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ABSTRACT Probabilistic assume-guarantee reasoning is a theoretically feasible way to alleviate the state
space explosion problem in stochastic model checking. The key to probabilistic assume-guarantee reasoning
is how to generate the assumption. At present, the main way to automatically generate assumption is
the L∗ (or symbolic L∗) learning algorithm. An important limitation of it is that too many intermediate
results are produced and need to be stored. To overcome this, we propose a novel assumption generation
method by a genetic algorithm and present a probabilistic assume-guarantee reasoning framework for a
Markov decision process (MDP). The genetic algorithm is a randomized algorithm essentially, and there
are no intermediate results that need to be stored in the process of assumption generation, except the
encoding of the problem domain and the training set. It can obviously reduce the space complexity of the
probabilistic assume-guarantee reasoning framework. In order to improve the efficiency further, we combine
the probabilistic assume-guarantee reasoning framework with interface alphabet refinement orthogonally.
Moreover, we employ the diagnostic submodel as a counterexample for the guidance of augmenting training
set. We implement a prototype tool for the probabilistic assume-guarantee reasoning framework and report
the encouraging results.

INDEX TERMS Probabilistic assume-guarantee reasoning, genetic algorithm, interface alphabet,
counterexample, stochastic model checking.

I. INTRODUCTION
Nowadays, more and more real-life critical systems are sub-
ject to various phenomena of non-deterministic stochastic
nature. Stochastic aspects are essential for, among
others [1], [2]: 1) modeling unpredictable and unreliable
system behavior (e.g., processor failure or message loss);
2) randomized algorithms (e.g., leader election or consen-
sus algorithms); 3) model-based performance evaluation
(i.e., forecasting system dependability and performance).
Automatic formal verification of stochastic systems bymodel
checking is called stochastic model checking or probabilistic
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model checking [2], [3]. The process of stochastic model
checking combines classical model checking techniques
(e.g., graph algorithms) and numerical methods for calcu-
lating probabilities (e.g., linear equation solving or linear
programming) [4], so, it faces more severe state explosion
problem, compared with classical model checking. This
means that applying stochastic model checking to verify large
scale systems remains challengeable, as pointed out by Turing
Award winner Clarke at Turing Lecture [5].

A. PROBLEM STATEMENT
As a prominent compositional verification method, assume-
guarantee reasoning [6], [7] is a ‘‘divide and conquer’’
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paradigm. It replaces verification on the global system with
localized components verification: each component is sepa-
rately verified under corresponding contextual assumptions.
Theoretically speaking, it is a feasible technique to alleviate
state space explosion problem of stochastic model check-
ing. Adapting assume-guarantee reasoning into stochastic
model checking, i.e., probabilistic assume-guarantee reason-
ing, can be stated formally as follows. For a stochastic
systemM of two componentsM0 andM1, a quantitative prop-
erty specification P to be verified, the probabilistic assume-
guarantee reasoning process is captured by the asymmetric
rule:

M0 |H A A ‖ M1 |H P
M0 ‖ M1 |H P

where A is an assumption on M1’s environment, i.e., M0.
The verification of a property P on a two-component system
M0 ‖ M1 can be concluded by two steps: (i) checking that,
under the assumption that property A holds,M1 is guaranteed
to satisfy P, denoted A ‖ M1 |H P; (ii) checking that
M0 satisfies the assumption A, denoted M0 4 A.

We argue that probabilistic assume-guarantee mainly faces
the following three issues, and named it as PAG (probabilistic
assume-guarantee) problem: (a) How to generate the assump-
tion. Assumption A should contain enough information to
guarantee the quantitative property P under consideration,
and be small enough for efficient analysis; (b) How to check
the assume-guarantee tuple A ‖ M1 |H P. The time and space
cost of it and generating assumption should be significantly
lower than that of stochastic model checking the entire system
M0 ‖ M1. Otherwise, the probabilistic assume-guarantee
reasoning is meaningless. (c) How to construct the counterex-
ample. Providing counterexample is the important advantage
of stochastic model checking, when the quantitative prop-
erty is not satisfied on the stochastic system. In addition to
being diagnostic information, it can also afford guidance for
assumption refinement.

The core and key issue of solving PAG problem is how to
generate the assumption. If a suitable assumption is obtained,
the original system satisfies the property; otherwise, the sys-
tem does not satisfy the property or space cost is too large to
fit within the physical limits of the computer memory. In this
sense, the process of generating assumption is just the process
of probability assume-guarantee reasoning.

B. RELATED WORK
At present, there is not too much related work about
probabilistic assume-guarantee reasoning. According to the
method of assumption generation, we divide the existed
work into four categories: (1) probabilistic assume-guarantee
reasoning by manual interaction (PAG-MI), (2) probabilis-
tic assume-guarantee reasoning by L∗ learning algorithm
(PAG-L∗), (3) probabilistic assume-guarantee reasoning
by symbolic L∗ learning algorithm (PAG-SL∗),
(4) probabilistic assume-guarantee reasoning by abstraction-
refinement (PAG-AR).

1) PAG-MI
Based on compositional analysis theory of stochastic
system [8], Kwiatkowska et al. [9] introduced assume-
guarantee reasoning into stochastic model checking for the
first time, and presented the first probabilistic assume-
guarantee reasoning framework for probabilistic safety prop-
erties over probabilistic automaton. It solved PAG problem
in the following way: (a) required non-trivial manual effort
to derive assumptions from Segala probabilistic automata;
(b) used traditional stochastic model checking technique to
checking the assume-guarantee tuple; (c) did not involve the
counterexample.

This is the rudiment of probabilistic assume-guarantee
reasoning framework. Assumption generation by manual
interaction limits its practical usage.

2) PAG-L∗

To overcome the limitation of reference [9], Feng et al. [10]
and Feng [11] used the L∗ [12], [13] learning algorithm to
generate assumption, and proposed the first fully-automated
probabilistic assume-guarantee verification framework for
probabilistic safety properties over probabilistic automaton.
It solved PAG problem in the following way: (a) generated
assumption from probabilistic automata by L∗ learning algo-
rithm; (b) used multi-objective stochastic model checking
technique to check the assume-guarantee tuple; (c) adopted
the method of reference [14] to construct the counterexample.

