is to directly enhance
contributions of classes that have smaller distances.

In order for samples from different classes to be as far
away from each other as possible, and local structures among

classes’ centers are expressed, the between-class graph-
penalizing criterion is defined as

argmaxBTkMkLkbMT
k Bk , (17)

where Lkb = Dkb −W kb is a Laplacian matrix, and Dkb is a
diagonal degree matrix with Dkbii =

∑
jW

kb
ij . Each cluster

tensor has a unique small manifold structure, and its own
unique projection matrix Bk is derived, and according to
formula (4), it is expressed as follows:

Bk = max
Bk

BTkMkLkbMT
k Bk

BTk XkLkwX
T
k Bk

. (18)

Because labeled and unlabeled sample information is used,
the improved discriminant analysis describes the within-class
compactness and between-class separability by locally pre-
serving the multimanifolds of the cluster tensors, the features
of the cluster tensors are more discriminating, and the projec-
tion direction corresponding to the projection matrix is more
accurate.

Finding YTSDAk involves minimizing the Frobenius norm
‖Yk − YTSDAk‖

2
F , with Yk defined in (13). YTSDAk ∈

RW1×W2×p×Tk is the lower rank approximated tensor of Yk .
Lathauwer et al. [38] proved that by using Tucker decomposi-
tion formula (3), minimizing the norm of cost function shown
above with respect toYTSDAk is equivalent to maximizing the
following formula with respect to Ukn, n = 1, 2, 3, 4, which
is theorem 4.2 in [38]:

max
Uk1,Uk2,Uk3,Uk4

∥∥∥Yk ×1 UT
k1 ×2 UT

k2 ×3 UT
k3 ×4 UT

k4

∥∥∥2
F
.

(19)

Using the Tucker representation and (3), the reduced tensor
can be decomposed by rank (rk1, rk2, rk3, rk4) as follows:

Yk = Ck ×1 Uk1 ×2 Uk2 ×3 Uk3 ×4 Uk4. (20)

where Ukn, n = 1, 2, 3, 4 are the factor matrices, which
can be thought of as the principal components in each
mode, Ukn is the matrix of eigenvectors associated with the
n-mode covariance matrix Yk(n)Y Tk(n), where Yk(n) is the
mode-n unfolding matrix of Yk , and Ck is a core tensor,
whose entries show the level of interaction between the dif-
ferent components, and rk4 = Tk . Likewise, according to
tucker decomposition formula (3) and formula 4.2 in [38],
YTSDAk can also be decomposed by the same rank as follows

YTSDAk = Dk ×1 Uk1 ×2 Uk2 ×3 Uk3 ×4 Uk4. (21)

where Dk ∈ Rrk1×rk2×rk3×rk4 is a core tensor, which
can be expressed based on the minimizing criterion about
formula 4.3 of theorem 4.1 in [38] as follows:

Dk = Yk ×1 UT
k1 ×2 UT

k2 ×3 UT
k3 ×4 UT

k4. (22)

According to (13) and (22),

Dk = GFk ×1 UT
k1 ×2 UT

k2 ×3 UT
k3Bk ×4 UT

k4. (23)

Combining (21) and (23) so as tomake labels and non-local
spatial information be utilized together, and performing joint
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spatial–feature processing to compress the spatial and fea-
ture modes, the feature extraction process can be expressed
as

YTSDAk = GFk ×1 Vk1 ×2 Vk2 ×3 Vk3Bk ×4 Vk4. (24)

where Vkn = UknUT
kn, n = 1, 2, 3, 4, Uk1 ∈ RW1×rk1 ,

Uk2 ∈ RW2×rk2 , Uk3 ∈ Rp×rk3 , Uk4 ∈ RTk×rk4 , Ukn is the
matrix of eigenvectors associated with the n-mode covari-
ance matrix Yk(n)Y Tk(n), where Yk(n) is the mode-n unfolding
matrix of Yk , GFk ∈ RW1×W2×I3×Tk , Vk3Bk ∈ Rp×I3 , and
YTSDAk ∈ RW1×W2×p×Tk is the resulting tensor holding p
intrinsic features. Vk3Bk is the tensor projection factor matrix
obtained by CTSDA, and 3−1/2UT

