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ABSTRACT Algal blooms are collections of algae that exist on the surface of the water. Because of their
negative effects on aquatic organisms and humans, extensive studies have been performed to detect harmful
algal blooms (HABs). However, most of the detection methods are based on remote-sensing imaging and
have limitations with regard to resolution, time, and cost. In this paper, we present a new cyanobacterial
algal bloom detection algorithm in inland water from a single image. The proposed method can be used
as a first step in automatic early detection, warning, and rapid response systems that can be employed to
mitigate the detrimental effects of HAB contamination in inland water bodies. We first divide an image
into homogeneous regions via a density-based spatial clustering (DBSCAN) algorithm. From the segmented
regions, we extract water bodies using wavelet leader-based texture analysis. The entropy and the number
of zero wavelet coefficients are used as measures for the water body extraction. For images with a sky
region, we introduce a simple sky-region removal method using the average brightness of segmented regions.
We propose three probabilistic indices bases on an RGB-based vegetation index, a hue-based index, and a
saturation-based index for estimating the degree of green algae in the extracted water body. The final index
is obtained via multiplication of these three indices. In experiments on various types of images, our proposed
algorithm achieves 94% accuracy for water body extraction. The proposed approach achieves better green
algae estimation performance than the conventional vegetation index-based methods.

INDEX TERMS Algal bloom detection, DBSCAN algorithm, entropy, probabilistic algae index, water body
extraction, wavelet leader.

I. INTRODUCTION
Algal blooms are collections of algae that grow in eutrophic
lakes, slow-flowing rivers, or stagnant oceans, and are accu-
mulated on the surface of water. Algal blooms consume a
large amount of oxygen, reducing the amount of dissolved
oxygen in water, and can be a major threat to aquatic life.
When harmful algal blooms (HABs) occur, the cost of remov-
ing unfamiliar tastes and odors in the production of tap water
increases, and HABs hinder water activities such as swim-
ming, fishing, and water skiing. In addition, overgrown algal
blooms have negative effects on aquatic ecosystems, causing
the death of many aquatic animals and plants. To counteract
the negative effects of HABs, an automatic HAB monitoring
and detection system is needed.

The associate editor coordinating the review of this manuscript and
approving it for publication was Md. Asikuzzaman.

Studies for detecting algal blooms commonly utilize
remotely sensed images from satellites or aircraft. These
approaches are based on the reflectance of chlorophyll-a,
which is found in all phytoplankton and green algae [1].
Several methods exploiting this spectral property have been
proposed for detecting algal blooms using remotely sensed
data. The classical normalized difference vegetation index [2]
has been used to identify algal blooms in images. In addition,
many algorithms based on other indices, such as the enhanced
vegetation index [3], the maximum chlorophyll index [4],
the floating algae index [5], the index of floating green algae
for geostationary ocean color imager [6], and the ocean sur-
face algal blooms index [7], have been proposed.

However, the index-based methods use data from the
Landsat TM/ETM+, a moderate resolution imaging spectro-
radiometer, and a medium resolution imaging spectrometer.
These data have a spatial resolution ranging from tens of
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meters to over a thousand meter. Therefore, satellite image-
based algorithms have difficulty in accurately measuring the
proportion of green algae in a single pixel. This problem was
denoted as the ‘subpixel problem’ in [8]. For estimating the
floating algae area on a subpixel scale, an algae pixel-growing
algorithm [8] using the Rayleigh-corrected reflectance and
the floating algae index was proposed. Recently, a spectral-
unmixing based green algae area estimation method [9] for
the subpixel level was been reported. The temporal resolution
of satellite image data is more than one day. Therefore, it is
difficult to develop an early warning system for the sudden
occurrence of HABs.

In recent years, unmanned aerial vehicles (UAVs) have
emerged as useful tools for algal bloom detection [10]–[13].
They can be more efficient than satellite-based imaging sys-
tems with regard to time and cost, and can reduce in situ
sampling costs. In addition, the performance of UAV-based
algal bloom detection can be further improved by combin-
ing thermal imaging and spectral information from remotely
sensed data [14]–[16]. Although the spatial range and spectral
capacity of the UAV-based green algae detection method
are not comparable to those of the satellite-based method,
the former method has the advantage of higher temporal
revisit time and spatial resolutions and can perform specific
tasks. Current applications of algal bloom detection research
based on UAVs are presented in detail in [17].

