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ABSTRACT In an attempt to include the effects of natural porosity of lung parenchyma into themathematical
study of lung diagnostics, a model describing the propagation of low-frequency Rayleigh waves in relation to
the porous architecture of the lung parenchyma is presented. The wave motion is analyzed by assuming that
the lung parenchyma behaves as an isotropic elastic half-space containing a distribution of vacuous pores
with the visceral pleura as a taut elastic membrane in smooth contact with the half-space. The thinness of the
pleural membrane in comparison with the large surface area of contact enables it to be modeled as a material
surface in contact with the parenchyma. Utilizing the perturbation technique, an approximate formula for the
Rayleigh wave velocity in the parenchyma with allowance for surface tension, mass density, and porosity is
derived. In addition, the effect of the tension in the pleural membrane and the porosity in the parenchyma on
the propagation of the low-frequency Rayleigh waves is brought out through the dispersion spectrum. It is
hoped that the results of this paper would enable a better understanding of the porosity and surface-tension
effects on lung parenchyma.

INDEX TERMS Pleural membrane, porous lung, low-frequency, material with voids, Rayleigh waves.

I. INTRODUCTION
The mechanical properties of biological tissues are known
to provide information about their pathological condition
and have been clinically used for diagnostic purposes in
numerous organs [1]. Of all the internal organs, the lung
has the strongest connection between physiologic function
and mechanical behavior [2]. It is well realized that lung
elastic recoil plays a crucial role in breathing and hence,
lung mechanics, particularly elasticity during physiology, has
received large attention in the literature [2], [3]. Techniques
are being developed to contrast and quantify changes in the
macroscopic properties of the lung that are indicative of dis-
ease and may be linked to behavioral and structural changes
at the microscopic level [4].

A most common name for techniques developed to non-
invasively assess the mechanical properties of biological soft
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tissues with application to medical diagnosis is elastogra-
phy [5]. A general approach in elastography is to perturb
the state of the tissue under the study using a quasi-static,
harmonic or transient mechanical source and then infer
the biomechanical properties from the measured mechani-
cal response using a model [6]. Current elastographic tech-
niques enable elasticity estimation by determining the phase
speed of shear/surface waves propagating in the tissue [7].
Shear/Surface wave dispersion derived from the elastography
technique can be used to estimate the elastic/viscoelastic
parameters with an assumed model of the tissue. In the
model, the problem of wave propagation on the surface of
the tissue is generally approximated as wave propagation in
a semi-infinite elastic/viscoelastic medium under harmonic
excitation.

The Rayleigh surface waves [8] have proven to be applica-
ble in many areas such as ultrasonics, seismology, material
science and medical diagnostics to name a few. A better
understanding of the surface wave behavior on and in soft
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biological tissues is likely to aid medical diagnostic tech-
niques [7]. A methodology for the excitation and propagation
of surface waves on a viscoelastic half-space with application
to medical diagnostics was presented by Royston et al. [9].
Zhang and Greenleaf [10] developed a noninvasive and non-
contact method for the estimation of tissue’s elasticity with
surface speed. Research into the use of surface wave methods
for the assessment of bio-mechanical properties of lung has
resulted in models for estimating lung elasticity [11], estimat-
ing local viscoelasticity of lung [12], assessing superficial
lung tissue diseases [13] and assessment of interstitial lung
diseases [14].

The lung is an organ with complex internal structure that
consists of a network of stiff airway tubes, bronchi and
bronchioles embedded in a soft porous tissue called the
lung parenchyma and enclosed by a thin pleural membrane
known as the visceral pleura. The lung parenchyma whose
primary function is gas exchange is a foam like structure com-
posed of bronchioles, alveoli and the enclosed air volume.
On a macroscopic scale that encompasses several alveoli,
the parenchyma can be regarded to be a homogeneous struc-
ture that behaves isotropically [15], [16]. The mechanical
properties of the lung parenchyma reflect its microstructure
and play an important role in the functioning of the normal
lung and the changes in these parameters index the pathol-
ogy of the lung [17]. Evidence for the relationship between
changes in parenchymal material properties and pathological
processes can be found in a variety of lung diseases [18].
As the mechanics of lung is dominated by the parenchyma,
modeling the parenchyma is crucial for lung diagnostics.
Literature on the modeling of lung parenchyma is quite sub-
stantial and goes back to at least a century and a half. A brief
review of the work relevant to this study is outlined here for
completeness.

The mechanical behavior of one element or region of the
lung is affected by its interaction with the rest of the lung.
To understand this interdependence between the different
lung units, Mead et al. [19], in a classical biomechanical
study, illustrated the effect by introducing a lung model that
comprises a two-dimensional hexagonal network of springs.
Wilson [20] put this concept in a continuum mechanics per-
spective by showing that the hexagonal network of springs
can be approximated by continuum mechanics models when
parenchymal deformations are small and linear. Later Lam-
bert and Wilson [21] pictured the lung parenchyma as a
number of interconnected, random oriented, plane, elastic
membranes called the conceptual model, and followed it
by a mathematical model that comprises a set of equations
that describe a continuum which is mechanically equiva-
lent to the conceptual model. The elastic properties of the
lung parenchyma associated with the model proposed by
Lambert and Wilson [21] were experimentally reported by
Hajji et al. [22]. The experimental results reported-on the val-
ues of the shear modulus of the parenchyma and the ten-
sion in the pleural membrane-were based on a mathematical
solution for the indentation of an elastic half-space covered

by a membrane. It was observed that the shear modulus of
the parenchyma is a function of the transpulmonary pressure
and the fractional contribution of the pleura to the incremen-
tal work done by the lung under quasi-static conditions is
estimated to be about 20% which was further validated by
Stamenovic [23] and Suki and Hantos [24]. Lai-Fook [25]
showed that a continuum mechanics based analysis of the
deformation of the parenchyma surrounding the large pul-
monary vessels can be used to interpret changes in ves-
sel diameter resulting from variation in vascular and lung
transpulmonary pressure. Based on this seminal work, most
modeling studies of air way- parenchymal interdependence
have considered the parenchyma to behave as a uniform
and isotropic elastic continuum. Ma and Bates [26] have
compared the continuum theory with spring network models
of air way- parenchymal independence and have shown that
the displacements and stresses produced in the parenchyma
surrounding a contracting airway propagates farther from the
air ways in the hexagonal network of springs model than in a
continuum mechanics model.