3 is the projection factor
matrix of the traditional tensor method with low discrim-
inability; the two are different in derivation and quantity.
The method in this paper generates multiple projection matri-
ces, which means multiple new projection directions in the
third dimension, and the traditional tensor method generates
one projection matrix in the third dimension, which means
only one projection direction. 3 is the p × p eigenvec-
tor diagonal matrix corresponding to the first p eigenvalues
of the covariance matrix F(3)FT(3), U3 consists of the first
rk3 eigenvectors corresponding to the covariance matrix
F(3)FT(3), and F(3) is the three-mode flattening matrix of
F ∈ RI1×I2×I3 .

To solve (24), the joint estimation of the orthogonal
matrixUkn,∀n can be obtained by the alternating least square
(ALS) algorithm; see step 7 of Table 1. The matrix Bk is
estimated by solving the generalized eigenvalue problem
of GFk with p. Once the reduced feature tensors YTSDAk
are obtained, they can also be rearranged; the pixels repre-
sented in the tensors can be arranged in the original posi-
tion in the image. Then, the new feature tensor YCT ∈

RI1×I2×p is obtained after the feature extraction. The pro-
cedure of the CTSDA method is summarized in Table 1; it
is a hybrid of the unsupervised block clustering algorithm
and TSDA.

Fig. 2 shows a schematic of the CTSDAmethod for feature
extraction. The SAR feature tensor F ∈ RI1×I2×I3 generates
several group tensors GFk by clustering, uses the improved
semisupervised discriminant analysis to find Bk, then uses
ALS to obtain Ukn, n = 1, 2, 4. According to equation (24),
TSDA is used to obtain the feature extraction tensor YCT ∈

RI1×I2×p to complete the feature extraction. The reduced
feature tensor YCT ∈ RI1×I2×p is obtained by rearranging
the reduced group tensors. Its mode-3 matricization leads
to a 2-D feature matrix YCT ∈ Rp×I1I2 , in which each
column represents the feature vector of a pixel, and each
row represents a vectorized feature of the same kind that
contains spatial information about the first two dimensions
of the tensor YCT ∈ RI1×I2×p. In other words, YCT ∈ Rp×I1I2

is the mode-3 unfoldingmatrix of the tensorYCT ∈ RI1×I2×p.
Thematrix YCT of the extracted features is used as input to the
classifier support vector machine (SVM) to obtain the final
classification results.

TABLE 1. Algorithm of the cluster-based tensorial semisupervised
discriminant analysis.

IV. RESULTS AND DISCUSSION
In this section, the proposed method is applied to the clas-
sification of simulated and real SAR images. To validate
the performance of the proposed method, we use both
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FIGURE 2. Schematic of the proposed CTSDA method for feature extraction.

types of images for quantitative evaluation and visualiza-
tion. We mainly compare our results with those of previous
studies [14], [15], [26], [28], [31], in which their parameters
are tuned to obtain the best results. SVM [39] is chosen as the
classifier to perform the supervised classification. No more
than 10% of the samples are selected as the training set, and
all of the samples are used as the testing set for the classifier.
The experimental results are obtained by running the code
on a DELL computer with an Intel (R) Core (TM) i7 CPU,
3.4 GHz, 16 GB RAM with MATLAB 2016(a) on Windows
10 (64-bit operating system).

The simulated SAR images in the experiments have inho-
mogeneous intensities and are generated by adding multi-
plicative noise with a gamma distribution to pure images.
The n-view simulated SAR image is generated by averaging
n independent realizations of speckle noise. The simulated
SAR images have different textural regions of the same
number of views. As shown in the first column of Fig. 7,
the number of views is 3, from top to bottom, and the numbers
of texture types are as follows: 2, 3, 4, and 5. The size of each
image is 256× 256. The test images are named Syn1, Syn2,
Syn3 and Syn4.

