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ABSTRACT A robust controller with an adaptive projection-based parameter estimator is presented for the
air-breathing hypersonic vehicles. First, a novel parameter-varying model is established wherein the number
of variable parameters is significantly reduced. In this way, the problem of overparameterization is avoided,
and the controller design procedure is simplified. Then, the framework of the controller is established based
on the backstepping approach, in which a second-order filter is introduced to solve the problem of ‘‘explosion
of terms’’. In order to enhance the robustness of the controller, an adaptive parameter estimator is designed.
The Lipschitz continuous dead-zone modification is used to solve the problem of parameter draft in the
conventional adaptive control and a sufficiently smooth projection operator is introduced to guarantee the
uniform boundedness of adaptive parameters. The simulation results show that the proposed robust controller
achieves the stable tracking of the reference commands under the parameter perturbation, and the variable
parameters are limited within the preset range.

INDEX TERMS Air-breathing hypersonic vehicle, robust control, adaptive control, parameter estimation,
projection operator.

I. INTRODUCTION
The air-breathing hypersonic vehicle (AHV) powered by
scramjet has attracted tremendous attention for its cost-
effective access to space and great potential for prompt global
reaching capability [1]. The model of AHV is highly com-
plex due to the variable flight conditions, strong nonlinearity,
inherent aero-propulsive coupling, structural elasticity, and
parameter perturbation [2]. Therefore, the controller design
for AHV is a huge challenge.

Recently, researchers have been paying much attention to
the design of the flight control system for AHV. An improved
nonlinear dynamic inversion is presented for the longitudi-
nal dynamics of AHV wherein the optimal feedback gain
is determined by the genetic algorithm and the pole place-
ment technique [3]. To deal with the nonlinearity of AHV
model, the backstepping is widely used as an effective control
approach. A dynamic surface control technique, in which a

The associate editor coordinating the review of this manuscript and
approving it for publication was Yanzheng Zhu.

first-order filter is inserted to obtain the derivatives of the
designed virtual control inputs, is adopted in [4]. By the
above-mentioned methods, the problem of ‘‘explosion of
terms’’ in the conventional backstepping is avoided. In order
to further simplify the design procedure and the backstepping
control scheme, an improved backstepping design approach
is presented to avoid the problem of repeated differentia-
tion [5]. Using the above simplified backstepping approach,
Wu et al. designed an adaptive robust controller for the out-
put tracking of a strict-feedback system with time-varying
delays [6]. In addition, a controller based on the radial
basis function neural network (RBFNN), without backstep-
ping, is designed [7]. As for the adaptive updating of the
RBFNN weights, a composite learning law with the novel
prediction error is proposed. Moreover, the high order slid-
ing mode (HOSM) control, as well as the input-output lin-
earization, are used for output tracking control of AHV [8].
The above researches were carried out on the basis of an
affine model. However, the model of AHV lost some of
its dynamic characteristics in the process of conversion to

88998 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-7440-7685
https://orcid.org/0000-0002-8921-4819


S. Tan et al.: Robust Control of AHVs With Adaptive Projection-Based Parameter Estimation

an affine model, which is unfavorable for the precise con-
trol. Some researchers have made positive contributions on
designing controllers directly based on the non-affine model.
Chen et al. analyzed the effects of non-affine terms on the
altitude dynamics and designed a non-affine controller com-
bining the sliding mode control and the Takagi-Sugeno (T-S)
fuzzy method. Bu et al. designed the non-affine controller
with a simple structure by introducing the improved backstep-
ping approach, in which the RBFNN is used to estimate the
total uncertainty dynamics [10]. Furthermore, a prescribed
performance control strategy, based on the non-affine model,
is proposed for AHV, ensuring the tracking errors within a
prescribed performance [11].

Robustness is a basic requirement for the designed
controller and is directly related to the achievement of con-
trol target. Typical robust control methods include H∞,
µ-synthesis, and robust adaptive control. Firstly, the H∞
control approach is reviewed. A self-scheduled decoupling
control is presented in [12], in which the decoupling prob-
lem is transformed to the robust H∞ control problem of a
general linear parameter-varying (LPV) error system. It is
noted that the H∞ control is defined under the assumption
that the energy of disturbances is finite. However, the prac-
tical disturbances are persistent, which do not satisfy the
assumption of the H∞ control. Thus, Wu et al. designed a
robust controller with a guaranteed L∞-gain performance of
disturbances wherein a L∞-gain control is used to attenu-
ate the mismatched disturbances [13]. In addition, a mixed
H2/H∞ robust controller is introduced for the tracking con-
trol of a generic hypersonic vehicle [14]. To enhance the
robustness, the T-S fuzzy model is employed to estimate
the lumped uncertainty, and the disturbance observer is used
to estimate the external disturbances. Moreover, a finite-
time H∞ control is used for the design of the fault-tolerant
controller for the reentry vehicles, resulting in a good robust-
ness for the control delay, input constraints, and param-
eter perturbation [15]. Secondly, µ-Synthesis theory has
been widely applied in engineering as a robust approach.
A µ-synthesis controller is designed for the supercavitating
vehicle to achieve the bank-to-turn (BTT) control, and the
stability of the tunning process is guaranteed [16]. To ensure
the robustness over the entire working envelope of the flight
environment testbed, a µ-synthesis controller based on LPV
system is firstly designed [17]. Thirdly, the robust adaptive
control has attracted strong interest from researchers because
of its excellent robust performance. Based on the model-
reference adaptive control (MRAC), a modified adaptive law
is designed to avoid the parameters drift and the wind-up
effect of integrators [18]. To obtain guaranteed transient per-
formance, a modified MRAC named the L1 adaptive control
is applied to the linear infinite-dimensional systems [19] and
the multi-input multi-output (MIMO) systems [20]. Noting
that the conventionalMRAC faces the difficulties in choosing
the Lyapunov function, the immersion and invariance (I&I)
adaptive control is proposed [21]. The I&I method makes the
design of adaptive law more flexible because there is no need

to construct the Lyapunov function. Liu et al. adopted the I&I
method to design the observers for the unmeasurable states
of AHV, and the strong robustness against the uncertainties is
demonstrated by comparison simulation [22]. Furthermore,
the intelligent algorithms, such as neural network and fuzzy
logic system (FLS), have been combined with the adaptive
control. A neuro-adaptive controller is designed for the output
tracking of AHV, and a reinforcement learning mechanism
is particularly constructed for the weights updating of neural
network [23]. Based on the interval T2-FLSs, the unknown
dynamics of AHV is approximated, and the robustness is
guaranteed under the influence of the parameter perturbation,
unmeasurable states, and measurement noises [24].