The porous architecture of the lung tissue has motivated
researchers to focus on multi scale modeling of the lung
parenchyma. On a macro-scale, the lung can be modeled
as a two-phase medium consisting of the solid and fluid
phases. The solid phase includes the deformable thin walled
tissue and the fluid phase consists of the air in alveoli and
ducts and blood inside the walls [27]. Kowalczyk [27] pro-
posed a mechanical model of lung parenchyma as a two-
phase porous medium in which general constitutive relations
for both phases and their mechanical interactions have been
formulated. The formulation provided a numerical approach
to non-linear quasi-static problem of deformation in the
parenchyma. In the model, blood has been considered to
be a component of elasticity of the solid phase. Lande and
Mitzner [28] present a new approach that characterizes the
dynamics of gas flow into a viscoelastic porous medium that
models the lung structure. It was further shown how the load-
ing impedance at the lung boundary may have a significant
impact on the dynamic behavior of whole lung viscoelasticity.
Current theoretical models for the acoustic properties of the
parenchyma are usually based on the work of Rice [29],
in which the parenchyma is modeled as a homogeneous mix-
ture of a gas phase and a tissue phase [30] wherein the com-
munication between the alveoli are considered to negligible.
The model of Rice [29] is generally referred to as the bubble
swarm model. Siklosi et al. [31] model the Parenchyma as a
porous solid with air filled pores and consider Biot equations
[32], [33] as a model for its acoustic properties. They have
reviewed how homogenization can be used to derive the Biot
equations from a model of the micro-structure of a porous
material. It was also opined that Biot equations could provide
a theoretical framework to explain the variations in the speed
of sound observed experimentally in a parenchyma. In [34],
the parenchymal structure was considered to be highly het-
erogeneous on a small scale ε and two-scale homogenization
techniques were used to derive effective acoustic equations
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for asymptotically small ε. The discontinuous Galerkin for-
mulation was used to investigate the sound propagation in the
homogenized parenchyma. Utilizing homogenization theory
Cazeaux et al. [30] developed non-dissipative model of Rice
[29] for the propagation of low-frequency sound in a domain
modeling the parenchyma. They also investigate the asymp-
totic behavior of this medium as the size of the alveoli tends
to zero. Gouldstone et al. [35] developed a multiscale mul-
tiphysics model of lung parenchyma that generates synthetic
images of alveolar compression under spherical indentation at
the visceral pleura of an inflated lung. A finite element mesh
was used here for computational indentation on the macro
scale. Dai et al. [4] compared the bubble swarm model with
the model based on Biot theory of poroviscoelasticity [32] for
the sound and vibration in the lungs by integrating a fractional
derivative formulation of shear viscoelasticity into both the
models. In the application of Biot theory, air was considered
as the only fluid in the lungs. The study [4] suggests that
the model based on Biot theory was more accurate than
the bubble swarm model for wave propagation in the lung.
Recently, an ultrasonic surface wave technique-ultrasound
surfacewave elastography – had been developed for assessing
various skin and lung diseases [13], [14], [36], [37]. The
technique provides a non-invasive and quantitative method
to generate and measure the surface wave speed of skin/lung
tissue and then estimate the tissues elasticity according to
the measured wave speed using a theoretical model. The
theoretical model consists in analyzing the wave propagation
on the surface of the skin/lung by approximating the boundary
of the tissue to be a semi-infinite linear viscoelastic medium
under a local harmonic excitation on the surface.

Despite the plethora of models available for lung
parenchyma, recent experimental investigations in the appli-
cation of Rayleigh wave speed to determine the elas-
tic/viscoelastic properties of lung parenchyma have utilized
classical/Biot model in their work, and have not considered
the effect of pleural membrane tension on Rayleigh waves,
except for the work of Man et al in 1991. The work by Man
et al. [38] provides a technique to measure non-destructively
the tension in the pleural membrane utilizing a classical
model of the lung parenchyma. It was observed in their work
that the predicted values of tension in the pleural membrane
were higher than that obtained from the indentation tests. This
is possibly due to the porous architecture of the lung. When a
lung is inflated, it is observed from histological features and
echographic patterns that the porosity and airspace geometry
of the lung dramatically changes thereby causing the acoustic
behavior of the lung to resemble that of a dry foam [39].
Taking into consideration the observations made above, the
present work considers the effect of pleural membrane ten-
sion on the propagation of Rayleigh waves in inflated porous
lungs by modeling the lung parenchyma as a linear elastic
material with voids. The pleural membrane has a considerable
effect on the lung’s ability to resist both a change of volume
and a change of shape [2], [22], [23]. Further, the tension in
the membrane limits the propagation of Rayleigh waves to

low-frequencies and hence only low-frequency analysis of the
secular equation for Rayleigh waves in a LEMV is considered
in the present study. The behavior of low-frequency surface
waves in biological tissues has received only limited attention
in the literature [40]. The present study, we hope will aid low-
frequency surface wave elastographic studies of the lung and
will further help non-destructively evaluate the tension in the
pleural membrane utilizing the Rayleigh wave speed.

