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ABSTRACT The fixed-time cluster synchronization problem for a class of directed community networks
with linear couplings and discontinuous nodes is investigated in this paper. First, by means of reduction
to absurdity and mathematical induction, two new and vital differential equalities are proposed and proved
to study the fixed-time stability. Besides, by designing periodically switching controllers and aperiodically
adaptive switching controllers, as well as using the theory of differential inclusions, some fixed-time cluster
synchronization criteria are derived in which the settling time function is bounded for any initial values.
Finally, the numerical simulations are performed to show the feasibility and effectiveness of the control
methodology by comparing with the corresponding finite-time synchronization problem.

INDEX TERMS Fixed-time synchronization, cluster synchronization, directed community networks,
switching control, differential inclusions.

I. INTRODUCTION
Complex network is a useful modeling tool in understand-
ing the dynamical behaviors of many natural and artificial
systems. A typical feature of many real-world networks is
the community structure, such as social relationship net-
works, scientific cooperation networks, power and traffic
flow networks, wired and wireless communication networks,
and so on. A community network is made up of many
communities, each of them are intra-connected relatively
densely while the interconnections among communities are
relatively sparse [1]. In general, the nodes from differ-
ent communities are governed by different self-dynamics.
The issues of integrating community structures into
complex networks require more complicated analysis. There-
fore, it is interesting and challenging to study the dynam-
ics and control for community networks, which can help
us to have a better understanding of the structure, mod-
eling, dynamical properties and applications for complex
networks.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yilun Shang.

As an important collective behavior, synchronization of
complex networks has been extensively investigated due
to its potential applications in various technological fields.
Recently, many scientific and technical workers have been
joining the study fields with great interest, and vari-
ous interesting results for many kinds of synchronization,
for example, asymptotic synchronization [2], exponential
synchronization [3], lag synchronization [4], projective syn-
chronization [5], cluster synchronization [6], finite-time syn-
chronization [7] and fixed-time synchronization [8], and so
on. Different from asymptotic synchronization and exponen-
tial synchronization, finite-time and fixed-time synchroniza-
tion mean that synchronization can be actualized in finite
time, in which the settling time is dependent on the ini-
tial states or is regardless of the initial states, respectively.
Recently, finite-time or fixed-time synchronization problems
for complex networks have received increasing attentions
due to its faster convergence rate, better robustness against
uncertainties and disturbance rejection properties [9].

On the other hand, due to the complexities of node
dynamics and topological structure, complex networks are
not always able to synchronize by themselves. Therefore,

83306 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-9320-4528


Q. Gan et al.: Fixed-Time Cluster Synchronization of Discontinuous Directed Community Networks

various effective control approaches have been reported
to realize fixed-time synchronization. Especially,
Khanzadeh and Pourghoil [10] studied the fixed-time syn-
chronization of complex dynamical networks with noniden-
tical nodes in the presence of bounded uncertainties and
disturbances by using slidingmode control technique; in [11],
a set of new continuous controller without sign function
was developed to realize the fixed-time synchronization for
a class of complex networks with stochastic perturbations;
Zhang et al. [12] proposed a fixed-time controller for a class
of complex networks with nonidentical nodes and stochastic
noise perturbations by using feedback control; fixed-time
synchronization of multi-links complex networks based on
feedback control was studied in [13]; under the designed
sliding mode controller, the authors in [14] studied the fixed-
time synchronization for semi-Markovian switching complex
dynamical networks with hybrid couplings and time-varying
delays in the presence of disturbances. The controllers for
realizing synchronization can be classified into two cate-
gories, namely, the continuous controllers and discontinuous
ones. The synchronization problems for complex networks
via continuous controllers have been investigated. How-
ever, the existing methods cannot be used to deal with the
fixed-time synchronization problems via periodically or ape-
riodically switching control. Therefore, comparing with con-
tinuous control methods, discontinuous control approaches
which include impulsive control, intermittent control, event-
triggered control and switching control have attracted more
and more interest because these control approaches are
more economic and reduce the amount of the transmitted
information. Compared with rich results for fixed-time syn-
chronization via continuous control, results for fixed-time
synchronization via discontinuous control are much more
scare. As far as we know, the fixed-time synchronization
problem based on switching control for community networks
has not been studied in the literatures and it is interesting to
study this problem both in theory and in applications, so there
exist open room for further improvement.