Motivated by the above literatures, a robust controller with
an adaptive projection-based parameter estimator is presented
for AHV. The control-oriented model is firstly studied. The
parameter-varying model can well characterize the model
uncertainty, especially parameter perturbation [25]. More-
over, other characteristics, such as the structural elasticity
and aero-propulsive coupling, can also be described in the
parameter-varying model. In the previous study, the num-
ber of variable parameters selected in the parameter-varying
model was relatively large, resulting in the problem of over-
parameterization and the increased complexity of controller
design procedure [26], [27]. To avoid the mentioned prob-
lem, a novel parameter-varying model is established wherein
the number of variable parameters is significantly reduced.
Then, the framework of controller is established by adopting
the backstepping approach, in which a second-order filter is
introduced to solve the problem of ‘‘explosion of terms’’.
In order to enhance the robustness of the controller, an
adaptive parameter estimator is introduced. Noting that the
parameter estimation is achieved by a chain of integrators in
engineering, the saturation of integrator should be considered
in the process of designing the adaptive law. Thus, a suffi-
ciently smooth projection operator [28] is introduced to guar-
antee the uniform boundedness of adaptive parameters. Also,
the Lipschitz continuous dead-zone modification is used to
avoid the problem of parameter draft in the conventional
adaptive control. The main contributions of this paper are
listed as follows:

i) A novel parameter-varying model is established wherein
the number of variable parameters is significantly reduced,
avoiding the problem of overparameterization and simplify-
ing the procedure of controller design.

ii) An adaptive law combining the Lipschitz continuous
dead-zone modification and the sufficiently smooth projec-
tion operator is designed, resulting in the uniform bounded-
ness of variable parameters.

The outline of this article is as follows. In Section 2,
the description of theAHVmodel is given, and the framework
of the controller is described. Section 3 gives the design of
the nominal controller and the robust controller with adaptive
projection-based parameter estimation in detail. Numerical
simulations of two controllers are given in Section 4 and
Section 5 gives the conclusion.
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II. MODELING DESCRIPTION AND CONTROLLER
FRAMEWORK
A. MODEL DESCRIPTION
The model established by Parker et al. can describe the main
dynamic characteristics of AHV and is widely used in the
design of flight control system [29]. The kinematics and
dynamics equations of AHV are given as follows:

V̇ =
1
m

[T cos (θ − γ )− D]− g sin γ, (1)

ḣ = V sin γ, (2)

γ̇ =
1
mV

[L + T sin (θ − γ )]−
g
V

cos γ, (3)

θ̇ = Q, (4)

IyyQ̇ = M + ψ̃1η̈1 + ψ̃2η̈2, (5)

k1η̈1 = −2ζ1ω1η̇1 − ω
2
1η1 + N1 − ψ̃1

M
Iyy
−
ψ̃1ψ̃2η̈2

Iyy
,

(6)

k2η̈2 = −2ζ2ω2η̇2 − ω
2
2η2 + N2 − ψ̃2

M
Iyy
−
ψ̃2ψ̃1η̈1

Iyy
,

(7)

where the rigid states x = [V , h, γ, θ,Q] are the velocity,
altitude, flight path angle(FPA), pitch angle and pitch rate,
respectively. η = [η1, η̇1, η2, η̇2] denotes the flexible states.
The thrust T , lift L, drag D, pitching moment M and gener-
alized elastic forces Ni(i = 1, 2) are shown as follows [29]:

L ≈ qS(CαL α + C
δe
T δe + C

0
L)

D ≈ qS(CDα
2
α2 + CαDα + C

δ2e
D δ

2
e + C

δe
D δe + C

0
D)

T ≈ Cα
3

T α
3
+ Cα

2

T α
2
+ CαT α + C

0
T

M ≈ zTT + qSc(Cα
2

M ,αα
2
+ CαM ,αα + C

0
M ,α + ceδe)

Ni = Nα
2

i α
2
+ Nαi α + N

δe
i δe + N

0
i , i = 1, 2

(8)

with

Cα
3

T = β1 (h, q)8+ β2 (h, q) ,

Cα
2

T = β3 (h, q)8+ β4 (h, q) ,

CαT = β5 (h, q)8+ β6 (h, q) ,

C0
T = β7 (h, q)8+ β8 (h, q) ,

q =
1
2
ρV 2, ρ = ρ0 exp

(
−
h− h0
hs

)
,

where 8 denotes the fuel equivalence ratio, and δe is the
elevator deflection; α is the angle of attack (AOA); q is the
dynamic pressure, and ρ is the air density.

The model parameters are derived from [30], and the
coefficients of aerodynamic forces and thrust are given
by [29]. The value of the above parameters are given in the
Appendix as Table 2-6.

B. CONTROLLER FRAMEWORK
Inspired by the work of Fiorentini et al., the AHV model
is decomposed into the V − subsystem and the h −
subsystem [31]. The control target is to adjust the value of the

control inputs u = [8, δe]T so that the outputs y = [V , h]T

can follow their reference commands yref = [Vref, href]T.
V − subsystem is a first-order dynamic system described as
Eq. (1), and h − subsystem consists of a four-order dynamic
system described as Eqs. (2)∼(5). In order to reduce the order
of the h − subsystem and simplify the controller design pro-
cedure, a command transform from the reference commands
hd to the FPA command γd is designed as [32]:

γd = arcsin

(
−kh̃− kI

∫ t
0 h̃dτ + ḣref
V

)
, (9)

where k > 0, kI > 0 are the proportional and integral (PI)
coefficients, respectively; h̃ = h− href is the tracking error.
According to [32], h̃ can converge to zero exponentially,

if γ → γd is satisfied. Assume that the rigid states
x = [V , h, γ, θ,Q] are all measurable. Although the small
FPA and AOA are not easy to measure, the advanced sensor
system and state reconstruction algorithm can provide the
measurement of the states that satisfies the accuracy require-
ment. Thus, the assumption that the rigid states are com-
pletely measurable is reasonable. Since the flexible states η
are unmeasurable and themechanism for actively suppressing
the structural elasticity is lacking, the feedback of η is not
taken into account during the controller design. The influence
of the structural elasticity is weakened by enhancing the
robustness of the controller. It should be noted that the model
adopted in this paper [29] includes the canard δc, whose main
function is to adaptively compensate for the lift loss caused
by the deflection of the elevator and avoid the non-minimum
phase behavior. In order to avoid the problem of ‘‘explosion
of terms’’ in the conventional backstepping, the second-order
filter presented by Polycarpou et al. is introduced [33]. The
framework of controller is summarized as Fig.1.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS
In this section, a robust controller with adaptive projection-
based parameter estimation is introduced for the AHV
model described as Eqs. (1)∼(7). Noting that the design
of nominal controller is the basis for model analysis and
controller design, a nominal controller is firstly designed.
Then, a parameter-varying model with fewer parameters is
established. Based on the proposed parameter-varyingmodel,
an adaptive robust controller is designed by combining the
Lipschitz continuous dead-zone modification and the suffi-
ciently smooth projection operator. Furthermore, the stability
analysis for the designed controller is carried out based on
Lyapunov theory.