3) PAG-SL∗

He et al. [15] and Bouchekir and Boukala [16] used the sym-
bolic data structure MTBDD (multiterminal binary decision
diagram) to optimize the assumption generation, and pre-
sented the assume-guarantee reasoning by symbolic L∗ learn-
ing algorithm for probabilistic safety properties over MDP,
respectively. They solved PAG problem in the following way:
(a) generated assumption from MDP by a symbolic
MTBDD-L∗ learning algorithm; (b) used traditional stochas-
tic model checking technique to checking the assume-
guarantee tuple; (c) adopted the method of reference [14] to
construct the counterexample.

4) PAG-AR
Komuravelli et al. [17] proposed an assume-guarantee frame-
work for checking strong simulation between a probabilistic
system and a quantitative specification, in which both the
system and specification are expressed as nondeterministic
labeled probabilistic transition systems (LPTSes). It solved
PAG problem in the following way: (a) generated assumption
by abstract-refinement; (b) used a strong simulation relation-
ship to check the assume-guarantee triple; (c) adopted the
method of reference [18] to construct the counterexample.

This framework relies on partitioning the explicit state
space and strong simulation to construct assumptions, which
usually lead to the assumptions with larger sate space.
Moreover, it is just a theoretical framework and there is not
the implemented tool.
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C. OUR CONSTRIBUTIONS
At present, the solutions for PAG problem, i.e., PAG-SL∗ and
PAG-L∗, can automatically generate the sound and complete
assumption, but the learning process must store the whole
computation history in order to continuous queries. In other
words, all the intermediate results should be stored as the
subproblem solutions in the process of assumption genera-
tion. This leads to probabilistic assume-guarantee reasoning
framework needs too many memory spaces [19]. Memory
consumption is the major obstacle for PAG-SL∗ and PAG-L∗

frameworks. They will not get the assumption from the large
system component, if the space cost of generating assumption
process is too large to fit within the physical limits of the
computer memory.

For dealing with it, we use the genetic
algorithm [20]–[22] to generate assumption for the first time,
and propose a fully-automated genetic algorithm-based prob-
abilistic assume-guarantee reasoning (PAG-GA) framework
for probabilistic safe property over MDP. Genetic algorithm
is essentially a randomized algorithm, and its correctness is
guaranteed by satisfying all the constraints specified in the
training set. So, in this framework, there are not intermediate
results need to be recorded. Only the encode of the problem
domain and the training set need to be recorded. This largely
reduces the space complexity with respect to assumption
generation. In order to improve the time efficiency, we first
combine probabilistic assume-guarantee reasoning frame-
work with an orthogonal technique, interface alphabet refine-
ment [23], in this work. We construct the assumption with
a small subset of the interface alphabet, and add actions to
the necessary alphabet until the required property is shown
to be hold or violated in the system, which are decided by
counterexample analysis. Moreover, we employ the diagnos-
tic submodel [24] as counterexample for guidance of training
set augment. It will be useful for reducing time consumption
of assumption generation. We solve PAG problem in the
following way: (a) generate assumption from MDP interface
alphabet by a genetic algorithm; (b) use multi-objective
stochastic model checking technique to checking the assume-
guarantee tuple; (c) adopt the method of reference [24] to
construct the counterexample.

D. ORGANIZATION OF THE PAPER
The rest of the paper is organized as follows. The basic def-
initions and terminology used throughout the paper is given
in section 2. Section 3 presents how to generate assumption
by optimized genetic algorithm. A specific description of
our framework is in section 4. The experimental results are
presented in section 5. Conclusion is in final section.

II. PRELIMINARIES
A. MDP
In our framework, Markov decision process (MDP) [2] is
used as the stochastic system model. We use Dist(S) to
denote the set of all discrete probability distributions over a
set S.

Definition 1 (MDP): A finite Markov decision process
(MDP) over a set of propositions AP, is formally a tuple
M = (S, s̄, αM ,T ,L), where
S is a (finite or countable) set of states;
s̄ is the initial state; αM is a set of actions;
T : S → 2αM×Dist(S) is the transition function.
L : S → 2AP is a labeling function.
Let supp (µ) = {s ∈ S|µ (s) > 0}, an infi-

nite path in an MDP M is an infinite sequence π =

(s0, a0, µ0) , (s1, a1, µ1) , . . . such that s0 ∈ s̄, (ai, µi) ∈
T (si) and si+1 ∈ supp(µi) for all i ≥ 0. A finite path in M
is a finite prefix π = (s0, a0, µ0) , (s1, a1, µ1) , . . . sn of an
infinite path in M with last state by last (π) = sn. PathM
denote the set of all infinite or finite paths over M .
Definition 2 (Interface Alphabet): LetM0 andM1 be com-

ponent MDPs, and G be a safety property. The interface
alphabet αA of M0 is defined as: αA = (αM0 ∪ αG) ∩ αM1 ,
where αG is alphabet in G.
Definition 3 (Parallel Composition): Let M0 =

(S0, s̄0, αM0 ,T0,L0) and M1 = (S1, s̄1, αM1 ,T1,L1) be com-
ponent MDPs. The parallel composition of M0 and M1,
denoted M0||M1, is given by MDP M0||M1 = (S0 ×
S1, (s̄0, s̄1) , αM0 ∪ αM1 ,TM0||M1 ,L0(s0) ∪ L1(s1)) where
TM0||M1 is defined such that (s0, s1)

a
−→ µ0 × µ1 iff one

of the following holds:
---s0

a
−→ µ0, s1

a
−→ µ1 and a ∈ αM0 ∩ αM1

---s0
a
−→ µ0, µ1 = ηs1 and a ∈

(
αM0\αM1

)
∪ {τ }

---s1
a
−→ µ1, µ0 = ηs0 and a ∈

(
αM1\αM0

)
∪ {τ }

Definition 4 (Projection): For a path π , its trace tr(π ) is the
sequence< a0, a1, . . . > of its action labels, after removal of
any’’ internal’’ action τ . For a trace t, we denote by t �α the
projection of t onto a subset α of its alphabet.
Definition 5 (Alphabet Extension): Given an MDP M and

an alphabet α. The alphabet extension ofM with alphabet α,
denoted M [α], is obtained from M by adding an a-labeled
self-loop to every state for each a ∈ α\αM , where αM is
alphabet in M .