This paper is organized as follows: Section II presents
an outline of the theory of LEMV followed by a derivation
of the characteristic dispersion equation for low-frequency
Rayleigh wave in the parenchyma covered by the pleu-
ral membrane. A non-iterative scheme for the determina-
tion of a simple root of the dispersion equation is given
in Section III. An approximate formula for the Rayleigh
wave speed with allowance for porosity and surface effects
is derived in Section IV. Section V provides a discussion of
the results obtained. The conclusions of the work are given in
Section VI.

II. THEORY
The theory of linear elastic materials with voids [41] is
the simplest extension of the classical theory of elasticity,
in which, the basic idea is to suppose that there is a distri-
bution of vacuous pores or voids distributed throughout the
elastic body. In this theory, the void volume is included as
an additional kinematic variable, and in the limiting case of
vanishing of this volume, the theory reduces to the classical
elasticity theory [41]. The behavior of plane harmonic waves
in a LEMV is analyzed in [42], where in it was observed that
there are two dilatational waves, one is predominantly the
dilatation wave of classical linear elasticity and the other is
predominantly a wave carrying a change in the void volume
fraction. A study on the propagation of longitudinal and shear
waves in an elastic medium with vacuous pores is carried out
in [43]. It was shown in [44] that the presence of voids endows
the material of LEMV with viscoelastic features akin to that
of a standard linear solid. These characteristics of LEMV
will be of use in the modeling of biological tissues such as
the lung parenchyma. We consider the propagation of the
surface waves on an inflated lung at a given transpulmonary
pressure (ptp).

The lung parenchyma is assumed to be a homogeneous
and isotropic elastic material with voids and the pleura cov-
ering the lung as a taut elastic membrane in contact with the
parenchyma. We choose a cartesian coordinate system under
which the material with voids occupies the region x3 > 0 and
the boundary plane x3 = 0 is a material surface representing
the elastic membrane. The assumption of homogeneity and
isotropy for the pleural membrane entails that its residual
stress is a constant surface tension [38]. Ignoring gravitational
forces, we assume that the membrane is subjected to no
external forces other than that acted upon it by the elastic half-
space modeled by a material with voids. We further assume
that, T is the constant surface tension and σ is the mass per
unit area of membrane in the reference configuration.
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In the context of the theory formulated in [41], the field
equations for a homogeneous and isotropic material with
voids, in the absence of body forces is

µ∇2U + (λ+ µ)∇∇ · U + β∇φ = ρ
∂2U
∂t2

(1)

α∇2φ − ξφ − ω
∂φ

∂t
−β∇ · U = ρk

∂2φ

∂t2
(2)

whereU is the displacement vector, φ is the so-called volume
fraction field, λ,µ are the Lame’s constants, ρ is the mass
density and α, β, ω and k are the material constants describ-
ing the presence of voids and t is the time [42]. The method-
ology of solving the equation for surface wave propagation in
a material of LEMV is outlined in [45], [46] and is adopted in
the present work. Following it if we set U = grad p+ curl q
and assume a plane deformation parallel to the x1x3 plane,
then on using (1) the functions p, q satisfy:(

∇
2
−

1

v21

∂2

∂t2

)
p =

−β

λ+ 2µ
φ (3)(

∇
2
−

1

v22

∂2

∂t2

)
q = 0 (4)

where v21 =
λ+2µ
ρ
, v22 =

µ
ρ

There are three unknown functions p, q, φ connected
through (2)-(4). The function φ can be eliminated from (2),
(3) yielding{[
∇

2
−

1

v21

∂2

∂t2

][
∇

2
−

1
α∗

(
1+ ω∗

∂

∂t
+ k∗

∂2

∂t2

)]

+ β∗∇2

}
p = 0 (5)

where α∗ = α
ξ
, ω∗ = ω

ξ
, k∗ = ρk

ξ
, β∗ =

β2

α(λ+2µ)
Microscopic considerations, generally, predict the presence
of surface stress whenever a new surface is created. The
presence of surface stress results in a non-classical boundary
condition which gives the surface traction on the substrate in
terms of surface stress and inertia [47].

The boundary conditions [46], [47] are

τi3 + Sim,m = σ
∂2ui
∂t2

for x3 = 0 (6)

and
∂φ

∂z
= 0 on x3 = 0 (7)

where τij is the stress tensor in the material of LEMV and
Sim, i = 1, 2, 3;m = 1, 2 is the surface stress tensor with
the normal summation convention being used and a subscript
preceded by a comma indicates differentiation with respect to
the corresponding coordinate.

Here τij = λδijuk,k + µ
(
ui,j + uj,i

)
+ βφδij (8)

Sim = δimT
(
1+ ut,t

)
− Tum,i for i = 1, 2 (9)

S3m = Tu3,m (10)

We seek solutions of (4), (5) in the form of plane waves
propagating along the x1 axis and decaying exponentially into
the depth of the medium.

Assume p = f (x3) exp(i (k1x1 − ω1t)) (11)

q = g (x3) exp(i (k1x1 − ω1t) (12)

where ω1 is a known angular frequency, f (x3) , g (x3) are
functions of x3 tending to zero as x3→∞ and k1 is the wave
number. Equations (11), (12) correspond to Rayleigh waves
propagating with wavelength 2π

/
k1 and phase velocity c =

ω1
/
k1.