A. NOMINAL CONTROLLER DESIGN
Before designing the controller, the model is firstly trans-
formed into a strict feedback form. The V − subsystem is
rewritten as

V̇ = fV + gV8 (10)
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FIGURE 1. Framework of the controller.

with

fV =
cosα
m

[
β2α

3
+ β4α

2
+ β6α + β8

]
−
qS
m

(
Cα

2

D α
2
+ CαDα + C

0
D

)
− g sin γ

gV =
cosα
m

[
β1α

3
+ β3α

2
+ β5α + β7

]
6= 0.

Similarly, the dynamic equations of h − subsystem are
described as 

γ̇ = fγ + gγ θ
θ̇ = Q
Q̇ = fQ + gQδe

(11)

with

fγ =
qS
(
C0
L − C

α
L γ
)
+T sinα

mV
− g cos γ, gγ =

qSCαL
mV
6=0,

fQ=
zTT+qScCM ,α(α)

Iyy
, gQ=

qScce
Iyy
6= 0.

Then, a nominal controller is designed. Define the velocity
tracking error as Ṽ = V − Vref. Differentiating Ṽ by time t ,
we have

˙̃V = gV8+ fV − V̇ref. (12)

The control law 8 is designed as

8 = g−1V

(
−kV1Ṽ − kV2

∫ t

0
Ṽdτ − fV + V̇ref

)
, (13)

where kV1 > 0, kV2 > 0 are the PI coefficients.
For the h − subsystem, the procedure of designing the

controller, based on the proposed controller framework,
is divided into the following three steps.
Step 1: Define the PFA tracking error as γ̃ = γ − γd.

Differentiating γ̃ by time t , we have
˙̃γ = gγ θ + fγ − γ̇d. (14)

The virtual control law θc is designed as

θc = g−1γ

(
−kγ 1γ̃ − kγ 2

∫ t

0
γ̃ dτ − fγ + γ̇d

)
, (15)

where kγ 1 > 0, kγ 2 > 0 are the PI coefficients.

Step 2: Let θd and θ̇d be the tracking and differential
signals obtained by introducing the second-order filter [33]
to process the virtual control law θc. Define the tracking error
of the pitch angle as θ̃ = θ − θd. Differentiating θ̃ by time t ,
we have

˙̃
θ = Q− θ̇d. (16)

The virtual control law Qc is designed as

Qc = −kθ1θ̃ − kθ2

∫ t

0
θ̃dτ − gγ γ̃ + θ̇d, (17)

where kθ1 > 0, kθ2 > 0 are the PI coefficients.
Step 3: Let Qd and Q̇d be the tracking and differential

signals obtained by introducing the second-order filter [33] to
process the virtual control law Qc. Define the tracking error
of the pitch rate as Q̃ = Q−Qd. Differentiating Q̃ by time t ,
we have

˙̃Q = gQδe + fQ − Q̇d. (18)

The control law δe is designed as

δe = g−1Q

(
−kQ1Q̃− kQ2

∫ t

0
Q̃dτ − fQ − θ̃ + Q̇d

)
(19)

where kQ1 > 0, kQ2 > 0 are the PI coefficients.
Next, we prove the stability of the close-loop system con-

sisting of the designed nominal controller and AHV model
using the Lyapunov theory.

For the V − subsystem, the Lyapunov function is selected
as follows:

WV =
Ṽ 2

2
+
kV2
2

(∫ t

0
Ṽdτ

)2

. (20)

Differentiating WV by time t and invoking (12) and (13)
yields

ẆV = Ṽ ˙̃V + kV2Ṽ
∫ t

0
Ṽdτ

= Ṽ
(
fV + gV

[
g−1V

(
−kV1Ṽ − kV2

∫ t

0
Ṽdτ

−fV + V̇ref

)]
− V̇ref

)
+ kV2Ṽ

∫ t

0
Ṽdτ

= −kV1Ṽ 2 (21)
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Define the tracking errors of the second-order filter [33] as
y1 = θd− θc and y2 = Qd−Qc. By selecting the appropriate
natural frequency and damping ratio, there exist the positive
constants y1, y2, such that |y1| ≤ y1, and |y2| ≤ y2 hold.
For the h − subsystem, the Lyapunov function is selected as
follows

Wh =
γ̃ 2

2
+
kγ 2
2

(∫ t

0
γ̃ dτ

)2

+
θ̃2

2
+
kθ2
2

(∫ t

0
θ̃dτ

)2

+
Q̃2

2
+
kQ2
2

(∫ t

0
Q̃dτ

)2

(22)

Taking time derivative along (22), we have

Ẇh= γ̃ ˙̃γ + kγ 2γ̃
∫ t

0
γ̃ dτ+θ̃ ˙̃θ+kθ2θ̃

∫ t

0
θ̃dτ

+Q̃ ˙̃Q+ kQ2Q̃
∫ t

0
Q̃dτ (23)

Substituting (15) into (14) yields

˙̃γ = fγ + gγ (θ − θd + θd − θc + θc)− γ̇d

= fγ + gγ
(
θ̃ + y1 + θc

)
− γ̇d

= fγ + gγ
(
θ̃

+ y1+
[
g−1γ

(
−kγ 1γ̃ − kγ 2

∫ t

0
γ̃ dτ− fγ+γ̇d

)])
−γ̇d

= −kγ 1γ̃ − kγ 2

∫ t

0
γ̃ dτ + gγ θ̃ + gγ y1 (24)

Similarly, we have

˙̃
θ = −kθ1θ̃ − kθ2

∫ t

0
θ̃dτ − gγ γ̃ + Q̃+ y2 (25)

˙̃Q = −kQ1Q̃− kQ2

∫ t

0
Q̃dτ − θ̃ (26)

Substituting (24)∼ (26) into (23) yields

Ẇh = −kγ 1γ̃ 2
− kθ1θ̃2 − kQ1Q̃2

+ gγ y1γ̃ + y2θ̃ (27)