An adversary σ of an MDP M is a function from paths to
pairs of actions and distributions, it is a resolution of nonde-
terminism. An adversary σ is called simple if it only looks
at the last state in a path, i.e., if it is a function AdvM : S →
(αM ×Dist(s))∪Dirac. For a state s ∈ S and an adversary σ ,
Prσs andPr

σ
M denote the probabilitymeasurement overPathM

and MDP M , respectively.

B. COUNTEREXAMPLE
Model checking a probabilistic safety property< G >≥pG (or
< G >≤pG) on an MDPM , rather than checking a reachabil-
ity or persistence property, requires computation of the min-
imum (or maximum) probability PrminM (G) (or PrmaxM (G)).
This can be reduced to computing the probability of accepting
runs in the product MDP M ⊗ Gerr by standard automata-
based techniques for stochastic model checking, where
Gerr is a DFA (deterministic finite automaton) that represents
bad prefixes of G.
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Given an MDP M and regular safety with lower-bound
properties < G >≥pG, if M 2 < G >≥pG in state s, then the
probability sum of all paths PathMσ ⊆ (M ⊗ Gerr )σ �αM
which are from s and satisfy the formulas G exceeds 1− pG.
Generating a counterexample (σ, c) for M< G >≥pG can be
reduced to the problem of computing the maximum proba-
bility of reaching an accepting state inM ⊗Gerr (the detailed
information can be seen in [1]). I.e.,

M 2 < G >≥pG ⇐⇒ supσ∈AdvM .Pr
σ
M⊗Gerr {π ∈

PathσM⊗Gerr |π ∈ c & π |H M ⊗ Gerr
}
> 1− pG.

The counterexample generation for regular safety property
with upper-bound probability (M 2 < G >≤pG) can be
reduced to lower-bound probability properties.

C. DFA (DETERMINISTIC FINITE-STATE AUTOMATON)
Definition 6 (Deterministic finite-state automaton, DFA).
A DFA [25] is a quintuple M = (Q,αM, δ, qinit ,F), where
Q is a finite nonempty set of states;
αM is a finite nonemepty set, called alphabet;
δ : Q× αM→ Q is the state transition function;
qinit ∈ Q is the initial state;
F ⊆ Q is a set of accepting states.
A run of M on a finite state ω = ω1 . . . ωn ∈ α

∗

M is a
sequence q0

ω1
−→ q1

ω2
−→ . . . qn, where q0 is the initial state of

M and qi+1 = δ (qi, ωi+1) for i ∈ {0, 1, . . . n− 1}. If qn ∈ F ,
it is called accepted. The language accepted by M is defined
as L (M) = {ω ∈ α∗M|there is an accepted run of M on ω} .

A language L is prefix-closed if for every word ω ∈ L,
all prefixes of ω are in L. A DFA M is prefix-closed if its
language L (M) is prefix-closed. It follows that a prefix-
closed DFA has only one nonfinal state with transitions only
to itself.

D. GENETIC ALGORITHM
A genetic algorithm (GA) [20]–[22] is a heuristic search
mechanism, which is inspired by the process of natural selec-
tion, i.e., survival of the fittest. It belongs to the larger class
of evolutionary algorithms (EA). Genetic algorithm begins
with a set of a random population in which each individual
is encoded into a string or chromosome. Then evaluate the
fitness of each individual in the current population, and select
the fittest individual as the parents to reproduce the next
generation by crossover and mutation. The fittest parents and
the new offspring will form a new population. The algorithm
terminates if either a fitness value has been satisfied, or a
maximum number of generations has been produced. The
standard genetic algorithm is shown in Algorithm 1.

III. GENERATING ASSUMPTION BY GENETIC ALGORITHM
For dealing with too many intermediate results needs to
be stored, we propose an optimized genetic algorithm for
generating assumption in this section. It generates an assump-
tion represented by a DFA from a component model MDP
for probabilistic safety properties, and iteratively improves
the accuracy guided by spurious counterexample. Firstly,

Algorithm 1 Standard Genetic Algorithm
Generate the initial population;
Compute fitness;
Repeat
Selection; Crossover; Mutation; Compute fitness;

Until fitness value has been satisfied, or a maximum num-
ber of
generations have been produced.

a training set is initialized by W method [25] to generate a
rough assumption. Then, it is an iterative process: refining the
assumption or report a counterexample of the property over
the stochastic system, according to the results of stochastic
model checking assume-guarantee tuple.

A. REPRESENTING ASSUMPTION
The assumption in our framework is defined as a DFA M =

(Q, αM, δ, sinit ,F). We should devise a suitable represen-
tation scheme in genetic algorithm for the states, actions,
transition function, an initial state and final states of DFA,
respectively.

--Representation of states
We encode elements of Q as the Boolean value. Each

element e ∈ Q is assigned a unique vector of Boolean values
(x1, x2, . . . xn), such that xi ∈ {0, 1}, n meets 2n−1 < |Q| ≤
2n, |Q| is the number of elements in Q. |Q| is not always
exact power of 2, there will be some vectors are ignored,
which do not correspond to any element of Q. We define a
characteristic function fQ : {0, 1}n → {0, 1} over Q, which
maps e represented by (x1, x2, . . . xn), onto 1 if e ∈ Q, and
maps it onto 0, otherwise.