Using (11), (12) in (4), (5) and the boundary conditions (6),
(7) we obtain a characteristic equation for Rayleigh waves in
a LEMVunder surface effects. As we are interested in a better
understanding of the surface wave behavior on biological
tissue in the low audible frequency regime, we retain the
lowest degree terms in ω1 in the characteristic equation. The
characteristic equation for low frequency Rayleigh waves in
the lung parenchyma modeled by a LEMV and covered by a
taut membrane having a certain mass and a constant surface
tension is(
2− s2

)2
− 4

(
1− s2

) 1
2
(
1− s2τ 20

) 1
2

=
k1s2

µ
(1− s2τ 20 )

1/2
(
T − σc2

)
(13)

where

τ 20 =
v22

v21(1− N )
= θ (say); s2 =

c2

v22
(14)

HereN is the dimensionless coupling number defined by [41]

N =
β2

ξ (λ+ 2µ)
, 0 ≤ N < 1, ξ > 0, µ > 0 (15)

where β, ξ are parameters corresponding to the void vol-
ume fraction field, ξ is a material modulus that handles
the void stiffness and provides information relating to the
void strength while β is a material constant that bridges
the micro-dilatation effects to the macro-deformation effects
[48]. If σ = 0, (13) reduces to the characteristic equation for
low frequency Rayleigh waves in a LEMV under the action
of surface stress [46]. If σ = 0,N = 0, (13) reduces to
the dispersion equation for Rayleigh waves with allowance
for surface tension [49]. If T = 0, σ = 0,N = 0, (13)
reduces to the classical Rayleigh wave equation [8]. Using
(13), we study the influence of surface tension in the pleural
membrane and the porous structure of the lung parenchyma
on the propagation of Rayleigh waves in inflated lungs.

III. NUMERICAL SCHEME
A simple method of finding a numerical approximation to
a root of the characteristic equation (13) is not only desir-
able but essential. A simple non-iterative method due to
Ioakimidis and Anastasselou [50] is utilized here for the
determination of a simple root of the secular equation (13) for
low frequency Rayleigh waves in the parenchyma modeled
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by a LEMV. The method is based on the computation of an
integral involving the function whose simple root along a
finite interval is to be determined. The integral is evaluated
utilizing Gauss- and Lobatto- Chebyshev quadrature rules for
regular intervals and equating the obtained results.

Let us assume that f (x) is an algebraic or transcendental
function that possesses a simple root c in a finite interval
(a b) and it is assumed that f (x) is continuous in [a b] and
has continuous second derivative in a neighborhood of c.

Consider the integral I =
∫ b

a

1
√
(b− x) (x − a)

x − c
f (x)

dx

(16)

The value of c is determined approximately by evaluating the
integral I utilizing Gauss- and Lobatto- Chebyshev quadra-
ture rules for regular intervals in [−1 1].

The quadrature rule takes the forms given by [50]∫ b

a

g(x)
√
(b− x) (x − a)

dx =
π

n

∑n

i=1
g (xi)+ En (17)∫ b

a

g(x)
√
(b− x) (x − a)

dx =
π

n

∑n′′

i=1
g
(
x∗i
)
+ E∗n (18)

where xi =
(a+b)−(a−b)ti

2 , i = 1, 2, .., n with

ti = cos
(2i− 1)π

2n
, i = 1, 2, ..., n

x∗i =
(a+b)−(a−b)t∗i

2 , i = 0, 1, .., n with t∗i = cos iπn , i =
0, 1, . . . , n
Utilizing (17) and (18) for the evaluation of integral (16)

and equating the results and further assuming that the error
terms rapidly approach zero as n→∞, we have the follow-
ing approximation cn to c given by

c ≈ cn =
∑2n′′

j=0

(−1)jyj
f (yj)

/∑2n′′

j=0

(−1)j

f (yj)
(19)

where yj =
(a+b)−(a−b)uj

2 and uj = cos
(
jπ
2n

)
, j = 0, 1, ., 2n.

Here double prime in summation means that the first and
the last term of the sum is halved. The formula has earlier
been used to obtain a root of the secular equation of Rayleigh
waves in isotropic and anisotropic elastic solids [51].

IV. PLEURAL MEMBRANE EFFECTS AND RAYLEIGH
WAVES: APPROXIMATE FORMULA
In this section, we consider the Rayleigh waves propagating
at the pleural membrane represented by the plane material
boundary of an elastic half space containing a distribution
of voids that models the lung parenchyma. We consider
a smooth contact between the two, ignore gravitation and
assume that the pleural membrane is subject to no external
forces other than that acted upon it by the half-space. The
waves are generally dispersive and the dispersion is caused
by both the presence of pleural membrane and the porous
architecture of lung parenchyma.

We first solve (13) using perturbation method and derive
an approximate formula for the Rayleigh wave velocity in
the parenchyma with allowance for surface tension, mass
per unit area of membrane and the void coupling parameter.
Equation (13) can be written as

F (γ ) =
k1γ
µ
(1− γ θ)1/2

(
T − σc2

)
(20)

where F (γ ) = (2− γ )2 − 4 (1− γ )1/2 (1− γ θ)1/2 with
γ = s2

Utilizing the expression for k1, c2, s2(20) can be expressed
as

F (γ ) =
ω1T
µv2

γ 1/2 (1− γ θ)1/2 −
ω1σv2
µ

γ 3/2 (1− γ θ)
1/2

Denoting b1 (ω1) =
ω1T
µv2

and b2 (ω1) =
ω1σv2
µ

We have F (γ ) = b1 (ω1) γ
1
2 (1− γ θ)

1
2

−b2 (ω1) γ
3/2 (1− γ θ)

1/2
(21)