Other image sources for algal bloom detection are smart-
phones and online media. With the increasing popularity of
online media, there has been a growing trend toward adopting
citizen science-based approaches for environmental monitor-
ing. In addition to environment monitoring experts, citizen
scientists, such as local residents, fishermen, tourists, and
civil environmental monitoring agents, can produce, collect,
and transmit image data for algal bloom detection. Thus, cit-
izen scientist-based approaches are intended to complement
the traditional in situ and remote sensing-based approaches
for environmental monitoring [18].

Image data acquired by smartphones and online media
have a wide variety of forms. They have different resolutions,
scales, and viewpoints, and may be contaminated with noise.
In addition, only RGB image data can be used. Fig. 1 shows
various image data that were obtained from online sources
such as Google Images, or recorded by UAVs. As shown
in Fig. 1, the images include forests, the sky, andwater bodies,
as well as artificial structures such as roads, bridges, and
buildings.

All natural and artificial objects other than water bod-
ies in image data are obstacles to the automatic detection
of algal blooms. Therefore, image processing or computer
vision techniques for extracting water bodies are essential in
the field of algal bloom detection. Recently, of algal bloom
detection algorithms based on various image processing and
computer vision techniques, such as clustering [18], [19],
the local binary pattern (LBP) [20], [21], and machine learn-
ing [18], [21], [22], have been proposed. These methods are
promising for HAB detection, as various image processing

FIGURE 1. Various image data obtained from online sources (top), and
recorded by UAVs (bottom).

techniques can be applied and the image data can be acquired
easily and quickly.

The aim of this paper is to introduce a new algal bloom
detection scheme based on an easily obtainable single image.
The test image can be downloaded from Internet, captured
by UAVs, or taken from smartphones. We try to develop an
image processing-based algorithm that can detect and locate
algae in water bodies, irrespective of the variations in cam-
era parameters (resolution, viewpoint and scale) and various
environmental conditions. Our algorithm can be used as input
to an early algal bloom warning system at a very low cost.
From this warning, various post-works, such as, measuring,
detecting, and processing for algal blooms, can be performed.

Herein, we propose a single image-based cyanobacterial
algal bloom detection scheme in inland water. To detect algal
blooms, it is important to identify water bodies in the image.
For this purpose, it is helpful to divide the image into similar
regions. We use the superpixel and density-based clustering
algorithms to divide an image into similar regions. The impor-
tant task for detecting green algae is to determine which part
of the classified image region is the water body. We present
a wavelet domain texture analysis to extract water bodies in
the divided image regions.

For the extracted water bodies, we define three values
for estimating the amount of algal bloom s in a pixel. The
first quantified value is obtained from RGB-based vegetation
indices, such as the normalized green-red difference index
(NGRDI), normalized green-blue difference index (NGBDI),
and green leaf index (GLI) [16]. The second value indicates
how much green is in the pixels of the extracted water
body. This value is defined by applying the error function
to the hue value of the pixel. Because green algae reduces
the transparency of water bodies, the saturation of the pixel
is defined as the third quantified value, representing this
phenomenon. In this paper, we use these three quantified
values to estimate the degree of algal bloom in the range from
0 to 1 for the extracted water bodies. Through experiments,
we demonstrate that our proposed algorithm can effectively
detect HABs in a single image.

The remainder of this paper is organized as follows.
Section II describes the basic framework for the image-based
algal bloom detection scheme. The proposed water body
extraction method is presented in Section III. In Section IV,
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the green algae estimation algorithm based on RGB images
is presented. Section V presents the experimental results
obtained using the proposed approach, and the conclusions
are drawn in Section VI.