Furthermore, the cluster synchronization of complex net-
works which refers set of nodes is divided into several clusters
and only nodes belong to the same cluster are synchronized
to a corresponding state, while nodes in different clusters
have different synchronization behaviors. Cluster synchro-
nization is a more practical phenomenon than the complete
synchronization, which is significant in biological science
and communication engineering [15], and so on. Cluster
synchronization of community network with hybrid cou-
pling was discussed via adaptive couplings control scheme
in [16]; by constructing new piecewise continuous auxiliary
functions, Zhou et al. investigated the exponential cluster
synchronization of directed community networks and colored
community networks via adaptive aperiodically intermittent
pinning control in [17] and [18], respectively; the cluster
synchronization problem for a network of subnetwork with
community structure was investigated in [19]; the authors
in [20] proposed a new overlapping community model for

the coupled complex network, and investigated the finite-
time cluster synchronization problem for the addressed com-
munity networks based on adaptive control; the fixed-time
cluster synchronization problem of coupled complex net-
works with uncertain disturbances based on adaptive control
in [21]; in [22], the finite-time and fixed-time cluster syn-
chronization problem for complex networks with or without
pinning control were studied; the authors in [15] investigated
the finite-time cluster synchronization problem for a class of
Markovian switching complex networks with time delay and
stochastic noise perturbations; in [23], the fixed-time cluster
lag synchronization for directed heterogeneous community
networks was investigated via state feedback controllers.

In fact, discontinuous behaviors of dynamical systems can
be found everywhere such as impacting machines, dry fric-
tion, and jump discontinuities in the activation functions of
neural networks [24], [25]. Therefore, the study of discon-
tinuous complex networks is an important step for practical
use. Recently, the investigations of synchronization problems
for discontinuous complex networks have attracted numerous
scientists. The finite-time synchronization of linearly coupled
complex networks with nonidentical nodes was investigated
in [26]; in [27], Yang et al. studied the finite-time cluster syn-
chronization of a class of discontinuous complex networks
with uncertain nonidentical bounded external disturbances,
nonlinear coupling strength and random coupling delays. Up
to now, the existing results on the fixed-time synchronization
mainly focus on complex networks with continuous node
dynamics, and it received little attention to investigate the
fixed-time especially fixed-time cluster synchronization of
community networks with discontinuous dynamical nodes
due to the dynamical complexity for integrating discontinuity
into complex networks and the lack of correlated theoretical
support. In [28], a unified control framework was proposed to
discuss the finite-time and fixed-time synchronization prob-
lems for a class of discontinuous complex networks by only
adjusting the value of a key control parameter; the authors
in [29] studied the finite-time and fixed-time synchronization
of complex networks with discontinuous node via quantized
controllers.

Unfortunately, to the best of our knowledge, there are
seldom results, or even no results concerning the fixed-time
cluster synchronization of directed community networks with
discontinuous nodes via switching control. From the above
discussions, we attempt to study the fixed-time cluster syn-
chronization for a class of directed community networks with
discontinuous nodes. By introducing and proving two new
and important differential inequalities as vital lemmas, this
paper is concerned with fixed-time cluster synchronization
for the addressed complex networks via designing periodi-
cally switching controllers and aperiodically adaptive switch-
ing controllers, respectively. Our results effectually comple-
ment or improve the previously known results.

The organization of this paper is as follows: in Sec. II, prob-
lem statement and preliminaries are presented; in Section III,
the periodically switching control and aperiodically
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adaptive switching control are, respectively, proposed to
ensure fixed-time cluster synchronization of the addressed
directed community networks; numerical simulations will
be given in Section IV to demonstrate the effectiveness and
feasibility of our theoretical results; we end this work with a
conclusion in Section V.