Since

gγ y1γ̃ ≤
∣∣gγ ∣∣ |y1γ̃ |≤ ∣∣gγ ∣∣ (y212 + γ̃ 2

2

)
, y2θ̃≤

y22
2
+
θ̃2

2
,

the Eq. (27) satisfies the following inequalities

Ẇh ≤ −

(
kγ 1 −

∣∣gγ ∣∣
2

)
γ̃ 2
−

(
kθ1 −

1
2

)
θ̃2

− kQ1Q̃2
+

∣∣gγ ∣∣ y21
2
+
y22
2

(28)

Choosing kγ 1 > |gγ |/2 and kθ1 > 1/2, the compact sets
are defined as

�γ̃ =

{
γ̃

∣∣∣∣∣|γ̃ | ≤
√(
|gγ |y21

2 +
y22
2

)/(
kγ 1 −

|gγ |
2

)}

�θ̃ =

{
θ̃

∣∣∣∣∣∣∣∣θ̃ ∣∣∣ ≤
√(
|gγ |y21

2 +
y22
2

)/(
kθ1 − 1

2

)}

�Q̃ =

{
Q̃

∣∣∣∣∣∣∣∣Q̃∣∣∣ ≤
√(
|gγ |y21

2 +
y22
2

)/
kQ1

} (29)

The radiuses of compact sets described as Eq. (29) can be
arbitrarily small by selecting enough large kγ 1, kθ1 and kQ1.
The inequalities ẆV < 0 holds for Ṽ 6= 0, and Ẇh < 0 holds
when the tracking error is not within compact sets described
as Eq. (29). According to the Lyapunov theory, the tracking
error Ṽ and γ̃ are bounded. Therefore, the proposed nominal
controller can make V → Vref and γ → γd . Furthermore,
we obtain h→ href [32].

B. ROBUST CONTOLLER WITH ADAPTIVE
PROJECTION-BASED PARAMETER ESTIMATION
1) THE PARAMETER-VARYING MODEL
The variable parameters of the model are mainly com-
posed of the aerodynamic coefficients and thrust coefficients.
The parameter-varying model is derived from the model
with a strict feedback form [25]. In order to describe the
idea of building the parameter-varying model in detail, the
V − subsystem is taken as an example. In [25]–[27], the vari-
able parameters in fV and gV are fully described in a separate
way. Since fV and gV contain the same items, the above
approach will lead to the problem of overparameteriza-
tion. Moreover, the complexity of controller design will
be increased. Thus, It is necessary to further optimize the
parameter-varying model. A novel parameter-varying model
is established in this paper. The main idea is to reduce the
number of variable parameters by merging the parameters
with same items. The establishment of the parameter-varying
model is given as follows.

Assume that the parameter perturbation caused by model
uncertainty has the following form [34]:{

12(x, t) = σ (t) ·2(x)
σ (t) = Aeκt sin(ωt)

(30)

where σ (t) is the deviation function that reflects the relation-
ship between the perturbation value and the nominal value
of the parameter; A > 0, κ < 0 and ω > 0 denote the
maximum amplitude of the perturbation, the decay rate and
the frequency, respectively.

Substituting (8) into (1), (3), (5) and taking the param-
eter perturbation into account, we obtain the following
Eqs. (31)∼(33). (described in the bottom of the next page)

For the V − subsystem, the varying-parameter form
obtained by the method in [26], [27] is given below for com-
parison. Let Cα

3

T8 = β1
/
qS, Cα

2

T8 = β3
/
qS, CαT8 = β5

/
qS,
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C0
T8 = β7

/
qS, Cα

3

T0 = β2
/
qS, Cα

2

T0 = β4
/
qS, CαT0 =

β6
/
qS, C0

T0 = β8
/
qS, the Eq. (31) is rewritten as

V̇ =
(
ωT
gvθgv

)
8+ ωT

fvθ fv − g sin γ (34)

where

ωfv = qS
[
α3 cosα α2 cosα α cosα cosα − α2 − α − 1

]T
θ fv =

(1+1)
m

[
Cα

3

T0 Cα
2

T0 C
α
T0 C

0
T0 C

α2

D CαD C
0
D

]T
ωgv = qS

[
α3 cosα α2 cosα α cosα cosα

]T
θgv =

(1+1)
m

[
Cα

3

T8 Cα
2

T8 CαT8 C0
T8

]T
It can be seen from Eq. (34) that the items in ωgv are all

included in ωfv. Thus, in order to simplify the parameter-
varying model, gV is selected as the same as the Eq. (10), that
is, gV is only related to the nominal value. The error between

the actual value and the nominal value of gV can be reflected
in the time-varying parameters of fV . Through the above
approach, the controller design can be greatly simplified, and
the problem of overparameterization can be avoided. Based
on the above analysis, different from the Eq. (34), we have

V̇ = gV8+ ωT
fvθ fv − g sin γ, (35)

where ωfv, θ fv, as shown at the bottom of this page.
Similarly, for the h − subsystem, the Eq. (32) is rewritten

as

γ̇ = gγ θ + ωT
f γ θ f γ −

g
V

cos γ, (36)

where ωf γ , θ f γ , as shown at the bottom of this page.
Let dη be the influence on the variable parameters caused

by the flexible states. Similarly, the Eq. (33) is rewritten as

Q̇ = gQδe + ωT
fQθ fQ, (37)

where ωfQ, θ fQ, as shown at the bottom of this page.

V̇ = (1+1) ·


8 ·

(
β1α

3
+ β3α

2
+ β5α + β7

)
cosα +

(
β2α

3
+ β4α

2
+ β6α + β8

)
cosα

−qS
(
Cα

2

D α
2
+ CαDα + C

0
D

)
m

− g sin γ (31)

γ̇ = (1+1) ·

qSCαLmV
θ +

qS
(
−CαL γ + C

0
L

)
+
(
β1α

3
+ β3α

2
+ β5α + β7

)
8 sinα

+
(
β2α

3
+ β4α

2
+ β6α + β8

)
sinα

mV

− g
V

cos γ (32)

Q̇ =
(1+1)
Iyy

·

[
zT
((
β1α

3
+ β3α

2
+ β5α + β7

)
8+

(
β2α

3
+ β4α

2
+ β6α + β8

))
+qSc

(
Cα

2

M ,αα
2
+ CαM ,αα + C

0
M ,α + ceδe

)
+ dη

]
(33)

ωfv = qS
[
α3 cosα α2 cosα α cosα cosα − α2 − α − 1

]T
θ fv=

1
m

Cα
3

T0 +1 (Cα
3

T0 + C
α3

T88) Cα
2

T0 +1 (Cα
2

T0 + C
α2

T88)
CαT0 +1 (CαT0 + C

α
T88) C0

T0 +1(C0
T0 + C

0
T88)

(1+1)Cα
2

D (1+1)CαD (1+1)C0
D


T

.