II. BASIC FRAMEWORK FOR IMAGE-BASED ALAGAL
BLOOM DETECTION
We investigate image-based approaches from the viewpoint
of the basic framework for algal bloom detection. In [18],
an agglomerative clustering algorithm, that groups superpix-
els to maximize the likelihood of a heterogeneous or cluttered
surface category, was presented. This method combines mul-
tiple cues, such as color, textural, and contextual, while
minimizing the pixel-level entropy function via grouping of
superpixels. For classified image segments, the algorithm
identifies five categories (lake clear, tree, grass, sky, and
lake HAB) using Fisher vector pooling of a convolutional
neural network filter bank [23]. Because this method labels
each image segment, the water body is extracted during the
segmentation. To evaluate the HAB detection performance,
thismethod extracts the pixels that correspond to lake regions,
and deploys an instance-level binary support vector machine
classifier trained to further classify the lake regions as HAB
vs. clear lake surfaces. However, the algorithm can only
determine the presence or absence of the HABs in the lake.

A hybrid image segmentation scheme that uses visual fea-
tures from a camera and inertial features measured by camera
inertial sensors was reported for aquatic environment mon-
itoring [19]. In this method, several lightweight and robust
computer vision algorithms are used to detect harmful aquatic
processes in a dynamic environment. The segmented patches
are passed to patch identification for probability thresholding,
noise removal, and patch recognition.

The LBP was used as a texture feature to segment objects
in images [20], [21]. According to pre-defined object labels
(algal, grass, water, and ground), an unsupervised texture
segmentation method with the LBP was utilized. Each seg-
mented class was identified by the Chi-square distance.
However, the performance of the proposed system, was not
evaluated, and the effects of comparable objects, such as
trees, plants, and seaweeds, in the image’s background were
not examined. A fully machine learning-based HAB detec-
tion approach was proposed in [22]. This method indicates
the percentage of algae in the boxed area of an image.
However, image labeling using an annotation software is
required before training.

Many image-based algal bloom detection approaches
involve labeling image segments [18], [20]–[22]. However,
for detecting green algae, it is sufficient to extract the water
bodies from the image. If only water bodies can be extracted
properly, the labeling process is not necessary. According to
the aforementioned studies, the basic framework for image-
based algal bloom detection is composed of three phases,
as shown in Fig. 2: clustering (phase I), water body extraction
(phase II), and algal bloom detection (phase III). Depending
on the algal bloom detection method, phase I and II can be

FIGURE 2. Basic framework for image-based algal bloom detection.

FIGURE 3. Example of an over-segmented image using superpixels.

combined into one phase. Additionally, the three phases can
be combined into one by using machine learning.

In this paper, we present an efficient cyanobacterial algal
bloom detection algorithm based on RGB images obtained
from smartphones, the Internet, and UAVs. Our method
involves three phases (segmentation, water body extraction,
and algal bloom estimation), and dose not employ a machine
learning scheme.

III. PROPOSED WATER BODY EXTRACTION METHOD
A. IMAGE SEGMENTATION
A test image for algal bloom detection can have various
contents, such as a water body, a forest, the sky, a bridge, or a
road. Therefore, it is important to classify the image into
homogeneous regions to extract water bodies from the test
image. A superpixel is a group of connected pixels with
similar colors or gray levels. Therefore, the superpixel seg-
mentation algorithm can be usefully applied before region
segmentation. In this paper, we use the simple linear iterative
clustering (SLIC) method [24] to over-segment the input
image. Fig. 3 shows an example of the over-segmented image
obtained using the SLIC algorithm. In this case, the number
of superpixels is 3,000.

The purpose of the segmentation step (phase I) in the pro-
posed method is to group the superpixels into several regions
with similar properties. For this, we exploit the density-based
spatial clustering of applications with noise (DBSCAN) algo-
rithm [25]. DBSCAN is a density-based clustering algorithm
that finds a number of clusters starting from the estimated
density distribution of corresponding nodes. The advantage of
DBSCAN is that it does not need to determine the number of
clusters. In addition, the DBSCAN algorithm classifies noise
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FIGURE 4. Example of three segments with artificial structures.

FIGURE 5. Example of three segments with trees and grasses.

pixels separately. These characteristics are considered to be
suitable for our desired image clustering.