II. MODELING AND PRELIMINARY
Consider a class of directed community networks consisting
of N dynamical nodes and r communities with linearly cou-
plings and discontinuous nodes, which can be described as
follows:

ẋi(t) = Bµixi(t)+ fµi (xi(t))+ c
r∑

k=1

∑
j∈Ck

aij0xj(t), (1)

where i = 1, 2, · · · ,N , k = 1, 2, · · · , r ; Ck represents the
set of all nodes belonging to the kth community; xi(t) =
(xi1(t), xi2(t), · · · , xin(t))T ∈ Rn; define the function µ :
{1, 2, · · · ,N } → {1, 2, · · · , r}, if node j ∈ Ck , then one
has µj = k; Bµi = (bµiij )n×n ∈ Rn; fµi : Rn

→ Rn

is a discontinuous nonlinear vector function; c > 0 is the
coupling strength; 0 = diag(ζ1, ζ2, · · · , ζn) > 0 is the inner
matrix linking the coupled variables; A = (aij)N×N denotes
the topological structure of the complex networks, in which,
aij 6= 0 if there is a connection from node j to node i (i 6= j),
the diagonal elements of A are defined as

aii = −
N∑

j=1,j 6=i

aij, i = 1, 2, · · · ,N .

The initial values of (1) are given as xi(0) = x0 ∈ Rn.
The nodes can be separated into r nonempty communities,
namely,

{1, 2, · · · ,N } = C1 ∪ C2 ∪ · · · Cr , (2)

where C1 = {1, · · · , c1}, C2 = {c1 + 1, · · · , c2}, · · · , Cr =
{cr−1 + 1, · · · ,N }. Therefore, matrix A can be rewritten as

A =


A11 A12 · · · A1r
A21 A22 · · · A2r
...

...
. . .

...

Ar1 Ar2 · · · Arr

 .
Suppose that sµi (t) ∈ Rn is the state vector of an isolated

node which satisfies

ṡµi (t) = Bµisµi (t)+ f (sµi (t)), i = 1, 2, · · · ,N , (3)

with lim
t→+∞

‖sµi (t)− sµj (t)‖ 6= 0 (µi 6= µj). Here, sµi (t) may

be an equilibrium point, a periodic orbit, or a chaotic orbit.
To achieve the fixed-time cluster synchronization, some

suitable controllers ui(t) (i = 1, 2, · · · ,N ) should be
designed onto the network (1).

In order to obtain our main results, the following defini-
tions, assumptions and lemmas are necessary.
Definition 1: The community network (1) is said to achieve

cluster synchronization in fixed time under controllers ui(t)

(i = 1, 2, · · · ,N ), if there exists a fixed settling time
T ∗ which is independent of the initial values, such that
lim
t→T ∗
‖ei(t)‖ = 0 and ‖ei(t)‖ ≡ 0 for t > T ∗, i =

1, 2, · · · ,N , where ei(t) = xi(t)− sµi (t).
In this paper, fµi : Rn

→ Rn (i = 1, 2, · · · ,N ) is a
discontinuous nonlinear vector function describes the node
dynamics. Hence, (1) is a differential equation with discon-
tinuous right-hand side. In this situation, the existence of the
solution of (1) may not be guaranteed. Therefore, we should
investigate the fixed-time cluster synchronization problem of
(1) in the sense of Filippov solution, which is given as follows.
Definition 2: [32] Consider a class of nonlinear dynamical

systems described by

ẋ(t) = f (x(t)), x(0) = x0, t ≥ 0, (4)

with discontinuous right-hand side. Vector function x(t) ∈ Rn

defined on [0, t∗) is said be to a Filippov solution of (4) if it
is absolutely continuous and satisfies differential inclusion:

ẋ(t) ∈ K[f ](x(t)), t ∈ [0, t∗),

where, the set-valued map K[f ](·) : Rn
→ B(Rn) is defined

by

K[f ](x(t)) =
⋂
%>0

⋂
meas(S)=0

c̄o{f (B(x, %)) \ S},

here, B(Rn) denotes the collection of all subsets of Rn, c̄o
represents the convex closure, meas(S) denotes the Lebesgue
measure of set S, B(x, %) is the open ball centered at x with
the radius % > 0.
Assumption 1: For each k = 1, 2, · · · , r , fk is continuous

except on countable set of isolate points tkl , where the right
and the left limits f +k (tkl ) and f

−

k (tkl ) exist. Moreover, fk has
most a finite number of jump discontinuities in every bounded
compact interval of R.