--Representation of actions
Since actions are also a finite set, they can be encoded the

same as the representation of states of DFA [26].
--Representation of transition function
Transition function can be represented as Boolean vectors

by considering the characteristic function of a binary encode.
The transition function:Q×αM→ Q is a subset ofQ×αM×
Q. Let states q and q′ be represented as (x1, x2, . . . xn) and
(x
′

1, x
′

2, . . . x
′

n), respectively. And a letter’’ a’’ is represented
as (v1, v2, . . . vm), where a ∈ αM. Thus, the transition
q

a
−→ q′ can be represented by a 3-tuple boolean vec-

tors ((x1, x2, . . . xn), (v1, v2, . . . vm), (x
′

1, x
′

2, . . . x
′

n)), where

fQ (x1, x2, . . . xn)
∧
fαM (v1, v2, . . . vm)

∧
fQ
(
x
′

1, x
′

2, . . . x
′

n

)
=

1. This is easy to interpret and transform to Boolean function,
and the space complexity of it is O(|αM| · |Q|2).
--Representation of initial state
Without loss of generality, considering there is only one

initial state in a DFA, we can simply appoint n-bit vector to
represent it. We initialize fQ (x1, x2, . . . xn) = 1, which is not
necessarily a correct guess.
--Representation of final states
There may be more than one state in the final

state set, we can allocate |Q|-bit vector represent them,

83842 VOLUME 7, 2019



Y. Ma et al.: Probabilistic Assume-Guarantee Reasoning Framework Based on Genetic Algorithm

i.e.,
(
b1, b2, . . . b|Q|

)
. Meanwhile, b1

∨
b2
∨
. . .
∨
b|Q| is

true, which means several of them can be selected as final
states, and none is not allowed.

B. GENETIC OPERATORS
We use fitness proportionate selection operator, uniform
crossover operator and mutation operator of genetic algo-
rithm to manipulate process of assumption generation.

--Fitness proportionate selection operator
Selection operator assigns the reproductive opportuni-

ties to each individual (i.e., candidate assumption), in the
population. The fitness proportionate selection operator
selects individuals for mating according to the proportional to
their fitnesses Pr (hi). Assuming that there are n individuals,
the probability of selecting individual hi from population
assumptions is: Pr (hi) =

Fitness(hi)∑n
j=1 Fitness(hj)

, where Fitness(hi)
is the fitness value of hi. In other words, the higher the
fitness value of an individual, the more possibility it will be
preserved.

--Uniform crossover operator
The crossover operator produces two new candidate

assumptions (called children) from two selected individuals
(called parents, i.e., last candidate assumptions), by copying
selected bits from each parent. Let pc be the probability of
crossover, the number of individuals needing the crossover
operation is:pc ∗ np, where np is the number of individuals
in the population. The uniform crossover operator creates
two candidate children assumptions by crossover mask. The
crossover mask is assigned as a random bit string, in which
each bit is chosen at random and independent of the others.
If the value of bit at position i of the mask is ‘‘1’’, it indicates
that uniform crossover operator exchange the bits of parents
at corresponding position; if it is ‘‘0’’, uniform crossover
operator does nothing.

--Mutation operator
Mutation operator transforms one candidate individual into

a new one: it chooses a single bit or some bits at random,
and produces the small random changes to the bit string, then
changes values of a bit or some bits. Let pm be the probability
of mutation, the number of individuals needing the mutation
operation is: pm ∗ np.

C. FITNESS FUNCTION
There are two types of training set X produced by
W method [25], one is the words labeled ‘‘+’’ that are
accepted by the assumption, and the other is the words
labeled ‘‘−’’ that are rejected by the assumption. So, the tar-
get assumption DFA of iterative process can be distinguished
as a classifier. The fitness value of each assumption hi is
measured by its precise classification on the training set X:

Fitness (hi) =

{
0.0 ∃q.fq (q) = 0;
correct (hi) otherwise

where correct (hi) is the percent of all elements of training
set correctly classified by assumption hi.

D. OPTIMIZED GENETIC ALGORITHM FOR GENERATING
ASSUMPTION
The convergence of standard genetic algorithm is guaranteed
by many theoretical results, which is independent of the
specific application field. However, the local optimum always
exists, which is the well-known premature problem. In our
framework, we use the following strategies to prevent prema-
ture problems, and present an optimized genetic algorithm for
generating assumption.

--Adaptive probability of mutation
If the parameters of mutation and crossover variate with

the genetic evolution, genetic algorithm with self-organizing
characteristic is apt to more robust and global optimized.

We adopt mutation strategy proposed in [21], in which the
probability of mutation pm is related with Hamming distance.
The Hamming distance between two individuals is the num-
ber of positions at which the corresponding bits are different,
i.e., Ham :{0, 1}n × {0, 1}n→ Int . In each iteration, the best
assumption hbest and the worst assumption hworst are stored.
The probability of mutation pm is defined as:

pm = pminm + (pmaxm − pminm )×
nh− Ham(hbest , hworst )

nh

where pmaxm and pminm are the maximum and minimum
fixed probability of mutation fixed by genetic algorithm,
nh = |hbest | = |hworst | is the length of assumption.
--Inertia punishment
In each iteration, we record the best fitness value. If a

continuous sequence owns the same best fitness value, and the
length of it exceeds an allowed thresholdMAX_STABILITY,
they indicate that the population get into local optimum, and
the population evolves inertially. To punish the population’s
inertia, we temporarily change the probability pm of mutation
with a relatively large number (approximately equals to 1).
This change for the probability of mutation can be seen as
the environmental disaster.

--Probabilistic crossover
Probabilistic crossover we adopted is derived from the

standard uniform crossover [27]. For the probabilistic
crossover operator, the probability of parents to be chosen
for passing its variable to the offspring is proportional to its
fitness value. Formally, given parents h1 and h2, the crossover
mask Mask is:

Mask [i]

=

0, with probability pmask=
Fitness(h2)

Fitness (h1)+Fitness(h2)
1, with probability 1− pmask

Operators of adaptive probability of mutation and inertial
penalty aim at keeping the diversity of population. These
strategies can help the algorithm jump out of the local opti-
mum and prevent precocity effectively. Meanwhile, proba-
bilistic crossover can lead the algorithm to progress towards
the optimum solution. The Optimized genetic algorithm for
generating assumption is shown in Algorithm 2. It iteratively
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generates a new population, until all the elements of training
set are correctly recognized.