Let us assume that the given image I is divided into
Nnon-overlapped segments using the DBSCAN algorithm as
follows.

I = C1 ∪ C2 ∪ · · · ∪ CN , (1)

where Ci (i =1, 2, . . . , N ) is the i-th segment of the image,
and Ci∩Cj = φ for i 6= j. In (1), the segments are ordered by
the number of pixels that they contain as follows.

|C1| ≥ |C2| ≥ · · · ≥ |CN | , (2)

where |Ci| is the number of pixels in segment Ci. Because a
segment that may contain a water body will occupy a certain
area in the image, we remove clusters that do not satisfy
the condition of |Ci|/|I| > δ, where δ is a positive small
value. Through this process, small segments with a very low
probability of containing awater body are eliminated. Finally,
we can obtain K(K ≤ N ) segments to extract water bodies.
Fig. 4 shows an example of three segments (K = 3)

obtained for a given image. As shown in Fig. 4, the buildings
on the right side, small ships in the middle, and floors at the
front of the image are removed, because they are all composed
of small homogeneous regions. Fig. 5 shows another example
with trees and grasses. Trees and grasses can have similar
colors to water bodies with green algae. Therefore, they can
be an obstacle in the extraction of water bodies having green
algae. As shown in Fig. 5, the trees and grasses on the right
side of the image were removed. Only homogeneous grasses

were present in C2, and the small cars on the left side of the
image were eliminated. This elimination process facilitates
the extraction of water bodies.

B. WATER BODY EXTRACTION
We assume that we can only estimate the location where the
image is captured and that no other information is available
beyond the RGB values of the image. The test image does
not have spectral information because it has RGB form. The
image includes forests, the sky, and water bodies, as well
as artificial structures. To differentiate the tree, grass, sky,
and water body, machine learning-based methods [18], [22]
and LBP-based texture analysis [20], [21] are used. Since the
waters are homogeneous and have similar patterns, texture-
based analysis will be suitable for water body extraction.
In addition, in order to detect algal blooms, we only need to
distinguish the water body and other areas.

In particular, wavelet-based representations have been pro-
posed by many researchers for texture analysis and classifi-
cation [26]–[28]. These methods have the advantage of using
information in both the frequency and spatial domains. In this
paper, we introduce a simple wavelet domain texture analysis
algorithm for water body extraction. We exploit the wavelet
leader, and propose a water body extraction measure using
the ratio of zero coefficients and entropy.

For a given image I, the discrete wavelet transform (DWT)
decomposes I into four subbands as follows.

{Wo(I; x)} = DWT(I; x), o ∈ {A,H ,V ,D} , (3)

where {Wo(I;x)} is the set of four wavelet subbands at spatial
location x, DWT(Z) is the DWT on Z, and o indicates the
direction of the wavelet subband (A: low-frequency subband,
H : horizontal direction, V : vertical direction, D: diagonal
direction). For an image segment Ci, we can obtain the
corresponding four wavelet subbands WA(Ci;y), WH (Ci;y),
WV (Ci;y), and WD(Ci;y) from (3), where y is the coordinate
indicating the spatial location of segment Ci.

In this paper, we use the wavelet leader [29], which is pro-
posed for multi-fractal analysis of images. The wavelet leader
can improve the robustness of certain statistical measure-
ments of conventional wavelet coefficients [28]. The wavelet
leader for Ci, WL(Ci) is defined as

WL(Ci; y)=max(|WH (Ci; y)|,|WV (Ci; y)|,|WD(Ci; y)|). (4)

It is mathematically justified that wavelet leaders allow accu-
rate measurement of the multi-fractal properties of two-
dimensional measuring fields [28]. However, the conversion
of wavelet coefficients into wavelet leaders does not remove
a large amount of information from texture images, because
this conversion is based on the maximum operation. There-
fore, we remove small wavelet leaders using a simple thresh-
olding operation as follows.