It follows from Definition 2 and Assumption 1 that

K[fk ](xi(t)) = c̄o[fk (xi(t))]

= (c̄o[fk1(xi1(t))], · · · , c̄o[fkn(xin(t))])T ,

where

c̄o[fkl(xkl(t))] = [min{f −kl (xil), f
+

kl (xil)},

max{f −kl (xil), f
+

kl (xil)}],

for l = 1, 2, · · · , n, k = 1, 2, · · · , r , i = 1, 2, · · · ,N .
Assumption 2: For ∀u, v ∈ R, there are two nonnegative

constants Lk and Nk satisfying

(u− v)T (ξk − ηk ) ≤ Lk‖u− v‖ + Nk
n∑
j=1

|uj − vj|,

where ξk ∈ c̄o[fk (u)], ηk ∈ c̄o[fk (v)] for u, v ∈ Rn, k =
1, 2, · · · , r .
Assumption 3: Each block matrix Akl is zero-row-sum-

matrix, k, l = 1, 2, · · · , r .
Remark 1: It is easy to see that the coupling configu-

ration matrix A is not necessary to be identical, symmet-
ric or irreducible, that is, the corresponding graphs can be
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directed, weakly connected and even there is no rooted
spanning directed tree. Furthermore, Assumption 3 means
that the nodes in the same community only have coop-
erative relationships, while nodes belonging to different
communities can have both cooperative and competitive
relationships [17], [30].
Lemma 1: ( [31]) Let ai ≥ 0 (i = 1, 2, · · · , n), 0 < p < 1,

q > 1. Then, the following inequalities hold:
n∑
i=1

api ≥
( n∑
i=1

ai
)p
,

n∑
i=1

aqi ≥ n
1−q

( n∑
i=1

ai
)q
.

Lemma 2: Suppose that functionV (t) is non-negative when
t ∈ [0,+∞) and satisfies the following conditions:{

V̇ (t) ≤ −αV p(t)− βV q(t), t ∈ [mT , (m+ θ )T ),
V̇ (t) ≤ 0, t ∈ [(m+ θ )T , (m+ 1)T ),

(5)

where α, β,T > 0, 0 < p, θ < 1, q > 1, m = 0, 1, 2, · · · .
Then lim

t→Tf
V (t) = 0 and V (t) ≡ 0, if

t ≥ Tf
.
=

1
αθ (1− p)

+
1

βθ (q− 1)
. (6)

Proof: The proof is divided in two cases.
Case 1: Suppose that V (0) ≤ 1. From condition (5), one

has {
V̇ (t) ≤ −αV p(t), t ∈ [mT , (m+ θ )T ),
V̇ (t) ≤ 0, t ∈ [(m+ θ )T , (m+ 1)T ).

(7)

Let Q(t) = H (t)− hM0, where

H (t)=V 1−p(t)+α(1− p)t, M0=V 1−p(0), h > 1, t≥0.

It is easy to see that

Q(0) < 0. (8)

In the following, we will prove that

Q(t) < 0, ∀t ∈ [0, θT ). (9)

If this is not true, by (8) and the continuity of V (t) as t ∈
[0,∞), then there exists a t0 ∈ [0, θT ) such that

Q(t0)=0, Q̇(t)|t=t0>0, Q(t)<0, t ∈ [0, t0). (10)

It follows from (7) that

Q̇(t)|t=t0 = (1− p)V−p(t)V̇ (t)|t=t0 + α(1− p) ≤ 0, (11)

which contradicts (10). Hence, we have

H (t) < hM0, ∀t ∈ [0, θT ). (12)

In the following, we will prove that for t ∈ [θT ,T ),

Q̃(t) = H (t)− hM0 − α(1− p)(t − θT ) < 0. (13)