With T = σ = 0 (21) reduces to

F (γ ) = 0 (22)

which is the equation describing the velocity of low frequency
Rayleigh waves in a LEMV. For a fixed N , let γ0 be a root
of (22). For the same N , we solve (21) by the perturbation
method, writing the solution in the form γ = γ0 + γ1, where
γ1 is a small addition caused by the surface tension and mass
per unit area of the membrane. Substituting γ = γ0 + γ1 in
(21) and neglecting the terms of the second order in ω and γ1
we obtain after a lengthy calculation

γ1 =
γ
1/2
0 (1− γ0θ)1/2

F ′ (γ0)
(b1 (ω1)− γ0b2 (ω1))

=
γ
1/2
0 (1− γ0θ)1/2

F ′ (γ0)

(
ω1T
µv2
− γ0

ω1σ

µ
v2

)
γ1 =

ω1γ
1/2
0 (1− γ0θ)1/2

F ′ (γ0) v2

(
T
µ
− γ0

σ

ρ

)
(23)

In (23) T , σ are the parameters of the membrane, while
θ, v2 are the parameters related to the parenchyma. For fixed
values of these parameters, it is seen that γ1 depends on
the frequency f . The approximate final expression for the
Rayleigh wave velocity (c)with regard for the surface tension
(T ) and mass per unit area (σ ) of the pleural membrane is
given by

c
v2
= γ 1/2

= (γ0 + γ1)
1/2
≈ γ

1/2
0

(
1+

1
2
γ1

γ0

)
c
v2

≈ γ
1/2
0

(
1+

γ 1

2γ 0

)
(24)

where γ 1 is given by (23). By performing experiments such
as those outlined in [9]–[13] at a fixed frequency, one can use
(24) to determine with sufficient accuracy the variations of
surface tension in the pleural membrane under the influence
of various other factors. In addition, measurements at several
frequencies would in principle, provide information for non-
destructively estimating the value of surface tension.
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FIGURE 1. Dispersion curves of Rayleigh waves in a typical dog lung for
different values of coupling parameter (N).

V. NUMERICAL RESULTS AND DISCUSSION
For a numerical experiment, we consider the typical value
of the dog lung at ptp of 5 cm H2O [45]. The values are

T
µ
=

1
2cm,

µ
λ+2µ =

1
6 ;µ = 4000dynes

/
cm2
; σ = 3 ×

10−3gm
/
cm2andρ = 0.2 gm/cc. The values are used in (24)

to obtain the approximate value of c
v2

where c is the velocity
of propagation of Rayleigh waves. The values obtained for
different values of the coupling parameter N and for different
frequencies are given in Table 1. The presence of a suffi-
ciently high tension in the pleural membrane will lead to the
existence of a cutoff frequency (f0). No Rayleigh-type wave
that has frequency (f >f0) and has a real phase velocity (c)
may propagate along the surface of the inflated lung [38]. The
cut-off frequency is influenced by both the porous structure
of the parenchyma and the surface tension in the membrane.
These two parameters determine the pathology of the lung
and we first consider the influence of the pores/voids in the
parenchyma through the coupling number (N) on the cut-
off frequency values and then study the effect of pleural
membrane on the propagation of low frequency Rayleigh
waves in inflated lungs through the dispersion curves. In the
low frequency regime, as seen from (13), the presence of
voids is reflected in the coupling number N and this number
plays a crucial role in the existence of Rayleigh waves for the
whole range of Poisson’s ratio νε[−1 0.5]. From (13), it is
seen that for the existence of Rayleigh waves with the real

FIGURE 2. Dispersion curves of Rayleigh waves for varying values of d =
T
µ= 0.2,0.3,0.4,0.5,0.6,0.7 in the pleural membrane

with (a) N = 0 (b) N = 0.01 (c) N = 0.1 (d) N = 0.33.
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TABLE 1. Approximate values of Normalized Rayleigh wave velocity in Porous dog lungs.

TABLE 2. Cutoff frequency values for different values of coupling parameter (N).

phase velocity, we have

1− 2ν
2 (1− ν) (1− N )

< 1 (25)

For the soft biological tissues where ν ∈ [0.4, 0.5], we have
N ≤ 0.66. If we let ω1 = 2π f where f is the frequency then
from (13), we get

f =

(
2− c2

v22

)2

− 4
√
1− c2

v22

√
1− c2

v21(1−N )√
1− c2

v21(1−N )

(
T − σc2

)
2πρ

(
c
v42

) (26)

As c → v2, the value approached by f is denoted f0,
the cut-off frequency. As seen from (26), the cut off frequency
at which surface excitation establishes the propagation of
Rayleigh waves depends on the tension in the membrane and
the mechanical properties of the parenchyma. The cut-off
frequency values for different values ofN are given in Table 2.
We observe that as N increases the cut-off frequency values
increases. From (15) we see that increasing N means that the
ratio β2

ξ
increases i.e. when the ratio of the micro-dilatation

effects to the macro-deformation effects increase, the cut-
off frequency value increases. In terms of diagnostics, when
the cut-off frequency value is approached then for known
density of parenchyma, the shear modulus of the parenchyma
is obtained. Further the measurement of f0 gives an estimate
of surface tension T in the pleural membrane. We now utilize
the numerical scheme outlined in Section III to solve (13)
to obtain the dispersion spectrum. The dispersion curves

pertaining to N = 0.01, 0.33 and 0.66 are depicted in Fig 1.
The frequency f (in Hz) is taken along the x- axis and the
normalized velocity

(
c
/
v2
)
is taken along the y- axis. From

the dispersion curves, we observe that the porous structure of
the parenchyma decreases the Rayleigh wave velocity, which
is as expected. An increasing N is reflected by an increase
in β2

/
ξ that is instrumental in increasing the spongy nature

of the medium i.e. the flexibility of the voids against the
macro-response of the lung. The spongy nature of the lung is
found to increase the cut-off frequency values and decrease
the Rayleigh wave velocity. Further, since T increases with
species size whereas µ does not [22], we observe the influ-
ence of tension on the dispersion of Rayleigh waves by vary-
ing the values of T

µ
for different values of N . The dispersion

curves for d = T
µ
= 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 and

N = 0.0, 0.01, 0.1, 0.33 are given in Fig 2. For different
values of d = T

µ
ranging from 0.2 to 0.7 the dispersion curves

are illustrated for each N . The frequency values are taken
along the x- axis and the normalized velocity value are taken
along y- axis.With increasing f the decrease in Rayleigh wave
velocity is noticeable for increasing N . For a fixed N , with
increasing value of T

µ
, the velocity is found to increase.