ωf γ =
qS
V

[
α38 sinα α28 sinα α8 sinα8 sinα
α3 sinα α2 sinα α sinα sinα − γ 1

]T
,

θ f γ =
1
m

 (1+1)Cα
3

T8 (1+1)Cα
2

T8(1+1)CαT8 (1+1)C0
T8

(1+1)Cα
3

T0 (1+1)Cα
2

T0(1+1)CαT0 (1+1)C0
T0

(1+1)CαL (1+1)C0
L +1C

α
L θ


T

.

ωfQ = qS
[
α38 α28 α8 8α3α2α1

]T
,

θ fQ =
1+1
Iyy


zTCα

3

T8 zTCα
2

T8zTC
α
T8 zTC0

T8

zTCα
3

T0

(
zTCα

2

T0 + cC
α2

M ,α

) (
zTCαT0 + cC

α
M ,α

)(
zTC0

T0 + cC
0
M ,α + c1ceδe + dη

)

T

.
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In summary, the h − subsystem is converted into a
strict feedback system with a parameter-varying form as
follows: 

γ̇ = gγ θ + ωT
f γ θ f γ −

g
V

cos γ

θ̇ = Q
Q̇ = gQδe + ωT

fQθ fQ

(38)

2) CONTROLLER DESIGN
For the V − subsystem, differentiating Ṽ by time t , we have

˙̃V = gV8+ ωT
fvθ fv − g sin γ − V̇ref. (39)

According to the idea of controller design in the
Section III.A, the control law is 8 designed as

8=g−1V

(
−kV1Ṽ−kV2

∫ t

0
Ṽdτ−ωT

fvθ̂ fv+g sin γ+V̇ref

)
,

(40)

where ˙̂θ fv is the estimated value of θ fv.

The adaptive law of ˙̂θ fv is designed as

˙̂
θ fv = 0fvωfvṼ , (41)

where the diagonal matrix 0fv is the designed parameter.
To avoid the parameter draft, the adaptive law shown in

the Eq. (41) is modified with the dead-zone modification in
this paper. Since the function of dead-zonemodification is not
Lipschitz continuous, high-frequency oscillation will occur
when the tracking error approaches the preset boundary.
To avoid the high-frequency oscillation, a modified function
of dead-zone modification which is Lipschitz continuous is
introduced as follows [18]:

µ(‖e‖ , e0, b) = max(0,min(1,
‖e‖ − be0
(1− b)e0

)), (42)

where e0 and 0 < b < 1 are the designed parameters.
The schematic diagram of the function described as the

Eq. (42) is shown in Fig. 2.
The modified adaptive law is designed as

˙̂
θ fv = 0fvωfvṼµ(

∣∣∣Ṽ ∣∣∣ , Ṽ0, bV ), (43)

where Ṽ0 > 0 and 0 < bV < 1 are the designed parameters.

FIGURE 2. Schematic diagram of µ(‖e‖ ,e0,b).

To guarantee the boundedness of adaptive parameters,
a sufficiently smooth projection operator is introduced [28].
The adaptive law is redesigned as

˙̂
θ fv = Proj(θ̂ fv, 0fvωfvṼµ(

∣∣∣Ṽ ∣∣∣ , Ṽ0, bV )). (44)

According to the definition of the projection operator [28],
the Eq. (44) is rewritten as (45), as shown at the bottom
of this page, where εV , δV , and θmax

fv are the designed
parameters.

For the h − subsystem, the procedure of designing the
controller is divided into the following three steps.
Step 1: Differentiating γ̃ by time t , we obtain

˙̃γ = gγ θ + ωT
f γ θ f γ −

g
V

cos γ − γ̇d. (46)

The virtual control law θc is designed as

θc=g−1γ

(
−kγ 1γ̃−kγ 2

∫ t

0
γ̃ dτ−ωT

f γ θ̂ f γ+
g
V

cos γ+γ̇d

)
,

(47)

where θ̂ f γ is the estimated value of θ f γ .
Similar to the V − subsystem, the adaptive law based

on the Lipschitz continuous dead-zone modification and
the sufficiently smooth projection operators is designed
as

˙̂
θf γ = Proj

(
θ̂ f γ , 0f γωf γ γ̃ µ

(
γ̃ |γ̃0, bγ

))
(48)

where 0fv is the designed diagonal matrix; γ̃0 > 0 and
0 < bγ < 1 are the designed parameters.

˙̂
θ fv =



0fvωfvṼµ(
∣∣∣Ṽ ∣∣∣)− (θ̂

T
fvθ̂ fv−(θ

max
fv )2)n+1

2(ε2V + 2εV θmax
fv )n+1(θmax

fv )2

·

[
θ̂
T
fv0fvωfvṼµ(

∣∣∣Ṽ ∣∣∣)+√(θ̂
T
fv0fvωfvṼµ(

∣∣∣Ṽ ∣∣∣))2+δ2V] θ̂ fv, ∥∥∥θ̂ fv∥∥∥
2
> θmax

fv

0fvωfvṼµ(
∣∣∣Ṽ ∣∣∣), ∥∥∥θ̂ fv∥∥∥

2
≤ θmax

fv

(45)
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˙̂
θ f γ =



0f γωf γ γ̃ µ(|γ̃ |)−
(θ̂

T
f γ θ̂ f γ−(θ

max
f γ )2)n+1

2(ε2γ+2εγ θ
max
f γ )n+1(θmax

f γ )2

·

[
θ̂
T
f γ0f γωf γ γ̃ µ(|γ̃ |)+

√
(θ̂

T
f γ0f γωf γ γ̃ µ(|γ̃ |))2 + δ2γ

]
θ̂ f γ ,

∥∥∥θ̂ f γ ∥∥∥
2
> θmax

f γ

0f γωf γ γ̃ µ(|γ̃ |),
∥∥∥θ̂ f γ ∥∥∥

2
≤ θmax

f γ

(49)

˙̂
θ fQ =



0fQωfQQ̃µ(
∣∣∣Q̃∣∣∣)− (θ̂

T
fQθ̂ fQ−(θ

max
fQ )2)n+1

2(ε2Q+2εQθ
max
fQ )n+1(θmax

fQ )2

·

[
θ̂
T
fQ0fQωfQQ̃µ(

∣∣∣Q̃∣∣∣)+√(θ̂
T
fQ0fQωfQQ̃µ(

∣∣∣Q̃∣∣∣))2 + δ2Q] θ̂ fQ, ∥∥∥θ̂ fQ∥∥∥
2
> θmax

fQ

0fQωfQQ̃µ(
∣∣∣Q̃∣∣∣), ∥∥∥θ̂ fQ∥∥∥

2
≤ θmax

fQ

(55)