WLf (Ci; y) =

{
WL(Ci; y), WL(Ci; y) > t
0, otherwise,

(5)
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FIGURE 6. Example of wavelet leaders and their thresholding version.

whereWLf (Ci) represents the wavelet leaders after the thresh-
olding operation, and t is the threshold. In this paper, for t ,
we use the standard deviation of WL(Ci). Fig. 6 depicts
the high-frequency wavelet coefficients and wavelet leaders
of Ci. WLf (Ci) is illustrated in the bottom right of Fig. 6.
As shown in Fig. 6, a large amount of small wavelet coeffi-
cients are removed in the thresholding operation for wavelet
leaders.

It is assumed that water body regions are homogenous
compared with other image segments, such as grasses and
buildings, and can have uniform or regular texture patterns,
such as small waves as shown in Fig. 4 and Fig. 5. Therefore,
we assume that water bodies have a large amount of zero
wavelet coefficients. In this paper, we introduce the first
measure M0(Ci) for extracting water bodies as the ratio of
zero coefficients in a given segment as follows.

M0(Ci) =
Z
(
WLf (Ci)

)∣∣WLf (Ci)
∣∣ , (6)

where Z (WLf (Ci)) is the number of zero coefficients in
WLf (Ci), and |WLf (Ci)| is the number of wavelet coefficients
in the segment WLf (Ci). We expect that water bodies have a
large amount of zero coefficients, as shown in Fig. 6.

The distribution of wavelet coefficients in the segment
WLf (Ci) can be a clue for extracting water bodies. The proba-
bility distribution of a water body regionwill have a high peak
at zero, and its entropy will be relatively low compared with
other regions. The entropy of segmentCi, E(Ci) is calculated
as follows.

E(Ci) = −
∑
y

p
[
WLf (Ci; y)

]
ln p

[
WLf (Ci; y)

]
, (7)

where p[WLf (Ci;y)] is the probability of the wavelet coeffi-
cients of WLf (Ci;y) at position y. In this paper, we develop
a water body extraction measure by combining M0(Ci) and
E(Ci) as follows.

CW = argmax
Ci

(M0(Ci) (1− En(Ci))) , (8)

FIGURE 7. Example of water body extraction. Top: Extraction for a
UAV-based image, Bottom: Extraction result for an online-based image.

where CW is the extracted water body, and En(Ci) is the
normalized entropy such that

En(Ci) =
E(Ci)
K∑
i=1

E(Ci)

. (9)

We assume that the test image has at least one water body
region, because the image is captured for algal bloom detec-
tion. However, the measurement shown in (8) can extract only
one water body, because the maximum operation is used to
extract a water body. To extract two or more water bodies in
the test image, the segment having a value more than 95% of
the maximum M0(Ci)(1-En(Ci)) value is regarded as a water
body.

Fig. 7 illustrates the water bodies extracted using (8).
As shown in Fig. 7(a), because both 1-En(C1) and M0(C1)
for segment C1 have the maximum value, C1 is extracted as
the water body. On the other hand, the C2 segment having a
sky region has the maximum 1-En(C2) andM0(C2) as shown
in Fig. 7(b). This situation can occur frequently in the process
of extracting thewater body from online-based images. In this
paper, we introduce a simple sky region block algorithm using
the value component of the hue, saturation, and value (HSV)
color space.

C. SKY REGION REMOVAL
As shown in Fig. 7, the sky region has similar colors and a
homogeneous pattern, akin to a water body. This can make
it difficult to distinguish between a water body and the sky
region. We present a sky region block method to be applied
before water body extraction. Because we have already seg-
mented regions, it is possible to block the sky region in a
simple manner. Generally, the sky region has a high bright-
ness value. Therefore, we introduce a simple sky region block
method using the average brightness (V ) of the HSV color
space. Let µ(V (Ci)) be the average brightness value for each
segment Ci. V(Ci;y) is given as

V (Ci; y) = max (R(CW ; y),G(CW ; y),B(CW ; y)) , (10)
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FIGURE 8. Examples of water body detection after using the sky region
removal method.

where R(Ci;y), G(Ci;y) and B(Ci;y) are the red, green,
and blue pixel values, respectively, at a location y in Ci.
If µ(V (Ci))>γ ,we can remove the segment Ci before the
water body extraction process. Fig. 8 shows sky region
block examples. We observe that the sky segments that
were erroneously detected as the water body were properly
removed.