Otherwise, there exists a t1 ∈ [θT ,T ) such that

Q̃(t1)=0,
˙̃Q(t)|t=t1>0, Q̃(t)<0, t ∈ [θT , t1). (14)

From (12), (13) and the continuity of H (t), it is easy to see
that Q̃(θT ) = H (θT )−hM0 < 0. It follows from (7) and (13)
that

˙̃Q(t)|t=t1 = (1− p)V−p(t1)V̇ (t)|t=t1 + α(1− p)

−α(1− p)

≤ 0,

which contradicts (14). Hence, (15) holds. That is, for t ∈
[θT ,T ),

H (t)<hM0+α(1−p)(t−θT )<hM0+α(1−p)(1−θ )T .

(15)

Similarly, with the same approach, one can prove that: for
t ∈ [T , (1+ θ )T ),

H (t) < hM0 + α(1− p)(1− θ )T ,

and for t ∈ [(1+ θ )T , 2T ),

H (t) < hM0 + α(1− p)(t − 2θT ).

By mathematical induction, we can derive the following
estimations of H (t) for any integer m.
For t ∈ [mT , (m+ θ )T ),

H (t) < hM0 + α(1− p)(1− θ )mT , (16)

and for (t, x) ∈ [(m+ θ )T , (m+ 1)T )×�,

H (t) < hM0 + α(1− p)(t − (m+ 1)θT ). (17)

If t ∈ [mT , (m + θ )T ), we have m ≤ t/T , then it follows
from (16) that

H (t) < hM0 + α(1− p)(1− θ )t. (18)

Similarly, if t ∈ [(m + θ )T , (m + 1)T ), then it follows
from (17) that (18) holds. Hence, for any t ∈ [0,+∞), (18)
always holds. Let h→ 1, from the definition of H (t), we can
get

V 1−p(t) ≤ M0−αθ (1−p)t ≤ 1−αθ (1−p)t, t ∈ [0,+∞).

(19)

Let ϕ(t) = 1 − αθ (1 − p)t . It is easy to see that ϕ(t) is a
strictly decreasing continuous function of t . Set the right side
of the inequality (19) to zero, we can obtain

T1
.
=

1
αθ (1− p)

, (20)

and lim
t→T1

V 1−q(t) = 0. Correspondingly, it follows from (19)

and (20) and the monotonicity of ϕ(t) that lim
t→T1

V (t) = 0 and

V (t) ≡ 0 for all t ≥ T1.
Case 2: Suppose that V (0) > 1. From condition (5), one

has {
V̇ (t) ≤ −βV q(t), t ∈ [mT , (m+ θ )T ),
V̇ (t) ≤ 0, t ∈ [(m+ θ )T , (m+ 1)T ).

(21)
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Let R(t) = S(t)− h̃M̃0, where

S(t) = V 1−q(t)+ β(1− q)t,

M̃0 = V 1−q(0), 0 < h̃ < 1, t ≥ 0.

It is easy to see that

R(0) > 0. (22)

In the following, we will prove that

R(t) > 0, ∀t ∈ [0, θT ). (23)

If this is not true, by (22) and the continuity of V (t) as t ∈
[0,∞), then there exists a t̃0 ∈ [0, θT ) such that

R(t̃0) = 0, Ṙ(t)|t=t̃0 < 0, R(t) > 0, t ∈ [0, t̃0). (24)

It follows from (21) that

Ṙ(t)|t=t̃0 = (1− q)V−q(t)V̇ (t)|t=t̃0 + β(1− q) ≥ 0, (25)

which contradicts (24). Hence, we have

S(t) > h̃M̃0, ∀t ∈ [0, θT ). (26)

In the following, we will prove that for t ∈ [θT ,T ),

R̃(t) = S(t)− h̃M̃0 − β(1− q)(t − θT ) > 0. (27)

Otherwise, there exists a t̃1 ∈ [θT ,T ) such that

R̃(t̃1)=0,
˙̃R(t)|t=t̃1<0, R̃(t)>0, t ∈ [θT , t̃1). (28)

From (26), (27) and the continuity of S(t), it is easy to see
that R̃(θT ) = S(θT ) − h̃M̃0 > 0. It follows from (21) and
(23) that

˙̃R(t)|t=t̃1 = (1− q)V−q(t̃1)V̇ (t)|t=t̃1 + β(1− q)

−β(1− q)

≥ 0,

which contradicts (28). Hence, (27) holds. That is, for t ∈
[θT ,T ),

S(t)> h̃M̃0+β(1−q)(t−θT ) > h̃M̃0 + β(1− q)(1− θ )T .