The above Eq. (48) is expanded to the following specific
form (49), as shpwn at the top of this page, where εγ , δγ , and
θmax
fQ are the designed parameters.
Step 2: Let θd and θ̇d be the tracking and differential

signals obtained by introducing the second-order filter [33] to
process the virtual control law θc. Differentiating θ̃ by time t ,
we have

˙̃
θ = Q− θ̇d. (50)

The virtual control law Qc is designed as

Qc = −kθ1θ̃ − kθ2

∫ t

0
θ̃dτ − gγ γ̃ + θ̇d, (51)

Step 3: Let Qd and Q̇d be the tracking and differential
signals obtained by introducing the second-order filter [33]
to process the virtual control law Qc. Differentiating Q̃ by
time t , we have

˙̃Q = gQδe + ωT
fQθ fQ − Q̇d. (52)

The control law δe is designed as

δe = g−1Q

(
−kQ1Q̃− kQ2

∫ t

0
Q̃dτ − ωT

fQθ̂ fQ − θ̃ + Q̇d

)
,

(53)

where θ̂ fQ is the estimated value of θ fQ.
The adaptive law of θ̂ fQ is designed as

˙̂
θ fQ = Proj(θ̂ fQ, 0fQωfQQ̃µ(

∣∣∣Q̃∣∣∣ , Q̃0, bQ)), (54)

where 0fQ is the designed diagonal matrix; Q̃0 > 0 and
0 < bQ < 1 are the designed parameters.

The Eq. (55) is rewritten as (55), as shown at the top
of this page, where εQ, δQ, and θmax

fQ are the designed
parameters.

For the close-loop system consisting of the controller and
AHV model, the schematic diagram of control structure is
summarized as Fig. 3.

3) STABILITY ANALYSIS
In this section, the stability of the designed controller is
analyzed, and the following conclusion is drawn.
Theorem 1: Considering the close-loop system consist-

ing of the AHV model (Eqs. (1)∼(7)), command transform
(Eq. (9)), virtual control law(Eqs. (47), (51)), actual control
law (Eqs. (40), (53)), adaptive law (Eqs. (45), (49), (55)),
and the second-order filters, the tracking error Ṽ and h̃ are
bounded.
Proof: For the V − subsystem, the Lyapunov function is

selected as

WV =
1
2

(
Ṽ 2
+ kV2

(∫ t

0
Ṽdτ

)2

+ θ̃
T
fv0
−1
fv θ̃ fv

)
, (56)

where θ̃ fv = θ fv − θ̂ fv.
Substituting (40) into (39) yields

˙̃V = gV

[
g−1V

(
−kV1Ṽ − kV2

∫ t

0
Ṽdτ

−ωT
fvθ̂ fv + g sin γ + V̇ref

)]
+ωT

fvθ fv − g sin γ − V̇ref

= −kV1Ṽ − kV2

∫ t

0
Ṽdτ + ωT

fvθ̃ fv (57)

Differentiating WV by time t and invoking (57), we have

ẆV = Ṽ ˙̃V + kV2Ṽ
∫ t

0
Ṽdτ − θ̃

T
fv0
−1
fv
˙̂
θ fv

= Ṽ
(
−kV1Ṽ − kV2

∫ t

0
Ṽdτ

+ωT
fvθ̃ fv

)
+ kV2Ṽ

∫ t

0
Ṽdτ − θ̃

T
fv0
−1
fv
˙̂
θ fv

= −kV1Ṽ 2
− θ̃

T
fv(0
−1
fv
˙̂
θ fv − Ṽωfv) (58)

Substituting (44) into (58) yields

ẆV = −kV1Ṽ 2
− θ̃

T
fv

×

[
0−1fv Proj(θ̂ fv, 0fvωfvṼµ(

∣∣∣Ṽ ∣∣∣ , Ṽ0, bV ))− Ṽωfv]
(59)
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FIGURE 3. Structure of the close-loop system consisting of the controller and AHV model.

According to the property of the projective operator [28],
the following inequality holds.

θ̃
T
fvProj(θ̂ fv, 0fvωfvṼµ(

∣∣∣Ṽ ∣∣∣ , Ṽ0, bV ))
≥ θ̃

T
fv0fvωfvṼµ(

∣∣∣Ṽ ∣∣∣ , Ṽ0, bV ) (60)

Thus, we have

ẆV ≤ −kV1Ṽ 2
− θ̃

T
fv(0
−1
fv 0fvωfvṼµ(

∣∣∣Ṽ ∣∣∣ , Ṽ0, bV )− Ṽωfv)
= −kV1Ṽ 2

− θ̃
T
fvṼωfv(µ(

∣∣∣Ṽ ∣∣∣ , Ṽ0, bV )− 1) (61)

If
∣∣∣Ṽ ∣∣∣ ≥ Ṽ0, according to the definition of the Lipschitz

continuous dead-zone modification described as the Eq. (42),
we have µ(

∣∣∣Ṽ ∣∣∣ , Ṽ0, bV ) = 1. Thus,

−θ̃
T
fvṼωfv(µ(

∣∣∣Ṽ ∣∣∣ , Ṽ0, bV )− 1) = 0. (62)

If
∣∣∣Ṽ ∣∣∣ < Ṽ0, we have 0 ≤ µ(

∣∣∣Ṽ ∣∣∣ , Ṽ0, bV ) < 1. Assuming

that there is a positive constant f v such that
∣∣∣ωT

fvθ̃ fv

∣∣∣ ≤ f v
holds, we obtain the following inequality:

−θ̃
T
fvṼωfv(µ(

∣∣∣Ṽ ∣∣∣ , Ṽ0, bV )− 1)

≤

∣∣∣Ṽ ∣∣∣ · ∣∣∣θ̃Tfvωfv∣∣∣ · ∣∣∣µ(∣∣∣Ṽ ∣∣∣ , Ṽ0, bV )− 1
∣∣∣ ≤ Ṽ0f v. (63)

Combining (62), (63) with (61), we obtain

ẆV ≤ −kV1Ṽ 2
+ Ṽ0f v. (64)

For the h− subsystem, substituting (47) into (46) yields

˙̃γ = gγ (θ − θd + θd − θc + θc)+ ωT
f γ θ f γ −

g
V

cos γ − γ̇d

= gγ
(
θ̃ + y1 + θc

)
+ ωT

f γ θ f γ −
g
V

cos γ − γ̇d

= −kγ 1γ̃ − kγ 2

∫ t

0
γ̃ dτ + ωT

f γ θ̃ f γ + gγ θ̃ + gγ y1 (65)

where θ̃ f γ = θ f γ − θ̂ f γ .