IV. ALGAL BLOOM ESTIMATION
We introduce a quantified value between 0 and 1 for estimat-
ing the degree of HAB in a pixel. This value is given by the
multiplication of the modified vegetation index, hue-based
index, and saturation-based index in the extracted water body
region.

A. RGB-BASED VEGETATION INDEX
From remotely sensed data, several vegetation index-
based algal bloom estimation approaches using the spectral
property of algal blooms have been presented. However,
these indices are not directly applicable to RGB images.
In recent years, various RGB-based vegetation indices have
been introduced. In [16], four types of indices including
the NGRDI, NGBDI, GL) and excess green index (ExG)
were used to identify green algae. In 2018, the relationship
between commonly used vegetation indices extracted from
UAV-based RGB and multispectral images was investigated
to estimate the number of oilseed rape flowers [30]. These
studies demonstrated the capabilities of various RGB-based
vegetation indices for different applications. Table 1 presents
examples of RGB-based vegetation indices along with their
formulas.

The green algae detection results for the extracted water
bodies obtained using the RGB-based vegetation indices are
shown in Fig. 9. When there is green algae in the image, it is
detected very strongly, even when there is a small amount of
green algae, the algae is detected. As shown in Fig. 9, for

TABLE 1. Various RGB-based vegetation indices and their formulas.

FIGURE 9. Green algae detection results for extracted water body using
various RGB-based vegetation indices.

most of the test images, the RGB-based vegetation indices
do not have the discriminating power for detecting the green
algae. Therefore, these indices are insufficient for detecting
green algae. For this reason, we introduce three indices,
including an RGB-based vegetation index, for algal bloom
detection.

In this paper, we first adjust the NGRDI between 0 and
1 to define the first index for green algae detection. For
an extracted water body CW , the first index based on the
NGRDI, PV [Ci;y], is defined as

PV [CW ; y] =
G(CW ; y)

G(CW ; y)+ R(CW ; y)
, (11)

where G(CW ;y) and R(CW ;y) are the green and red pixel
values, respectively, at a location y in CW .

B. HUE INDEX
Green algae have a green color. It is useful to exploit the hue
value in the HSV color space to define the hue-based index
for algal bloom detection. Hue is the attribute of color and is
discernible as red, green, blue, and so on. It is calculated
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FIGURE 10. Affinity function for the green color using the hue values and
the detection function based on the error function.

using the RGB value as follows.

H (Ci; y)

=
1
360
×



0, V (y) = m(y)

60◦ ×
(
G(y)− B(y)
V (y)− m(y)

mod 6
)
, V (y) = R(y)

60◦ ×
(
B(y)− R(y)
V (y)− m(y)

+ 2
)
, V (y) = G(y)

60◦ ×
(
R(y)− G(y)
V (y)− m(y)

+ 4
)
, V (y) = B(y),

(12)

where m(Ci;y)=min(R(Ci;y),G(Ci;y),B(Ci;y)), and H (Ci;y)
is the hue value at the location y in the segmented region Ci.
In (12), Ci is omitted for simplicity. The hue is represented
by an angle ranging from 0◦ to 359◦. For example, green is
represented by 120◦, and blue is represented by 240◦. The hue
value starts from 0◦ (red) and the color changes every 120◦,
first to green and then to blue. In this paper, we normalize the
hue value between 0 and 1.

We define the affinity function for the green color, and
modify it using the error function. The green affinity function
AG(z) is defined as

AG(z) =



2z+
1
3
, 0 ≤ z <

1
3

−2z+
5
3
,

1
3
≤ z <

5
6

2z−
5
3
,

5
6
≤ z ≤ 1.

(13)

For the hue value of the extracted water region CW , the
second metric for algal bloom detection, PH [Ci;y] is give as

PH [CW ; y] =
erf {a (AG (H (CW ; y))− 0.5)} + 1

2
. (14)

PH [Ci;y] is used on a pixel-by-pixel basis. Fig. 10 presents
the affinity function defined for the green color and the
probability based on the error function.