The effect of the pleura membrane and voids in the
parenchyma on the propagation of Rayleighwaves on inflated
lungs is brought out in the figures. In terms of diagnos-
tics, the dispersion curves can be used to non-destructively
estimate the tension in the pleural membrane in relation to
the porous architecture of lung parenchyma once the surface
wave speed is obtained.
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VI. CONCLUSION
The frequency dependence of the pleural contribution to the
lung behavior is examined in this paper. The effect of natural
porosity of the lung parenchyma is included in the study by
modeling the parenchyma as a linear elastic material with
voids. An approximate formula for Rayleigh wave velocity
with allowance for pleural membrane effects and porous
architecture of the lung has been derived using the pertur-
bation technique. The formula is likely to aid experimenters
determine the variations in surface tension of the membrane
under the influence of other factors at a fixed frequency and at
a fixed value of the coupling parameter. In addition, the cutoff
frequency at which surface excitation establishes propagation
of Rayleigh waves are obtained for different values of the
coupling parameter. The role of the pleural membrane and
the porous architecture of lung parenchyma are illustrated
through the dispersion curves and are likely to aid studies on
compressive atelectasis in the lung.

REFERENCES
[1] S. Kazemirad, S. Bernard, S. Hybois, A. Tang, and G. Cloutier, ‘‘Ultra-

sound shear wave viscoelastography: Model-independent quantification of
the complex shear modulus,’’ IEEE Trans. Ultrason., Ferroelectr., Freq.
Control, vol. 63, no. 9, pp. 1399–1408, Sep. 2016.

[2] M. R. Silva, Z. Yuan, J. H. Kim, Z. Wang, M. Hoyos, Y. Pan, and
A. Gouldstone, ‘‘Spherical indentation of lungs: Experiments, modeling
and sub-surface imaging,’’ J. Mater. Res., vol. 24, no. 3, pp. 1156–1166,
2009.

[3] B. Suki and J. H. T. Bates, ‘‘Lung tissue mechanics as an emergent
phenomenon,’’ J. Appl. Physiol., vol. 110, no. 4, pp. 1111–1118, 2011.

[4] Z. Dai, Y. Peng, H. A. Mansy, R. H. Sandler, and T. J. Royston, ‘‘Com-
parison of poroviscoelastic models for sound and vibration in the lungs,’’
J. Vib. Acoust., vol. 136, no. 5, pp. 051012-1–051012-11, 2014.

[5] J. Brum, J.-L. Gennisson, T.-M. Nguyen, N. Benech, M. Fink, M. Tanter,
and C. Negreira, ‘‘Application of 1-D transient elastography for the shear
modulus assessment of thin-layered soft tissue: Comparison with super-
sonic shear imaging technique,’’ IEEE Trans. Ultrason., Ferroelectr., Freq.
Control, vol. 59, no. 4, pp. 703–714, Apr. 2012.

[6] M. M. Doyley, ‘‘Model-based elastography: A survey of approaches to
the inverse elasticity problem,’’ Phys. Med. Biol., vol. 57, pp. R35–R73,
Jan. 2012.

[7] T. J. Royston, Z. Dai, R. Chaunsali, Y. Liu, Y. Peng, and R. L. Magin,
‘‘Estimating material viscoelastic properties based on surface wave mea-
surements: A comparison of techniques and modeling assumptions,’’
J. Acoust. Soc. Amer., vol. 130, no. 6, pp. 4126–4138, 2011.

[8] L. Rayleigh, ‘‘On waves propagated along the plane surface of an elastic
solid,’’ Proc. London Math. Soc., vol. 1, no. 1, pp. 4–11, 1885.

[9] T. J. Royston, H. A.Mansy, and R. H. Sandler, ‘‘Excitation and propagation
of surface waves on a viscoelastic half-space with application to medical
diagnosis,’’ J. Acoust. Soc. Amer., vol. 106, pp. 3678–3686, Dec. 1999.

[10] X. Zhang and J. F. Greenleaf, ‘‘Estimation of tissue’s elasticity with surface
wave speed,’’ J. Acoust. Soc. Amer., vol. 122, pp. 2522–2525, Aug. 2007.

[11] X. Zhang, B. Qiang, R. D. Hubmayr, M. W. Urban, R. Kinnick, and
J. F. Greenleaf, ‘‘Noninvasive ultrasound image guided surface wave
method formeasuring thewave speed and estimating the elasticity of lungs:
A feasibility study,’’ Ultrasonics, vol. 51, no. 3, pp. 289–295, 2011.

[12] Z. Dai, Y. Peng, H. A.Mansy, T. J. Royston, and R. H. Sandler, ‘‘Estimation
of local viscoelasticity of lungs based on surface waves,’’ in Proc. ASME
IMECE, Denver, CO, USA, vol. 2, Nov. 2011, pp. 699–706.