Algorithm 2 Optimized Genetic Algorithm for Generating
Assumption

Input:
Fitness fitness function; np the number of the

population;
pc crossover rate; pm mutation rate; X training set;

Output:
An assumption Ai = hbest with the highest fitness value

Process:
Represent assumption via binary encoding;
Generate np assumption randomly and form a
population;
For each assumption h, computeFitness(h);
Max←maximumfitness value of the current population;
While(max<1.0) do
Update the chromosomes by selection, crossover and
mutation
operations;
Evaluate the fitness of each assumption;
Select assumption to form a new population;
For each assumption h, compute fitness(h);
Max←maximum fitness value fitness Fitness(hbest )
of the
current population;

IV. PROBABILISTIC ASSUME-GUARANTEE REASONING
A. PROBABILISTIC ASSUME-GUARANTEE REASONING
SEMANTICS
Probabilistic assume-guarantee reasoning in this work is
the queries of the form < A >≥pAM< G >≥pG, where
< G >≥pG is probabilistic safety property, and < A >≥pA is
the probabilistic assumption which can be seen as probabilis-
tic safety property. Informally, this means that ‘‘wheneverM
is a part of a system satisfying property A with probability at
least pA, the system will guarantee property G with probabil-
ity at least pG’’.
Definition 7 (Probabilistic Assume-Guarantee Reasoning

Semantics): If < A >≥pA and < G >≥pG are probabilistic
safety properties, M is an MDP and αG ⊆ αA ∪ αM ,
then:< A >≥pAM< G >≥pG. This is equivalent to: ∀σ ∈
AdvM [αA].PrσM [αA] (A) ≥ pA H⇒ PrσM [αA] (G) ≥ pG.
With the above definitions, we interest in the following

asymmetric rule (ASMY). For MDPs M0, and M1, proba-
bilistic safety properties < A >≥pA and < G >≥pG such that
αA ⊆ αM0 and αG ⊆ αM1 ∪ αA:

< true > M0< A >≥pA
< A >≥pAM1< G >≥pG

< true > M0 ‖ M1< G >≥pG

In other words, verifying M0 ‖ M1 |H < G >≥pG can be
done compositionally by stochastic model checking a safety

property < A >≥pA on M0 and a assume-guarantee tuple
onM1. Given an MDPM1, regular safety properties A, G and
a fixed value of pA, the tightest lower-bounded interval IG ⊆
[0, 1] can be computed by multi-objective stochastic model
checking. It can be represented as < A >≥pAM1< G >IG=?.
Similarly, the widest lower-bounded interval IA ⊆ [0, 1]
can also be computed by multi-objective stochastic model
checking. It can be represented as < A >IA=?M1< G >≥pG.
Intuitively speaking, these inquiries enable us to compute
the strongest possible guarantee under some assumption
< A >≥pA and the weakest possible assumption under a par-
ticular < G >≥pG. What we need to be aware is IA = ∅.
This means that even under the strongest possible assumption
< A >≥1, < G >≥pG can not be guaranteed.

B. COUNTEREXAMPLES FOR PROBABILISTIC SAFETY
PROPERTIES
Counterexamples in PAG-L∗ and PAG-SL∗ are represented
by paths [14], which often causes the number of paths is too
big. Moreover, it is difficult to construct, since it is NPC prob-
lem sometimes. In reference [24], we defined the diagnostic
sub-graph as counterexample for probabilistic reachability
over DTMC, and extended PSO algorithm with heuristic
(HPSO) to generate it.
In this framework, we generalize the diagnostic sub-

model [24] to express the counterexample of probabilistic
safety properties over MDP. The counterexample represented
by diagnostic submodel has rich information, and is compact
about states and transitions.
Definition 8 (Diagnostic Submodel): Let M be an MDP,

σ a deterministic simple adversary, a DTMC Mσ
=

(S, sinit , αM ,T ) can be gotten under σ . If c is a set of paths
of Mσ , the diagnostic submodel Mσ,c

= (S ′,s′init , α′M ,T ′)
is part of Mσ with S

′

⊆ S, s′init ⊆ sinit , α′M ⊆ αM .
For distribution µ ∈ Dist(S) we define the subdistribution
µc
(
s
′
)
= µ(s) if the state s

′

appears in some path in c, and

µc
(
s
′
)
= 0, otherwise. For each s

a
−→ µ in T , T ′ contains

s
a
−→ µ if and only if µc is nonempty.
Note that, the diagnostic submodel Mσ,c is a part of

M according the definition of T ′. We can straightforward
conclude that M strongly probabilistic simulates [28] Mσ,c,
i.e., Mσ,c 4 M . Strongly probabilistic simulation preserves
safety properties, we can get Mσ,c

|H < G >≥pG if M |H
< G >≥pG. Meanwhile, strongly probabilistic simulation is
compositional, we can get: (1) Mσ,c

||M ′ |H < G >≥pG if
there is anMDPM ′ andM ||M ′ |H< G >≥pG; (2)Mσ,c

||M ′ 2
< G >≥pG if there is an MDP M ′ and M ||M ′ 2 < G >≥pG.

C. PROBABILISTIC ASSUME-GUARANTEE REASONING
FRAMEWORK
There are two auxiliary sources in the process of generat-
ing an assumption: (1) Membership oracle answers whether
a word is accepted by M0, which is performed by multi-
objective stochastic model checking; (2) Equivalence oracle
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FIGURE 1. Probabilistic assume-guarantee reasoning framework.

answers whether the assumption A is equivalent to M0 with
true or counterexamples, which is performed by traditional
stochastic model checking.

LetM0 andM1 be components,< G >≥pG be a probabilis-
tic safety property, αA be the interface alphabet. Our goal is
to judgeM0 ‖ M1 |H < G >≥pG by producing a probabilistic
assumption < A >≥pA over αA, and the genetic algorithm-
based probabilistic assume-guarantee reasoning framework is
shown in Fig. 1.

--Initialization of the training set
The training set X are randomly generated by the method

W [27]. It requires that the automaton is a Mealy machine,
so theDFAs should be transformed intoMealymachines [28].