C. SATURATION INDEX
While the hue refers to the color in an image, the saturation
describes the intensity or purity of the hue. Therefore, the sat-
uration index should be used together with the hue-based
index for algal bloom detection. We introduce the saturation
index for green algae detection as the ratio of the saturation
values of CW to their maximum value. Let S(CW ;y) be the

TABLE 2. Overall algorithm of the proposed method.

saturation value. It is defined as

S(CW ; y) = 1−
m(CW ; y)
V (CW ; y)

. (15)

Using this value, we can obtain the probabilistic index based
on the saturation, PS [CW ;y] as follows.

PS [CW ; y] =
S(CW ; y)
Smax(CW )

, (16)

where Smax(CW ) is the maximum value of S(CW ;y).

D. PROPOSED INDEX
All three measures presented in this paper have values
between 0 and 1. We can express the occurrence of green
algae in the extracted water body as a probabilistic value for
each pixel. That is,

PG [CW ; y] = PV [CW ; y]PH [CW ; y]PS [CW ; y] , (17)

where PG[CW ;y] is the final green algae estimation index at
the location y in the extracted water body region CW . The
overall algorithm for detecting green algae in an image is
presented in Table 2.

V. SIMULATION RESULTS
A. EXPERIMENTAL SETUP
To verity the effectiveness of the proposed algal bloom
detection method, we test it on various types of images.
The test images are composed of 161 images captured by
UAVs, 135 aerial images downloaded from K-water [34], and
170 images from online sources (Google Images). We ran-
domly collected images with water bodies. These images
may or may not have algal blooms. The online images may
have included sky regions. We have four parameters to per-
form our algorithm. The parameters are determined as shown
in Table 3.

B. WATER BODY EXTRACTION RESULTS
Fig. 11 presents examples of the water body extraction results
for various test images. The extraction results for UAV-based
images without a sky region are shown in Fig. 11(a).
The water bodies are well extracted using our method.
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TABLE 3. Parameter values used in our simulations.

FIGURE 11. Water body extraction results. (a) UAV-based images without
a sky region, (b) online images with or without a sky region.

FIGURE 12. Failure cases for water body extraction.

Fig. 11(b) presents the extraction results for the online
images, which may have contained sky regions. Our results
exhibit good extraction performance regardless of the pres-
ence of sky regions as shown in Fig. 11(b).

Fig. 12 depicts some failure cases. When the water body
and other regions have a similar pattern, the water body
extraction may fail (first and second columns in Fig. 12).
Additionally, the water body extraction may fail if the pattern
of the water body is distorted by sunlight or shadows (third
and fourth columns in Fig. 12).

Table 4 shows the water body extraction performance after
application of the sky region block filter for all the test
images. In Table 4, the accuracy is defined as the percent-
age of the image from which the water body was extracted
correctly for the entire test image. The accuracy is measured
by manually observing the water bodies extracted from the
image. As shown in Table 4, erroneous detection results
are obtained for 28 of the total 466 images. The proposed
water body extraction method has an accuracy of 94.0%.
The extraction accuracy is highest for the UAV-based images,
because they do not contain sky regions. The extraction

TABLE 4. Water body extraction performance for various test images.

FIGURE 13. Algal bloom detection results for UAV-based test images with
green algae.

accuracy is lowest for the aerial images without sky regions,
because the resolution of these images are low owing to
the aerial photographing. The accuracy of the water body
extraction for the online images is 92.9%. Our algorithm
achieves high water body extraction performance through the
simple method of removing the sky region.

C. ALGAL BLOOM ESTIMATION RESULTS
We perform algal bloom estimation experiments for the
following three cases: 1) water bodies with green algae,
2) clean water bodies without green algae, and 3) erroneously
extracted water bodies.

Fig. 13 shows the algal bloom estimation results for UAV-
based images with green algae. Here, all the vegetation
indices are normalized between 0 and 1. The conventional
vegetation indices do not reflect the degree of green algae,
whereas the proposed index reflects the green algae accu-
rately depending on the characteristics of the water body.