[13] X. Zhang, T. Osborn, and S. Kalra, ‘‘A noninvasive ultrasound elastography
technique for measuring surface waves on the lung,’’ Ultrasonics, vol. 71,
pp. 183–188, Sep. 2016.

[14] X. Zhang, T. Osborn, B. Zhou, D. Meixner, R. R. Kinnick, B. Bartholmai,
J. F. Greenleaf, and S. Kalra, ‘‘Lung ultrasound surface wave elastography:
A pilot clinical study,’’ IEEE Trans. Ultrason., Ferroelectr., Freq. Control,
vol. 64, no. 9, pp. 1298–1304, Sep. 2017.

[15] R. Ardila, T. Horie, and J. Hildebrandt, ‘‘Macroscopic isotropy of
lung expansion,’’ Respirat. Physiol., vol. 20, no. 2, pp. 1189–1194,
1984.

[16] A.M. Birzle, C.Martin, L. Yoshira, S. Uhlig, andW. A.Wall, ‘‘Experimen-
tal characterization and model identification of the nonlinear compressible
material behavior of lung parenchyma,’’ J. Mech. Behav. Biomed., vol. 77,
pp. 754–763, Jan. 2018.

[17] E. Kimmel, R. D. Kamm, and A. H. Shapiro, ‘‘A cellular model
of lung elasticity,’’ J. Biomed. Eng., vol. 109, no. 2, pp. 126–131,
1987.

[18] D. S. Faffe and W. A. Zin, ‘‘Lung parenchymal mechanics in health and
disease,’’ Physiol. Rev., vol. 89, no. 3, pp. 759–775, 2009.

[19] J.Mead, T. Takishima, andD. Leith, ‘‘Stress distribution in Lungs: Amodel
of pulmonary elasticity,’’ J. Appl. Physiol., vol. 28, no. 5, pp. 596–608,
1970.

[20] T. A. Wilson, ‘‘A continuum analysis of a two-dimensional mechani-
cal model of the lung parenchyma,’’ J. Appl. Physiol., vol. 33, no. 4,
pp. 472–478, 1972.

[21] R. K. Lambert and T. A. Wilson, ‘‘A model for the elastic properties of the
lung and their effect of expiratory flow,’’ J. Appl. Physiol., vol. 34, no. 1,
pp. 34–48, 1973.

[22] M. A. Hajji, T. A. Wilson, and S. J. Lai-Fook, ‘‘Improved measurements
of shear modulus and pleural membrane tension of the lung,’’ J. Appl.
Physiol., vol. 47, no. 1, pp. 175–182, 1979.

[23] D. Stamenovic, ‘‘Mechanical properties of pleural membrane,’’ J. Appl.
Physiol., vol. 57, no. 4, pp. 1189–1194, 1984.

[24] B. Suki and Z. Hantos, ‘‘Viscoleastic properties of the visceral pleura and
its contribution to lung impedance,’’ Respirat. Physiol., vol. 90, no. 3,
pp. 271–287, 1992.

[25] S. J. Lai-Fook, ‘‘A continuum mechanics analysis of pulmonary vascular
interdependence in isolated dog lobes,’’ J. Appl. Physiol., vol. 46, no. 3,
pp. 419–429, 1979.

[26] B. Ma and J. H. T. Bates, ‘‘Continuum vs. spring network models of
airway-parenchymal interdependence,’’ J. Appl. Physiol., vol. 113, no. 1,
pp. 124–129, 2012.

[27] P. Kowalczyk, ‘‘Mechanical model of lung parenchyma as a two-phase
porous medium,’’ Transp. Porous Med., vol. 11, no. 3, pp. 281–295, 1993.

[28] B. Lande and W. Mitzner, ‘‘Analysis of lung parenchyma as a parametric
porous medium,’’ J. Appl. Physiol., vol. 101, no. 3, pp. 926–933, 2006.

[29] D. A. Rice, ‘‘Sound speed in pulmonary parenchyma,’’ J. Appl. Physiol.,
vol. 54, no. 1, pp. 304–308, 1983.

[30] P. Cazeaux, C. Grandmont, andY.Maday, ‘‘Homogenization of amodel for
the propagation of sound in the lungs,’’ Multiscale Model. Simul., vol. 13,
no. 1, pp. 43–71, 2015.

[31] M. Siklosi, O. E. Jensen, R. H. Tew, and A. Logg, ‘‘Multiscale modeling
of the acoustic properties of lung parenchyma,’’ ESAIM Proc., vol. 23,
pp. 78–97, Jul. 2008.

[32] M. A. Biot, ‘‘Theory of propagation of elastic waves in a fluid-saturated
porous solid. I. Low-frequency range,’’ J. Acoust. Soc. Amer., vol. 28, no. 2,
pp. 168–178, 1956.

[33] M. A. Biot, ‘‘Theory of propagation of elastic waves in a fluid-saturated
porous solid. II. Higher frequency range,’’ J. Acoust. Soc. Amer., vol. 28,
no. 2, pp. 179–191, 1956.

[34] P. Cazeaux and J. S. Hesthaven, ‘‘Multiscale modelling of sound propaga-
tion through the lung parenchyma,’’ ESAIM, Math. Model. Numer. Anal.,
vol. 48, pp. 27–52, Jan. 2014.

[35] A. Gouldstone, N. Caner, B. S. Tristan, S. M. Kalkhoran, and
C. A. DiMarzio, ‘‘Mechanical and optical dynamic model of
lung,’’ IEEE Trans. Biomed. Eng., vol. 58, no. 10, pp. 3012–3015,
Oct. 2011.