First, we check whether the words in training set X can
be accepted in M0. The word w ∈ α∗A is labeled ‘‘+’’,
if w ∈ L(M0). Otherwise, the word is labeled ‘‘−’’. Deciding
whether w∈ L(M0) can be implemented with classical model
checking, which is the membership queries. If result of model
checking is true, then w∈ L(M0). Otherwise, it is false.
When the membership query of a word w returns false,

it indicates that the answer to any extended query of w will
be false. So, we can improve the efficiency of the algorithm
by reducing the cost of member queries. For example, if the
query for < a > is false, then the teacher can return false for
the queries< a, a >,< a, b >,< a, b, b > without invoking
the model checking.

--Generating assumption
According to Algorithm 2, the optimized genetic algorithm

generates assumption Ai ofM0 from the initial training set X
constituted by accepted and rejected words. The obtained

assumption may be not correct, which is decided by answer-
ing conjectures.
--Answering conjectures
The teacher will answer whether the assumption Ai is

appropriate for M0. Probabilistic assumption < A >≥pA
needs to be satisfied in both < true > M0< A >≥pA
and < A >≥pAM1< G >≥pG. As shown in Fig.1, the teacher
checks the above two premises with two separate oracles,
respectively.

1) ORACLE 1
We first check the query < A >IA=?M1< G >≥pG by multi-
objective model checking to determine the widest interval
IA ⊆ [0, 1]. We can get the weakest possible assumption that
guarantees< G >≥pG. However, IA = ∅ is possible. This sit-
uation meansM1 would still not meet< G >≥pG, even under
the assumption < A >≥1. A probabilistic counterexample
Mσ,c is generated to indicate that < A >≥1M1< G >≥pG
does not hold, which can be used to refine the assumption
A. In other words, there is a trace (or some traces) which is
currently included in A, but it (or they) should be excluded
in fact, since it causes a violation of < G >≥pG. We use the
counterexample Mσ,c to generate traces set Trc = tr(c) for
paths in c. The traces set Trc is restrict to the alphabet αA,
denoted as Tr = tr(c) ↑αA. We add the trace to training set X
and refine the assumption by constructing all paths in c
meet A. If IA 6= ∅, it is a nonempty, closed and lower
bounded interval. This means that < A >IA is a valid
probabilistic safety property essentially. Oracle 2 will be
checked.
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2) ORACLE 2
Oracle 2 is invoked to discharge < A >≥pA on M0, i.e., ver-
ifying whether < true > M0< A >≥pA is met. If it
is, we can conclude that the assumption which satisfies
both < true > M0< A >≥pA and < A >≥pAM1< G >≥pG
is exist. The framework is terminated with an output
M0||M1 |H < G >≥pG.Otherwise, we can get a counterex-
ample Mσ ′′,c′′Mσ ′′, c′′ to indicate that M0 2 < A >≥pA.
Then we analysis the counterexample Mσ ′′,c′′ and determine
whether it is a spurious counterexample for M0||M1.
--Counterexample analysis
To determine whether Mσ ′′,c′′ is a spurious counterex-

ample, we check whether Mσ ′′,c′′
||M1 2 < G >≥pG. If it

is, we can conclude that M0||M1< G >≥pG, and a coun-
terexample Mσ ′,c′ from Mσ ′′,c′′

||M1 is generated to illustrate
< G >≥pG is refuted in M0||M1. Otherwise, Mσ ′′,c′′ is a
spurious counterexample, and we refine the assumption A by
adding a trace t that comes from a counterexample showing
M0 2 < A >≥pA. Consider the case where Tr = tr(c) ↑αA
comprises a single trace t which is likely t||M1 |H < G >≥pG.
We add the trace to training set X for generating the next new
assumption.
--Producing lower and upper bounds
The trace from a counterexample is added into training

set for generating new assumption. If it cannot induce the
new assumption, i.e., no further conjectures are possible,
the framework is terminated. In this case, the third possible
output is presented, which is lower and upper bounds from
the genetic algorithm.
For any assumption A, it is possible to produce lower

and upper bounds on the minimum probability of safety
property G. Firstly, p∗A = PrminM0

(A) is computed. mean-
while, an adversary σ ∈ AdvM0 is generated, which
obtains the minimum probability. Finally, the interval IG is
got from checking the quantitative assume-guarantee query
< A >≥p∗AM1< G >IG=?. The upper bound is ub (A,G) =
min(IG) and the lower bound is lb (A,G) = PrminMσ,c||M1

(G).
Theorem 1: lb (A,G) ≤ PrminM0||M1

(G) ≤ ub (A,G).
For lower bound, Mσ,c is a sub-model of M0,

so lb (A,G) = PrminMσ,c||M1
(G) ≤ Pr

min
M0||M1

(G) can be got
from the fact that strong probabilistic simulation preserves
safety properties [28]. For upper bound, M0 |H < A >≥p∗A
and < A >≥p∗AM1< G >≥ub(A,G) can be got by construction,
thus, PrminM0||M1

(G) ≤ ub (A,G) is got from formulae (2).
The lower and upper bounds can be provided by the current

assumption A. Meanwhile, they also can be provided by
earlier assumptions which may produce tighter bounds.

D. CORRECTNESS AND TERMINATION
The correctness of three outputs has been discussed in the
above sections. Although the series of assumptions produced
is not monotonic, the framework can terminate with the third
output, i.e., the lower and upper bounds. Since M0 is finite
automata and genetic algorithm can converge to the optimal
solution in a certain time, the framework can terminate with

TABLE 1. Basic information of randomized dining philosophers problem.

an assumptionA forM0 or the assumption remains unchanged
in two successive iterations in a given time.