Similarly, we obtain the following equalities:

˙̃
θ = Q− Qd + Qd − Qc + Qc − θ̇d

= Q̃+ y2 + Qc − θ̇d

= −kθ1θ̃ − kθ2

∫ t

0
θ̃dτ − gγ γ̃ + Q̃+ y2 (66)

˙̃Q = gQg
−1
Q

(
−kQ1Q̃− kQ2

∫ t

0
Q̃dτ

−ωT
fQθ̂ fQ − θ̃ + Q̇d

)
+ ωT

fQθ fQ − Q̇d

= −kQ1Q̃− kQ2

∫ t

0
Q̃dτ + ωT

fQθ̃ fQ − θ̃ (67)

where θ̃ fQ = θ fQ − θ̂ fQ.
Select the following Lyapunov function (68), as shown at

the top of the next page.
Differentiating Wh by time t and invoking (65)∼(67),

we have

Ẇh=−kγ 1γ̃ 2
− kθ1θ̃2 − kQ1Q̃2

+ gγ y1γ̃+y2θ̃

−θ̃
T
f γ (0

−1
f γ
˙̂
θ f γ−γ̃ωf γ )−θ̃

T
fQ(0

−1
fQ
˙̂
θ fQ − Q̃ωfQ) (69)

Since

gγ y1γ̃ ≤
∣∣gγ ∣∣ |y1γ̃ | ≤ ∣∣gγ ∣∣ (y212 + γ̃ 2

2

)
, (70)

y2θ̃ ≤
y22
2
+
θ̃2

2
, (71)

we obtain the inequality as follows:

Ẇh ≤ −

(
kγ 1 −

∣∣gγ ∣∣
2

)
γ̃ 2
−

(
kθ1 −

1
2

)
θ̃2

− kQ1Q̃2
+

∣∣gγ ∣∣ y21
2
+
y22
2
− θ̃

T
f γ (0

−1
f γ
˙̂
θ f γ

− γ̃ωf γ )− θ̃
T
fQ(0

−1
fQ
˙̂
θ fQ − Q̃ωfQ) (72)
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Wh =
1
2

 γ̃ 2
+ kγ 2

(∫ t
0 γ̃ dτ

)2
+ θ̃2 + kθ2

(∫ t
0 θ̃dτ

)2
+ Q̃2

+kQ2
(∫ t

0 Q̃dτ
)2
+ θ̃

T
f γ0
−1
f γ θ̃ f γ + θ̃

T
fQ0
−1
fQ θ̃ fQ

 . (68)

Substituting (48),(54) into (72) and using the property of
the projective operator [28], we have

Ẇh ≤ −

(
kγ 1 −

∣∣gγ ∣∣
2

)
γ̃ 2
−

(
kθ1 −

1
2

)
θ̃2 − kQ1Q̃2

+

∣∣gγ ∣∣ y21
2
+
y22
2
− θ̃

T
f γ γ̃ωf γ (µ(|γ̃ | , γ̃0, bγ )− 1)

− θ̃
T
fQQ̃ωfQ(µ(

∣∣∣Q̃∣∣∣ , Q̃0, bQ)− 1) (73)

Assume that there is a positive constant f γ and f Q such

that
∣∣∣ωT

f γ θ̃ f γ

∣∣∣ ≤ f γ and
∣∣∣ωT

fQθ̃ fQ

∣∣∣ ≤ f Q hold. Similar to
the analytical derivation process described as Eqs. (61)∼(64),
we obtain the following inequality

Ẇh≤−

(
kγ 1 −

∣∣gγ ∣∣
2

)
γ̃ 2
−

(
kθ1 −

1
2

)
θ̃2 − kQ1Q̃2

+M ,

(74)

where M = |
gγ |y21
2 +

y22
2 + f γ γ̃0 + f QQ̃0.

Choosing kγ 1 > |gγ |/2 and kθ1 > 1/2, the compact sets
are defined as

�Ṽ =

{
Ṽ
∣∣∣ ∣∣∣Ṽ ∣∣∣ ≤ √Ṽ0f v/kV1}

�γ̃ =

{
γ̃

∣∣∣∣|γ̃ | ≤ √M/(kγ 1 − |gγ |2 )}
�θ̃ =

{
θ̃

∣∣∣∣∣∣∣θ̃ ∣∣∣ ≤ √M/(kθ1 − 1
2

)}
�Q̃ =

{
Q̃
∣∣∣∣∣∣Q̃∣∣∣ ≤ √M/kQ1 }

(75)

The radiuses of compact sets described as Eq. (75) can
be arbitrarily small by selecting enough largekV1, kγ 1, kθ1
and kQ1. The inequalities ẆV < 0 holds for Ṽ 6= 0, and
Ẇh < 0 holds when the tracking error is not within compact
sets described as Eq. (75). According to the Lyapunov the-
ory, the tracking error Ṽ and γ̃ are bounded. Furthermore,
we obtain thath̃ is bounded [32]. �

IV. SIMULATIONS
This section aims to verify the performance of the proposed
robust controller with an adaptive projection-based parameter
estimator. Firstly, the simulation on the nominal controller
presented in Section III.A is carried out to verify the effective-
ness of the designed control framework. Then, the robustness
of the proposed robust controller described in Section III.B is
verified.

A. PERFORMANCE OF THE NOMINAL CONTROLLER
The model parameters, and the coefficients of aerodynamic
forces and thrust are given in Table 2-6. Firstly, the AHV

TABLE 1. States initialization.

model is trimmed at the initial time. The initial flight state is
selected tomaintain horizontal flight at the height of 25,908m
and the velocity of 2,347 m/s. The values of the initial states
are given in Table 1.

The reference commands yref = [Vref , href ] are selected as
follows: the velocity steps 100 m/s per 50 s, and the altitude
changes with a square wave (the amplitude is 300 m and
period 100 s). The reference commands are generated by the
filter as follows [27]:

href(s)
hc(s)

=
Vref(s)
Vc(s)

=

(
ω2
A

s2 + 2ζAωAs+ ω2
A

)2

, (76)

where ζA and ωA are the designed parameters.
Choose the PI coefficients as follows: kV1 = 1.8, kV2 =

0.5, k = 0.6, kI = 0.1, kγ 1 = 2, kγ 2 = 0.2, kθ1 = 3,
kθ2 = 0.2, kQ1 = 4, kQ2 = 0.2. Parameters for the reference
command filter are selected as: ζA = 0.95, ωA = 0.4.
The simulation time is taken as 150 s, and the differential
equations are solved by Runge-Kutta method with the step
0.01s. The simulation results are depicted in the Figs. 4∼6.