In addition, four real SAR images (SAR1, SAR2,
SAR3 and SAR4) are tested, shown in Fig. 10a. SAR1 has
a size of 475 × 446 and covers the China Lake Airport,
California, with a Ku-band radar with a 3-m resolution.
SAR2 has a size of 321 × 258 and covers a pipeline over
the Rio Grande River near Albuquerque, New Mexico, with
a Ku-band radar with a 1-m resolution. SAR3 has a size of
256×256 and covers a suburb of Beijing, China. SAR4 has a
size of 505 × 476 and covers an area of the south Russian
steppes northeast of the Black Sea with a 15-m resolution
X-band radar. Based on the GLCM, mean values and
median values, 24 features are extracted as described in
Section III (A). Each image is then formulated as a third-order
tensor for our method.

A. MULTIFEATURE AVAILABILITY AND EXTRACTION
VALIDITY
In this part, the multifeature extraction is analyzed to verify
its effectiveness in obtaining satisfactory results. We perform

FIGURE 3. Comparison of (a) the original SAR1 image with (b) gray-level
co-occurrence matrix (GLCM), (c) mean, (d) median, (e) GLCM and mean
(Gmean), (f) GLCM and median (Gmedian), (g) multifeature, and
(h) multifeature extraction of CTSDA.

an experiment on the original image SAR1 (Fig. 3a) to show
the influence of multifeature extraction and the impact of the
classification results. In Table 2, the accuracy of extracted
feature of CTSDA is the best, followed by the one with
multifeature. Fig. 3h has fewer miscellaneous points than
Figs. 3b–g because the essential features of the multiple
features are extracted, and information about the distribution
and statistics is included to obtain better results. Therefore,
the multifeature extraction is important. In Table 3, the clas-
sification running time of the extracted features is lower
than that of the multifeature, and the feature extraction time
is not included. These results show that feature extraction
improves the classification results and reduces the time of
classification.

84324 VOLUME 7, 2019



X. Wu et al.: CTSDA for Feature Extraction of SAR Images

FIGURE 4. Comparison of (a) the original image with classification of (b) no added information, (c) non-local spatial
information, (d) labels information, and (e) combined information.

TABLE 2. Classification accuracies of different features.

TABLE 3. Classification running times of different features.

B. VALIDITY OF LABELS AND NON-LOCAL SPATIAL
INFORMATION ASSOCIATION
To evaluate the effectiveness of labels and non-local spatial
information association, we compared the results of no added
information, non-local spatial information, labels informa-
tion and combined information, respectively corresponding
to the classification of tensor, cluster-based tensorial prin-
cipal component analysis (CTPCA), tensor semisupervised
discriminant analysis, and cluster-based tensorial semisu-
pervised discriminant analysis (CTSDA). For convenience,
we conduct the experiments on the Syn3 and SAR1. We set
the block size is 10, the rank parameters are set to the block
size for each cluster, the extracted feature dimensionality is
set to 10, and the numbers of clusters are set as 4 and 3 on
Syn3 and SAR1 respectively.

In Table 4, the accuracy of joint information is the best,
followed by the one with labels information, followed by the
one of non-local spatial information, and the worst is the one
without any information. Fig.4e shows the minimum number
of misclassification points, because the labeling information
improves the discrimination of features, while the spatial non-
local information promotes the tightness within classes and
the distance between classes, and the combination of the
two makes the classification result optimal. From the results,
we can see that information association indeed enhances the
classification performance.

TABLE 4. Accuracies of different information on images.