[36] X. Zhang, B. Zhou, S. Kalra, B. Bartholmai, J. F. Greenleaf, and
T. Osborn, ‘‘An ultrasound surface wave technique for assessing skin
and lung diseases,’’ Ultrasound Med. Boil., vol. 44, no. 2, pp. 321–331,
2018.

[37] X. Zhang, B. Zhou, T. Osborn, B. Bartholmai, and S. Kalra, ‘‘Lung ultra-
sound surface wave elastography for assessing interstitial lung disease,’’
IEEE Trans. Biomed. Eng., vol. 66, no. 5, pp. 1346–1352, May 2019.
doi: 10.1109/TBME.2018.2872907.

[38] C.-S. Man, M. Jahed, S. J. Lai-Fook, and P. K. Bhagat, ‘‘Effect of pleural
membrane on the propagation of Rayleigh-type surface waves in inflated
lungs,’’ J. Appl. Mech., vol. 58, no. 3, pp. 731–737, 1991.

85176 VOLUME 7, 2019

http://dx.doi.org/10.1109/TBME.2018.2872907


M. H. Lakshmi et al.: Effect of Pleural Membrane on the Propagation of Rayleigh Waves in Inflated Porous Lungs—A Study

[39] G. Soldati, A. Smargiassi, R. Inchingolo, S. Sher, R. Nenna, S. Valente,
C. D. Inchingolo, and G. M. Corbo, ‘‘Lung ultrasonography may provide
an indirect estimation of lung porosity and airspace geometry,’’ Respira-
tion, vol. 88, no. 6, pp. 458–468, 2014.

[40] S. J. Kirkpatrick, D. D. Duncan, and L. Fang, ‘‘Low-frequency sur-
face wave propagation and the viscoelastic behavior of porcine skin,’’
J. Biomed. Opt., vol. 9, no. 6, pp. 1311–1319, 2004.

[41] S. C. Cowin and J. W. Nunziato, ‘‘Linear elastic material with voids,’’
J. Elasticity, vol. 13, no. 2, pp. 125–147, 1983.

[42] P. Puri and S. C. Cowin, ‘‘Plane waves in linear elastic materials with
voids,’’ J. Elasticity, vol. 15, no. 2, pp. 167–183, 1985.

[43] S. Dey and S. Gupta, ‘‘Longitudinal and shear waves in an elastic medium
with void pores,’’ Proc. Indian Nat. Sci. Acad., vol. 53, no. 4, pp. 554–563,
197.

[44] S. C. Cowin, ‘‘The viscoelastic behavior of linear elastic materials with
voids,’’ J. Elasticity, vol. 15, no. 2, pp. 185–191, 1985.

[45] D. S. Chandrasekhariah, ‘‘Surface waves in an elastic half-space with
voids,’’ Acta Mech., vol. 66, pp. 77–85, Nov. 1986.

[46] D. S. Chandrasekhariah, ‘‘Effects of surface stresses and voids on Rayleigh
waves in an elastic solid,’’ Int. J. Eng. Sci., vol. 25, no. 2, pp. 205–211,
1987.

[47] M. E. Gurtin and A. I. Murdoch, ‘‘Surface stress in solids,’’ Int. J. Solids
Struct., vol. 14, no. 6, pp. 431–440, 1978.

[48] H. Ramezani, H. Steeb, and J. Jeong, ‘‘Analytical and numerical studies
on penalized micro-dilatation (PMD) theory: Macro-micro link concept,’’
Eur. J. Mech. A Solids, vol. 34, pp. 130–148, Jul. 2012.

[49] V. A. Krasilnikov and V. V. Krylov, ‘‘Surface-tension dispersion of
Rayleigh waves,’’ Sov. Phys. Acoust., vol. 25, no. 3, pp. 231–234, 1979.

[50] N. I. Ioakimidis and E. G. Anastasselou, ‘‘An elementary noniterative
quadrature-type method for the numerical solution of a nonlinear equa-
tion,’’ Computing, vol. 37, no. 3, pp. 269–275, 1986.

[51] G. Sudheer, M. H. Lakshmi, and Y. V. Rao, ‘‘A note on formulas for the
Rayleigh wave speed in elastic solids,’’ Ultrasonics, vol. 73, pp. 82–87,
Jan. 2017.

M. HEMANTHA LAKSHMI received the M.Sc.
degree in mathematics from Osmania University,
India, in 2004. She is currently pursuing the
Ph.D. degree with the Department ofMathematics,
JNTUHCollege of Engineering, India. Her current
research interests include mathematical modeling
and wave propagation studies.

GOPINATHAN SUDHEER received the Ph.D.
degree in applied mathematics from Andhra
University, Visakhapatnam, India, in 2006. He
is currently a Professor with the Department
of Mathematics, G.V.P. College of Engineering
for Women, Visakhapatnam. His current research
interests include vibration analysis, wave prop-
agation studies, ultrasonic NDT, pseudo-spectral
methods, and forecasting.

Y. VASUDEVA RAO received the Ph.D. degree
in applied mathematics from Andhra University,
Visakhapatnam, India, in 1980. He was with the
Faculty of Applied Mathematics, Andhra Univer-
sity, from 1972 to 2009. Since 2010, he has been a
Visiting Faculty with the School of Basic Sciences,
IIT Bhubaneswar. His current research interests
include techniques of applied mathematics, and
analytical and numerical and applied continuum
mechanics.

VOLUME 7, 2019 85177


	INTRODUCTION
	THEORY
	NUMERICAL SCHEME
	PLEURAL MEMBRANE EFFECTS AND RAYLEIGH WAVES: APPROXIMATE FORMULA
	NUMERICAL RESULTS AND DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	M. HEMANTHA LAKSHMI
	GOPINATHAN SUDHEER
	Y. VASUDEVA RAO