Fig. 4 shows the tracking performance of the velocity and
altitude by the nominal controller. It can be seen that the
nominal controller achieves stable tracking of the reference
commands, and the tracking error is kept in a small range. The
magnitude of the velocity tracking error shown in Fig. 4(c)
is extremely small. This phenomenon can be explained by
the following two aspects. Firstly, by analyzing the design
process of the nominal controller, it can be concluded that the
V − subsystem is a first-order dynamic system wherein there
are no accumulation of errors caused by the filters. Secondly,
under the nominal conditions, the model used in the simu-
lation is accurately known, without considering the model
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FIGURE 4. Tracking performance of the velocity and altitude by the nominal controller.

FIGURE 5. Curves of the rigid states by the nominal controller.

uncertainty and the flexible states. Thus, the phenomenon
shown in Fig. 4(c) is reasonable.

Next, we analyze the characteristics of the rigid states.
As shown in Fig. 5(a), the angle of attack is within a reason-
able range, namely α ∈ (1◦, 6◦), which meets the demand of
intaking air for the scramjet. Figs. 5(b)∼(d) indicate that the
flight path angle, pitch angle and pitch rate steadily track their
commands and remain within a reasonable range. The curves
of the rigid states change smoothly and no phenomenon of the
high frequency chattering occurs. Finally, the performance of

the control inputs is analyzed. As shown in Fig. 6, the fuel
equivalence ratio and the elevator deflection change smoothly
within a executable range, and no high frequency chattering
is observed. It can be seen from Fig. 6(b) that the value of ele-
vator deflection sharply fluctuates in the initial period, which
is harmful for the stable control. However, from the magni-
fied view of the elevator deflection curve in (0, 5s), we can
conclude that the amplitude and frequency of the fluctuation
are within a reasonable range, and the fluctuation gradually
disappears within 2s. To sum up, we conclude that under
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FIGURE 6. Curve of the control inputs by the nominal controller.

FIGURE 7. Tracking performance of the velocity and altitude by the proposed robust controller.

nominal conditions, the designed nominal controller achieved
the stable tracking of reference commands with a satisfactory
performance.

B. PERFORMANCE OF THE PROPOSED ROBUST
CONTROLLER
The model used in this section is consistent with the pre-
vious section in the selection of model parameters, initial
trim points, and reference commands. To verify the robust-
ness of the proposed controller, the flexible states are taken
into account. The constants of aero-propulsive coupling are
selected as: ψ̃1 = 147.9298, ψ̃2 = 109.5250. Moreover,
the parameter perturbations are added to the aerodynamic
coefficients and thrust coefficients of the AHV model. The
maximum amplitude and the frequency of the perturbation
are selected as A = 30%, ω = 0.01π rad · s−1.

The PI coefficients of the controller, filter parameters for
virtual control law, and the simulation condition are selected
to be the same as the Section IV.B. As for the parameter esti-
mator, the parameters of adaptive laws are selected as follows:
0fv = diag(10−3, 10−3, 10−4, 10−6, 10−2, 10−4, 10−5),
0f γ = diag(10−2, 10−3, 10−3, 10−4, 10−3, 10−3, 10−4,
10−6, 10−2, 10−5), 0fQ = diag(10−4, 10−5, 10−5, 10−6,
10−5, 10−4, 10−5, 10−6); Ṽ0 = 5 × 10−5, γ̃0 = 5 × 10−4,
Q̃0 = 5 × 10−3, bV = 0.5, bγ = 0.5, bQ = 0.5, θmax

fv =

2.01× 10−2, εV = 10−4, δV = 10−4, θmax
f γ =4.0571× 10−2,

εγ = 10−4, δγ = 10−4, θmax
fQ = 2.87 × 10−4, εQ =

10−6, δQ = 10−6. The simulation results are depicted in the
Figs. 7∼10.
It can be seen from Fig. 7 that the proposed con-

troller achieves the stable tracking of reference commands.
The velocity tracking error is kept in (−2, 2) m · s−1, and the
altitude tracking error kept in (−5, 5) m. Fig. 8 shows that the
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FIGURE 8. Curves of the rigid states by the proposed robust controller.

FIGURE 9. Curves of the control inputs and the flexible states by the proposed robust controller.

rigid states change smoothly within a reasonable range, and
the flight path angle, pitch angle and pitch rate steadily track
their own commands. Figs. 9(a)∼(b) indicate that the con-
trol inputs change smoothly with a satisfactory performance.
Compared with the control inputs by the nominal controller,
the elevator deflection by the robust controller, depicted in
the Fig. 9(b), has stronger chattering in the first five seconds.
The chattering is mainly caused by the flexible states and the
parameter perturbation. Figs. 9(c)∼(d) show that the flexible

states chatter with a reasonable amplitude and frequency. The
chattering of the flexible states is concentrated in the initial
time, which is directly related to the chattering of the elevator
deflection. The flexible state η1 shows stronger chattering
than the flexible state η2, because the forebody of the AHV
is slenderer and flatter than the aftbody. Fig. 10 shows the
curves of the 2-norm of the variable parameters. It can be
concluded that the variable parameters are limited within
the preset range. To sum up, the proposed robust controller
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FIGURE 10. Curves for the 2-norm of the adaptive parameters.

achieved the stable tracking of the reference commands under
the parameter perturbation, and the variable parameters are
limited within the preset range.

V. CONCLUSION
A robust backstepping controller is presented for the air-
breathing hypersonic vehicle in this paper. Comparedwith the
previous studies, a novel parameter-varyingmodel with fewer
variable parameters is established, avoiding the problem of
overparameterization and simplifying the controller design
procedure. Furthermore, an adaptive parameter estimator
combining the Lipschitz continuous dead-zone modification
and the sufficiently smooth projection operator is designed,

TABLE 2. Miscellaneous coefficient values.

TABLE 3. Lift and drag coefficient values.

TABLE 4. Moment coefficient values.

TABLE 5. Thrust coefficient values.

resulting in the uniform boundedness of adaptive parameters.
In this way, the saturation of integrator can be avoided when
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TABLE 6. N1 and N2 coefficient values.

the proposed controller is implemented in engineering. The
robustness and effectiveness of the proposed controller is
verified by the numerical simulation.

VI. APPENDIX
The model parameters, and the coefficients of aerodynamic
forces and thrust are given in the following Table 2-6
[29], [30].
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