C. INVESTIGATION OF BLOCK SIZE AND CLUSTER
NUMBER
When the tensor-based SAR data set is segmented into blocks
in the spatial domain with the fixed window W1 × W2,
W1 andW2 determine the number of pixels for each subtensor.
We set W1 = W2, and when the subtensors are grouped
into clusters, the cluster number nc determines the number
of clusters. Fig. 5 shows the overall accuracy (OA) of the
proposed method with the variations inW1,W2, and nc when
the extracted feature dimensionality is set to 10 and the rank
parameters rk1 and rk2 of the spatial mode are set to the block
size for each cluster on Syn3 and SAR1. The results show
that, when the block size is too large (e.g., larger than 11),
because different land covers may be included in a subtensor,
the local correlation will be destroyed, which will degrade
its performance. Based on Fig. 5, we set the block size to
10 because it gives the best precision in many experiments.
In addition, there are some variations when nc takes different
values. The nonlocal correlation cannot be reflected well
when the cluster number nc is too large (e.g., larger than 8)
because the same original classes of different regions are
divided into different categories. The accuracy is lower than
other after clustering when the cluster number is 1, which
shows that the nonlocal correlation is effective. When the
block size is fixed at 10, similar performance is obtained
when nc is set to 2, 4, and 6 on Syn3 and when nc is set
to 3, 7, and 9 on SAR1. Considering the performance and
computational complexity, we set the block size to 10 and set
the cluster number to the number of categories contained in
the images, which is 4 in Syn3 and 3 in SAR1.
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FIGURE 5. OA with the variations in block size and number of clusters: (a) Syn3; (b) SAR1.

FIGURE 6. OA with the variation in the spatial rank R1,2 on different block sizes.

D. INVESTIGATION OF SPATIAL RANK WITH DIFFERENT
BLOCK SIZES
We also conduct experiments to investigate the effects of
the spatial rank on the proposed method. The R1,2 value
represents the spatial rank, which is the number of first eigen-
vectors of the covariance matrix in the algorithm. For n = 1
and 2, we set rk1 = rk2 = R1,2 of each cluster tensor in
the experiments. The influence of the quantity number p of
the retained features is conceded. Fig. 6 shows the evolution
of the OA value when R1,2 varies from 1 to the block size
and p varies from 2 to 24 with a step of 2 on SAR1.The
rank parameters reflect the degree of spatial correlation. If the
spatial correlation is weak, the rank will be large or even be

a full rank; otherwise, the rank will be small. In the proposed
method, in the spatial domain, each subtensor consists of
neighbor blocks. Moreover, as shown in the previous anal-
ysis, to reduce the variation and constrain the classification
accuracy to be higher than 92%, the spatial block size should
not be too large. Thus, for an appropriate block size, it is
reasonable that if the spatial rank parameters are set high
to reduce the spatial correlation, more main components are
extracted. This is consistent with the results shown in Fig. 6.
When the block size is smaller than 14, if the value of
R1,2 is too low, the OA value decreases; as R1,2 increases,
the value of OA improves, when the value of R1,2 exceeds
the median block size, the value of OA stabilizes, and the
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FIGURE 7. Results from different methods with simulated SAR images: (a) simulated SAR images; (b) ground truths; (c) TSNE; (d) PCA; (e) SDA; (f) TLPP;
(g) LRTAdr −

(
K1, K2, p

)
; and (h) CTSDA.

FIGURE 8. Variations in the OA value with the extracted features for
different methods: TSNE, PCA, SDA, TLPP, LRTA (LRTAdr −

(
K1, K2, p

)
),

and CTSDA.

proposed method will have better performance. Therefore,
we set the spatial rank parameters to be greater than the
median of the block size, R1,2 = 8, in all of the experiments
because the block size is 10.

E. EXPERIMENT ON SIMULATED DATA
In this section, experiments are conducted on the four sim-
ulated SAR images to demonstrate the performance of the
proposed feature extraction method for SAR classification.
As mentioned previously, five extracted feature methods are
used for comparison. The ground truths are used to calcu-
late the accuracy of the classification results to evaluate the
algorithms. In our method, we set the block size W1 = 10,
W2 = 10, the cluster number to the number of classes in

TABLE 5. Accuracies of different algorithms on simulated SAR images.

TABLE 6. Kappa values of different algorithms on simulated SAR images.

the image, and the spatial rank parameters rk1 = rk2 = 8.
To evaluate the classification performance, training samples
are selected randomly in all of the comparison methods.
We record the average results of 10 runs when the extracted
feature dimensionality is set to 10. The classification results
for the overall accuracy and the Kappa coefficient are shown
in Tables 5 and 6, respectively, and the classification maps
are shown in Fig. 7. The results show that the proposed
method achieves much better classification performance in
terms of OA and Kappa than the other state-of-the-art meth-
ods (Tables 5 and 6). For example, the proposed method
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FIGURE 9. Scatterplots of the extracted features using: (a) TSNE, (b) PCA, (c) SDA, (d) TLPP, (e) LRTAdr −
(
K1, K2, p

)
, and (f) CTSDA.

is approximately 6% and 0.08 better than the second-best
method for OA and Kappa, respectively, on Syn4. This result
demonstrates that the proposed method is an effective dis-
criminative feature extraction method. The results also show
that the tensor-based methods achieve better performance
than the vector-based methods.