E. INTEGRATING WITH INTERFACE ALPHABET
REFINEMENT
In order to improve the efficiency, we integrate interface
alphabet refinement [23] with our framework. We construct
the training set for generate assumption from a smaller inter-
face alphabet set 6 instead of αA, where 6 = αG ∩ αA.
If the assumption is not appropriate, Tr = tr(c) ↑6 is added
to training set for generating new assumption. According to
the correctness of the probabilistic assume-guarantee, if the
framework returns true, M0||M1 |H < G >≥pG; If it returns
false, this means that a counterexample Mσ,c�6

0 exists in
M0, which falsifies Mσ,c�6

0 ||M1 |H < G >≥pG. It does not
necessarily indicate that M0||M1 2 < G >≥pG; if it returns
the interval PrminM0||M1

(G) ∈ [l, u], this does not mean that no
further conjectures are possible. In the above two situations,
the alphabet 6 should be extended according to algorithm
3, and then it is used to generate assumption again, until
6 = αA.

Algorithm 3 Interface Alphabet Refinement
1) Initialize 6 such that 6 = αG ∩ αA.
2) Use the above learning framework for 6. If the

framework returns true, then report true and go to step
5). If the framework returns false with counterexam-
ples Mσ,c6

0 and M
σ ′,c′6
0 , go to the next step. If the

framework return interval which is provided by the
current assumption A and 6 ⊂ αA, go to step 4).

3) Perform extended counterexample analysis with
Mσ,c�6

0 andMσ ′,c′�6
0 . ifMσ ′,c′�αA

0 , is a real counterex-

ample, then report false and go to step 5). IfMσ ′,c′�αA
0

is spurious and 6 ⊂ αA, then refine 6, which
consists of adding to 6 actions from αA. Go to
step 2).

4) Refine 6 by adding all the actions from (αA\6).
Go to step 2).

5) END.

In the following, we further specify the above algorithm.
--Alphabet initialization
We initialize alphabet with those actions which are the

alphabet in probabilistic safety property and αA, i.e., αG ∩
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TABLE 2. Comparing of PAG-L∗, PAG-SL∗ and PAG-GA on philosophers problem.

αA. A good initialization of the alphabet can reduce time cost
of assumption generation, as it results in fewer refinement
iterations.

--Extended counterexample analysis
Extended counterexample analysis takes two counterex-

amples as inputs, which are counterexampleMσ,c�6
0 returned

by Oracle 2, and counterexample Mσ ′,c′�6 returned by the
original counterexample. Then, the framework (Fig.1) is
modified to returnMσ,c�6

0 andMσ ′,c�6 to be used in alphabet
refinement. IfMσ ′,c′�αA ||M1 2 < G >≥pG, the counterexam-
pleMσ ′,c′�αA is obtained. Otherwise, the alphabet 6 needs to
be refined.

--Alphabet refinement
If the counterexample is spurious, the current alphabet 6

needs to be refined so as to eliminate this counterexample.
The interface alphabet refinement will add the actions in
αA to the learning alphabet, which is discovered based on
comparing Mσ,c�6

0 wtih Mσ ′,c′�6 . The actions are all added,
if they are different between Mσ,c�6

0 and Mσ ′,c′�6 accord-
ingly. We randomly generate prefix DFAs with fixed number
of alphabets in each iteration.

V. IMPLEMENTATION AND RESULTS
We implement a prototype tool PAG-GA for the framework
based on PAT [29]. The architecture of it is shown in Figure 2.
A symbolic (MTBDD-based) implementation of PAG-GA
is under development, which will be released as the open
source software at PATwebsite (http://pat.comp.nus.edu.sg/).
We use PRISM as front-end to parse the input files. The
queries in the assumption generation process are performed
by either PRISM or multi-objective model checking which is
the extension of PRISM [30], [31].

All experiments are run on a PC with Intel Pentium CPU
(2.20 GHz) and 8GB RAM. Time limit is set to 24 hours.
We use ‘‘TO’’ to denote the verification cannot be completed
within the specified time. We configure the parameters of
genetic algorithm as follows: the number of population np
= 100, crossover rate pc = 0.6, minimum mutation rate
pminm = 0.01, and maximum mutation rate pmaxm = 0.05.
The maximum threshold of the same highest fitness value
sequence MAX_STABILITY is 9; the inertia punishment

FIGURE 2. Architecture of PAG-GA.

TABLE 3. Basic information of randomized consensus protocol of aspnes
and herlihy.

mutation rate is 1.0; the number of best assumption preserved
is 2.

We compare our work with monolithic stochastic
model checking (MSMC) by PRISM, probabilistic assume-
guarantee reasoning by L∗ learning algorithm (PAG-L∗) and
probabilistic assume-guarantee reasoning by symbolic L∗

learning algorithm(PAG-SL∗), respectively. We also com-
pare our probabilistic assume-guarantee reasoning frame-
work with interface alphabet refinement and without alphabet
refinement.

The first case is randomized dining philosophers prob-
lem [30]. N philosophers sit around a circular table. Each
of them can only eat food when he has both right and left
forks. Each fork can be held by only one philosopher at
one time. When a philosopher finishes eating, he needs to
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TABLE 4. Comparing of PAG-L∗, PAG-SL∗ and PAG-GA on consensus protocol of aspnes and herlihy.

put down both forks, and the forks become available to
other philosophers at the same time. For randomized dining
philosophers’ problem, we model the composition of half of
processes as M0, and the other processes composed as M1.
The propertyG to be verified is ‘‘what is the probability that if
a philosopher is hungry, he eats eventually’’. The basic infor-
mation and comparisons of PAG-L∗, PAG-SL∗ and PAG-AG
for this case are shown in TABLE 1 and TABLE 2,
respectively.

The second case is randomized consensus protocol [31].
It consists ofN asynchronous processes that communicate via
read/write shared registers. The processes proceed through
possibly unboundedly many rounds; at each round, a shared
coin protocol is parameterized by K . The protocol attempts
to involve a distributed random walk: when the processes
disagree, they use a shared coin-flipping protocol to decide
their next preferred value. Achieving polynomial expected
time depends on ensuring that the probability that all non-
failed processes draw the same value is above an appropri-
ate bound. For randomized consensus protocol, we model
the composition of asynchronous processes as M0, and the
composition of coin-flipping processes as M1. The property
G to be verified is ‘‘what is the minimum probability that the
asynchronous processes reach a consensus by round R’’. The
basic information and comparisons of PAG-L∗, PAG-SL∗ and
PAG-AG for this case are shown in TABLE 3 and TABLE 4,
respectively.