Fig. 14 shows the detection results for UAV-based images
assumed to contain no green algae. The existing indices
express green algae even when there is no algae. The existing
vegetation indices are composed only of ratios based on the
combination of RGB values. In contrast, the proposedmethod
does not indicate that there are algal blooms in such cases,
as shown in Fig. 14. This is because the proposed method
uses an index based on the hue and saturation.

Fig. 15 presents the estimation results for online-based
images with green algae. The proposed algorithm exhibits
reasonable estimation performance and captures the detailed
information of the green algae. For the case of no green algae,

VOLUME 7, 2019 84475



C. W. Park et al.: Single Image Based Algal Bloom Detection Using Water Body Extraction and Probabilistic Algae Indices

FIGURE 14. Algal bloom detection results for UAV-based test images
without green algae.

FIGURE 15. Algal bloom detection results for online-based test images
with green algae.

FIGURE 16. Algal bloom detection results for online-based test images
without green algae.

our method achieves superior results to the existing algo-
rithms as shown in Fig. 16. Similar to the results shown
in Fig. 14, all the existing methods indicate that there is green
algae.

The estimation results for the aerial test images are shown
in Fig. 17. All the images in this set include green algae in the
water bodies. Because these images are captured by aircraft,

FIGURE 17. Algal bloom detection results for aircraft -based test images
with green algae.

FIGURE 18. Algal bloom detection results for cases where the water body
is erroneously extracted.

the image resolution is low, and the color ranges are limited.
Therefore, all the methods exhibits similar performance.

Various vegetation indices were originally designed for
satellite imagery. Therefore, they show good results for
images taken from a long distance. However, the conven-
tional indices often show poor estimation results for high
resolution images captured by UAVs or smartphone cameras.
Conversely, the proposed method exhibits similar estimation
results regardless of the image type. This is because our
method uses not only the vegetation index but also the sat-
uration and hue of the water body.

Another advantage of the proposed method is that even
when the water body is erroneously extracted, it is not iden-
tified as green algae as shown in Fig. 18. Here, the first
and second rows show examples where two segments are
detected as the water body. One segment is a real water body,
and the other is not a water body. In contrast to the existing
methods, the proposed method does not detect green algae in
areas other than the water body. The third and fourth rows
in Fig. 18 show the case where a non-water body is detected
as a water body. The proposed algorithm indicates that there
is no green algae in this area.

The results of the experiments indicate that our method
can obtain better algal bloom estimation performance than
the conventional methods for various types of images.
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In addition, the proposed algorithm performs well even when
the water body is erroneously detected.

D. LIMITATION
The proposed method introduced a new scheme for detecting
algal blooms using a single RGB image. For this reason, there
exist some difficulties in verifying the performance or use-
fulness of the proposed approach. Our method is not able to
extract the water perfectly under various distortions such as
sunlight and shadows. This is a problem that many image
processing methods face and can be improved using new
methods.

At present, it is very difficult to objectively verify the
green algae detection performance, because there is no
database or evaluation indicator for algal bloom detection.
The performance of the proposed method can only be sub-
jectively evaluated using the experimental results presented.
In the future, if the image-based green algae detectionmethod
is activated, we expect that a database and criteria for objec-
tively evaluating the performance will be established. A more
important problem is how to use the generated probability
map to monitor or mitigate harmful algal blooms. Our results
can be used as input to an early algal bloom warning system
after properly processing the probability map, or used as
initial input to an algal bloom removal robotic system [21].

VI. CONCLUSION
In this paper, we presented a new single image-based algal
bloom detection scheme. We first extracted the water body
using wavelet leader-based texture analysis. We used the
entropy and the number of zero wavelet coefficients as mea-
sures for the water body extraction. We presented a simple
sky region removal method using the average brightness of
the segmented regions for an online image dataset. For the
extracted water body, we developed three indices bases on the
RGB-based vegetation index, hue component, and saturation
component. The final index was obtained via multiplication
of these three indices. In various experiments, we achieved
94% accuracy for water body extraction, and our method
exhibited better estimation results than the existing methods.
In addition, we showed that the proposed method performs
well even if the water body is extracted incorrectly.
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