As shown in Fig. 7, the results from the first to third
rows show that the categories are basically distinguished; in
addition, the classifications based on CTSDA and TLPP are
clearly better than the other methods for the same image.
The classifications from the different methods are similar for
image Syn1, as shown in the first row, due to the high contrast
between the two classes of pixels. For images Syn2 and Syn3,
which are shown in the second and third rows, respectively,
TSNE is not very effective because the different classes of
pixels are confused in the classifications, which means that
the nonlinear methods are not suitable for SAR image classi-
fication. As shown in the fourth row (Syn4), the classification
based on CTSDA is best and the most similar to the ground
truth image, and the noise is minimal. The results of TLPP
and LRTAdr − (K1,K2, p) are good, and the results of the

other three methods are not as good. These results demon-
strate the superiority of the CTSDA method in complex
scenarios.

1) SENSIBILITY ANALYSIS FOR THE DIMENSION OF THE
EXTRACTED FEATURES
We also investigate the effect of the dimensionality of the
extracted features on the performance of our method. Fig. 8
shows the OA results with the SVM classifier on Syn3 when
the dimensionality ranges from 2 to 22 with a step of 2. The
OA improves with increasing dimensionality and stabilizes
when the dimensionality exceeds 8 of our method. As a result,
we set the dimensionality to 10. Fig. 8 also illustrates the
advantage of the proposed method over the other compari-
son methods when the dimensionality is low, which further
demonstrates the ability of the proposed method in feature
extraction.

2) VISUALIZATION OF FEATURE EXTRACTION
To intuitively visualize the effects of the various methods
on the feature extraction, scatterplots for Syn3 are plotted
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FIGURE 10. Results of different methods with real SAR images: (a) real SAR images; (b) ground truths; (c) TSNE; (d) PCA; (e) SDA; (f) TLPP;
(g) LRTAdr −

(
K1, K2, p

)
; and (h) CTSDA.

and analyzed. For illustration, we set the dimensionality of
the intrinsic extracted feature subspace to p = 3. In Fig. 9,
the points represent all of the samples, and the four colors
(yellow, purple, blue and green) represent four different types
of textures.

Fig. 9a shows the scatterplots for TSNE, which show
much correlations among the different classes, making the
following classification difficult. Fig. 9b shows scatterplots
of the principal components extracted by PCA. The prin-
ciple components are very close in the feature space. The
scatterplots of the three distinctive components obtained by
SDA are shown in Fig. 9c. The distinctive components are
partially superimposed, indicating unsatisfactory classifica-
tion performance. For comparison, two tensormanifold learn-
ing methods, the TLPP and the LRTAdr − (K1,K2, p), are
also applied. The scatterplots of the features extracted by
TLPP are shown in Fig. 9d. All of the samples achieved
separation except for small intersections, which indicates that
the TLPP method captures the discriminative information
between each class well. Fig. 9e shows that the features
extracted by LRTAdr − (K1,K2, p) are more distinct than
those of the previous feature extraction methods. However,
samples of a class are not grouped together, then the classifi-
cation results may be unstable. Finally, the proposed CTSDA
method is applied to the feature tensor to obtain an intrin-
sic feature set. The scatterplots are shown in Fig. 9f. The
extracted features are more concentrated and discriminable.
The samples of each class are clustered and distinct from
the other classes, which indicates better classification perfor-
mance. The proposed CTSDA method produces more sepa-
rable features, which facilitates the classification process.