(29)

Similarly, with the same approach, one can prove that: for
t ∈ [T , (1+ θ )T ),

S(t) > h̃M̃0 + β(1− q)(1− θ )T ,

and for t ∈ [(1+ θ )T , 2T ),

S(t) > h̃M̃0 + β(1− q)(t − 2θT ).

By mathematical induction, we can derive the following
estimations of S(t) for any integer m.
For t ∈ [mT , (m+ θ )T ),

S(t) > h̃M̃0 + β(1− q)(1− θ )mT , (30)

and for (t, x) ∈ [(m+ θ )T , (m+ 1)T )×�,

S(t) > h̃M̃0 + β(1− q)(t − (m+ 1)θT ). (31)

If t ∈ [mT , (m + θ )T ), we have m ≤ t/T , then it follows
from (30) that

S(t) > h̃M̃0 + β(1− q)(1− θ )t. (32)

Similarly, if t ∈ [(m+θ )T , (m+1)T ), then it follows from
(31) that (32) holds. Hence, for any t ∈ [0,+∞), (32) always
holds. Let h̃→ 1, from the definition of S(t), we can get

V 1−q(t)≥M̃0 − βθ (1−q)t≥βθ (q−1)t, t ∈ [0,+∞),

(33)

which implies that

V q−1(t) ≤
1

βθ (q− 1)t
, t ∈ [0,+∞). (34)

Let ϕ̃(t) = 1/βθ (q − 1)t . It is easy to see that ϕ̃(t) is a
strictly decreasing continuous function of t . Set the right side
of the inequality (33) to one, we can get

T2
.
=

1
βθ (q− 1)

, (35)

and lim
t→T2

V q−1(t) = 1. Correspondingly, it follows from (34),

(35) and the monotonicity of ϕ̃(t) that lim
t→T2

V (t) = 1 and

V (t) ≤ 1 for all t ≥ T2.
Applying the result obtained in Case 1, for any V (0) ∈ R,

we can derive that lim
t→Tf

V (t) = 0 and V (t) ≡ 0 for all t ≥ Tf .

This completes the proof. �
Similar to the proof of Lemma 2, the following lemma can

be given directly.
Lemma 3: Suppose that functionV (t) is non-negative when

t ∈ [0,+∞) and satisfies the following conditions:{
V̇ (t) ≤ −αV p(t)− βV q(t), t ∈ [tm, sm),
V̇ (t) ≤ 0, t ∈ [sm, tm+1),

(36)

where α, β > 0, 0 < p < 1, q > 1, m = 1, 2, · · · , t1 = 0.
Then lim

t→T ∗f
V (t) = 0 and V (t) ≡ 0, if

t ≥ T ∗f
.
=

1
α(1− ϑ)(1− p)

+
1

β(1− ϑ)(q− 1)
,

where ϑ = limt→+∞ sup tm+1−sm
tm+1−tm

.

III. MAIN RESULTS
In this section, we will discuss the fixed-time cluster synchro-
nization problem for the directed community networks with
linearly couplings and discontinuous nodes under periodi-
cally switching control and aperiodically adaptive switching
control, respectively. The main results are stated as follows.
Theorem 1: Suppose that Assumptions 1-3 hold. The

directed community network (1) can achieve fixed-time clus-
ter synchronization under the periodically switching con-
trollers:

ui(t) =


−diei(t)− γ sign(ei(t))− αe

p
i (t)− βe

q
i (t),

mT ≤ t < (m+ θ )T ,
−diei(t)− γ sign(ei(t)),
(m+ θ )T ≤ t < (m+ 1)T ,

(37)
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if the following conditions hold:

B̃+ cζ Ã+ L − D ≤ 0, l = 1, 2, · · · , n,

Nk − γ ≤ 0, k = 1, 2, · · · , r, (38)

where L = diag(L̃1, · · · , L̃r ), L̃k = diag(Lck−1+1, · · · ,Lck )
(k = 1, · · · , r), D = diag(d1, · · · , dN ), ζ = ‖0‖, B̃ =
diag(B1,B2, · · · ,Br ), Ã = (ãij)N×N , ãij = aij for i 6=
j, ãii = ζminaii/ζ , ζmin is the minimum eigenvalue of 0;
m = 0, 1, 2, · · · , 0 < p < 1, q > 1, α, β, γ and di
(i = 1, 2, · · · ,N ) are positive constants denoting the control
strengths; T > 0 denotes the control period, 0 < θ ≤ 1 is the
ratio of the control width to the control period called control
rate. Moreover, the fixed settling time Tf can be estimated by

Tf ≤
1

2
1+p
2 αθ (1− p)

+
1

2
1+q
2 (Nn)

q−1
2 βθ (q− 1)

. (39)

Proof: Construct the following Lyapunov function

V (e(t)) =
1
2

r∑
k=1

∑
i∈Ck

eTi (t)ei(t). (40)

When mT ≤ t < (m + θ )T (m = 0, 1, 2, · · · ), it follows
from the theory of differential inclusion [32], [33] that

ẋi(t) ∈ Bµixi(t)+ c̄o[fµi (xi(t))]+ c
r∑

k=1

∑
j∈Ck

aij0xj(t)

−diei(t)− γSIGN(ei(t))− αe
p
i (t)− βe

q
i (t), (41)

and

ṡµi (t) ∈ Bµisµi (t)+ c̄o[fµi (sµi (t))], (42)

where c̄o[fµi (xi(t))] = (c̄o[fµi,1(xi(t))], · · · c̄o[fµi,n(xi(t))])
T ,

c̄o[fµi (sµi (t))] = (c̄o[fµi,1(sµi (t))], · · · c̄o[fµi,n(sµi (t))])
T and

SIGN(ei(t)) = (SIGN(ei1(t)), · · · ,SIGN(ein(t)))T with

SIGN(x) =

−1, x < 0,
[− 1, 1], x = 0,
1, x > 0.

By the measurable selection theorem [32], [33], there
exist measurable functions ϕµi (t) ∈ c̄o[fµi (xi(t))], ϕ̃µi (t) ∈
c̄o[fµi (sµi (t))] and ωi(t) ∈ SIGN(ei(t)) such that

ẋi(t) = Bµixi(t)+ ϕµi (t)+ c
r∑

k=1

∑
j∈Ck

aij0xj(t)

−diei(t)− γωi(t)− αe
p
i (t)− βe

q
i (t),

ṡµi (t) = Bµisµi (t)+ ϕ̃µi (t). (43)

According to Assumption 3, we know that
∑
j∈Ck

aij0sk (t) =

0. Based on (43), it is easy to see that

ėi(t) = Bµiei(t)+ ϕµi (t)− ϕ̃µi (t)+ c
r∑

k=1

∑
j∈Ck

aij0ej(t)

−diei(t)− γωi(t)− αe
p
i (t)− βe

q
i (t). (44)

Taking the derivative of V (e(t)) with respect to time t along
the solutions of (44), we can get

V̇ (e(t)) =
N∑
i=1

eTi (t)
(
Bµiei(t)+ ϕµi (t)− ϕ̃µi (t)

+c
N∑
j=1

aij0ej(t)− diei(t)− γωi(t)

−αepi (t)− βe
q
i (t)

)
. (45)

It is easy to see that

c
N∑
i=1

N∑
j=1

aijeTi (t)0ej(t) ≤ c
N∑

i,j=1,j 6=i

ζaij‖ei(t)‖‖ej(t)‖

+

N∑
i=1

ζminaiieTi (t)ei(t)