The third case is synchronous leader election protocol [32].
Given a synchronous ring of N processors, the protocol will
be able to elect a leader (a uniquely designated processor)
by sending messages around the ring. It proceeds in some
rounds and is parameterized by a constantK . At the beginning
of each round, all processors independently and uniformly
choose a random number from {1, . . . ,K} as the id. Then
they pass their ids around the ring. If there is a unique id,
the processor with the maximum unique id is elected as the
leader, otherwise, the processors begin a new round again.
The processors proceed in the form of synchronization. For
synchronous leader election protocol, we model the composi-
tion of processors asM0, and the composition of messages as
M1. The property G to be verified is ‘‘what is the probability
that eventually a leader is elected’’. The basic information and
comparisons of PAG-L∗, PAG-SL∗ and PAG-AG for this case
are shown in TABLE 5 and TABLE 6, respectively.

TABLE 5. Basic information of synchronous leader election.

FIGURE 3. Time consumption of GA, L∗ and SL∗ with |6| = 2.

The ‘‘MSMC (PRISM)’’ columns give the number of
states, the total time (in seconds) and the exact probabil-
ity value obtained by monolithic stochastic model checking
(MSMC) with PRISM. The ‘‘PAG’’ columns give the number
of states of M0 and M1 ⊗ Gerr in probabilistic assume-
guarantee, where G is the safety property to be checked.
Column ‘‘para’’ represents the parameter value of the case.
For each case, we report the number of states (‘‘|A|’’) of the
assumption A, the total time (‘‘Time’’)in seconds, memory
consumption(‘‘Size’’) in megabytes and bounds of guaran-
teed property G, respectively.
The results are very encouraging. In all cases, our frame-

work PAG-GA successfully generates the assumption for ver-
ifying the corresponding property G. It also generates lower
and upper bounds on the minimum probability, if < G >≥pG
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TABLE 6. Comparing of PAG-L∗, PAG-SL∗ and PAG-GA on synchronous leader election.

TABLE 7. Comparing of PAG-GA on philosophers with and without interface refinement.

TABLE 8. Comparing of PAG-GA on consensus with and without interface refinement.

is true on the compositional model M0 ‖ M1. The lower
bounds produced by our framework is in coincidence with the
result from PRISM, and yields the exact values in all cases.
Compared with PRISM, the time and memory consumption
of PAG-GA is significantly reduced, when the verified system
scale is large. Even PRISM fails to verify consensus with
parameters (3,3,20) in TABLE 3, our framework PAG-GA
verifies it successfully. However, PAG-GA don not have the
advantages of time over PRISM, if the verified system scale
is small.

Compared with PAG-L∗ and PAG-SL∗, PAG-GA has
obvious advantage for all cases in terms of memory con-
sumption, because it does not need to store the interme-
diated results. PAG-GA takes less time than PAG-L∗ and
PAG-SL∗ to verify all cases. There are two reasons for this:
1) constructing counterexample in PAG-GA framework is

more efficient than PAG-L∗ and PAG-SL∗, which is shown in
reference [24]; PAG-GA framework reduces the number of
membership queries, as the population evolution of genetic
algorithm. We cannot assert that PAG-GA is promising in
time consumption than PAG-L∗ and PAG-L∗, because of the
randomness in genetic algorithm. They obtain the similar
bounds of G for all the cases. The state space of assumption
generated by PAG-SL∗ is smaller than PAG-L∗ and PAG-GA.
This is because PAG-SL∗ uses compact data-structure
MTBDD to represent assumption. The state space of assump-
tion generated by PAG-L∗ and PAG-GA are similar at the
scale.

As shown in TABLE 7, 8 and 9, we compare PAG-GAwith
and without interface alphabet refinement for the above three
cases. When our framework integrates the interface alpha-
bet refinement orthogonally, it takes obvious less time, and
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TABLE 9. Comparing of PAG-GA on synchronous leader election with and without interface refinement.

FIGURE 4. Memory consumption of GA, L∗ and SL∗ with |6| = 2.

makes the advantage of memory consumption more apparent.
Moreover, it can generate a smaller assumption, in few, up
to almost one order of magnitude (e.g., randomized dining
philosophers’ problemwith N= 9,10 and synchronous leader
election with parameters (4,12)). With interface alphabet
refinement, PAG-GA framework adds actions in set-theoretic
difference αA6 to training set, which means adding more
behaviors to the next assumption that genetic algorithm tries
to generate.

In order to further illustrate the advantages of genetic algo-
rithm, we generate assumption DFAs with states from 5 to
100 states, randomly.We fix |6| = 2, prefix-closed DFAs are
constructed byGA, L∗ and SL∗, respectively.We compare the
time and memory consumption of genetic algorithm (GA),
L∗ learning algorithm (L∗) and symbolic L∗ learning algo-
rithm (SL∗), which is shown in Fig.3 and Fig.4, respectively.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we propose a probabilistic assume-guarantee
framework based on genetic algorithm. As far as we know,
this is the pioneering work in the area of fully-automated
assumption generation. It only needs to record the encode
of the problem domain and the training set. So, the space
complexity is largely reduced. In order to improve efficiency
further, we also combine the interface alphabet refinement

with our framework orthogonally. It is the first probabilis-
tic assume-guarantee reasoning framework with interface
alphabet refinement. Moreover, we apply counterexample
expressed by diagnostic submodel to augment the training
set, which can reduce the time cost of generating assump-
tion. Our framework can either generate assumption from
scratch or refine it from a coarser one. If a coarse assump-
tion is provided at the beginning, whatever it is true or not,
the speed of getting the final right assumption is higher than
assumption is not provided. Experimental results show that
our framework has the potential to handle large systems.

In this paper, assumption generation largely depends on
the quality of the training set. In addition to the three cases
in Section IV, PAG-GA framework can verify any stochas-
tic systems by providing valid and reliable training set for
assumption generation.

In the future, wewould like to explore symbolic implemen-
tations [32] for our framework in order to increase complete-
ness further. Also, wewill extend our framework for verifying
PCTL over MDP [33].
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