F. EXPERIMENT ON REAL DATA
In this section, the four real SAR images described previously
are used for further analysis. The methods are the same as
those used on the simulated SAR images. The results are
shown in Fig. 10. These original real images (SAR1, SAR2,
SAR3 and SAR4) have three, three, three and four types
of different regions, respectively, as shown in Fig. 10a. The
ground truths of SAR1, SAR2, SAR3 and SAR4 are shown
in Fig. 10b. The evaluation of classification method is based
on the visual inspection of the classification, the run time,
the accuracy, and the Kappa coefficient. The extracted feature
dimensionality is set to 10, which gives the best results. The
results in Fig. 10 show that the CTSDA method gives the
best classification results of all of the comparison methods.
The CTSDA method gives clearer contours, more precise
locations, and better regional consistency in every section,
and the results are most similar to the ground truth images
with minimal noise. The results of TLPP (Fig. 10f) are better
than all of the other methods except CTSDA; the results have
favorable regional consistency, but there are small misclas-
sifications, and the terrain boundary classification is fuzzy
in SAR4. The classification results of LRTAdr − (K1,K2, p)
(Fig. 10g) are similar to those of TLPP, but there are more
misclassified points, and the classification results are unsta-
ble. The results of SDA and PCA (Fig. 10e and Fig. 10d,
respectively) are similar; their advantages and weaknesses
in different SAR images are different. The classification
results of TSNE (Fig. 10c) are the poorest of all of the
methods. The results shown in Fig. 10 demonstrate that the
proposedmethod is suitable for SAR image classification and
obtains the optimal results. Tables 7-9 provide quantitative
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FIGURE 11. OA versus extracted dimensionality of different images:
(a) SAR1; (b) SAR2; (c) SAR3; (d) SAR4.

evaluations of the different methods. Although CTSDA has a
greater running time than the other methods, it has a shorter
running time on complex multiclass images such as SAR4.

TABLE 7. Running times of different algorithms on real SAR images.

TABLE 8. Accuracies of different algorithms on real SAR images.

TABLE 9. Kappa values of different algorithms on real SAR images.

Because of its good classification performance, the running
time of CTSDA is acceptable. The proposed method has the
highest accuracy, which is approximately 12% higher than
that of the second-best method (TLPP) on SAR1. Moreover,
the proposed method has the highest robustness, which is
reflected by the Kappa coefficient. In general, the method
outperforms the others in terms of accuracy and robustness.

1) SENSIBILITY ANALYSIS OF THE DIMENSIONS OF THE
EXTRACTED FEATURES
The four real SAR images are used to further analyze the
classification performance with respect to the dimensions
of the extracted features. Fig. 11 shows the OAs of the six
algorithms with increasing dimensionality from 2 to 22. The
OA of the proposed algorithm remains stable in the range
of [10]–[22]. This observation means that the proposed algo-
rithm is not sensitive to the feature dimensionality. In addi-
tion, the proposed algorithm provides better performance,
especially when the feature dimensionality is low.

V. CONCLUSION
In this paper, we presented a new method for feature extrac-
tion of SAR images that is based on clusters. The results
validate that adding multiple features, labels and nonlocal
spatial manifolds can benefit the feature extraction results
and increase the information about the images. Furthermore,
using the tensor form can decrease the loss of spatial neigh-
borhood information due to the use of vector samples. The
cluster strategy was introduced to fuse the labeling tensor
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projection and the semisupervised improved discriminant
analysis to form multiple new tensor projection factor matri-
ces (i.e., multiple new projection directions). Due to the
added benefits, the robustness was enhanced, and the clas-
sification accuracy was improved significantly by using the
extracted features. Comparison experiments based on simu-
lated and real SAR images clearly demonstrate the efficiency
and advantages of the proposed feature extraction method.
Moreover, the proposed method has an acceptable computa-
tional cost for complex multiclass SAR images. These added
benefits are general for SAR image feature extraction and
may be suitable for use in other applications in the field of
SAR image feature extraction as well as in other areas where
tensor feature extraction methods, such as LRTA and TLPP,
can be applied.

This method provides an improvement in feature discrim-
ination for SAR feature extraction and applications. Future
research will focus on developing more efficient algorithms
for use with large-scale SAR images and combining deep
learning technology to realize automatic feature extraction.
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