= cζ ẽT (t)Ãẽ(t), (46)

where ẽ(t) = (‖e1(t)‖, ‖e2(t)‖), · · · , ‖eN (t)‖)T .
It follows from Assumption 2 that

N∑
i=1

eTi (t)(ϕµi (t)− ϕ̃µi (t))

≤

N∑
i=1

Lµi‖ei(t)‖
2
+

N∑
i=1

n∑
j=1

Nµi |eij(t)|

= ẽT (t)Lẽ(t)+
r∑

k=1

ck∑
i=ck−1+1

n∑
l=1

Nk |eil(t)|, (47)

which implies that
N∑
i=1

eTi (t)
(
Bµiei(t)+ ϕµi (t)− ϕ̃µi (t)

+c
N∑
j=1

aij0ej(t)− diei(t)− γωi(t)
)

≤ ẽT (t)(B̃+ cζ Ã+ L − D)ẽ(t)

+

r∑
k=1

ck∑
i=ck−1+1

n∑
l=1

(Nk − γ )|eil(t)|

≤ ẽT (t)(B̃+ cζ Ã+ L − D)ẽ(t). (48)

From Lemma 1, we have

−α

N∑
i=1

eTi (t)e
p
i (t) = −α

N∑
i=1

n∑
l=1

e1+pil (t)

≤ −α
( N∑
i=1

eTi (t)ei(t)
) 1+p

2
, (49)

and

−β

N∑
i=1

eTi (t)e
q
i (t) = −β

N∑
i=1

n∑
l=1

e1+qil (t)

≤ −β(Nn)
1−q
2

( N∑
i=1

eTi (t)ei(t)
) 1+q

2
. (50)
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Substituting (46)-(50) to (45), for mT ≤ t < (m + θ )T
(m = 0, 1, 2, · · · ), we obtain

V̇ (e(t)) ≤ ẽT (t)(B̃+ cζ Ã+ L − D)ẽ(t)

−2
1+p
2 αV

1+p
2 (e(t))

−2
1+q
2 β(Nn)

1−q
2 V

1+q
2 (e(t))

≤ −2
1+p
2 αV

1+p
2 (e(t))

−2
1+q
2 β(Nn)

1−q
2 V

1+q
2 (e(t)). (51)

Similarly, for (m+ θ )T ≤ t < (1+ θ )T (m = 0, 1, 2, · · · ),
we have

V̇ (e(t)) ≤ ẽT (t)(B̃+ cζ Ã+ L − D)ẽ(t) ≤ 0. (52)

From Lemma 2, the community network (1) under con-
trollers (37) is said to achieve cluster synchronization in fixed
time.

The proof of Theorem 1 is completed. �
Remark 2: Note that the dynamic behaviors of the nodes

in community network (1) is discontinuous, which are dif-
ferent from the continuous dynamics of traditional commu-
nity networks in [16]–[19]. In addition, although the fixed-
time cluster synchronization (see [22], [23] and references
therein) and the leader-follower fixed-time group consen-
sus control of multi-agent systems (see [34] and references
therein) have been intensively studied. However, the existing
methods cannot be used to deal with the fixed-time cluster
synchronization problems via periodically or aperiodically
switching control. In this paper, it is the first time to establish
the fixed-time cluster synchronization criteria for directed
community networks with discontinuous nodes by designing
periodically or aperiodically switching controllers. Hence,
our results are more general and they effectually comple-
ment or improve the previously known results.
Remark 3: When θ = 1, the periodically switching con-

trol (37) becomes the common feedback control. Based on
Theorem 1, the following result can be obtained easily.
Corollary 1: Suppose that Assumptions 1-3 hold. The

directed community network (1) can achieve fixed-time clus-
ter synchronization under the feedback controllers:

ui(t) = −diei(t)− γSIGN(ei(t))− αe
p
i (t)− βe

q
i (t), (53)

if the following conditions hold:

B̃+ cζ Ã+ L − D ≤ 0, l = 1, 2, · · · , n,

Nk − γ ≤ 0, k = 1, 2, · · · , r, (54)

where L = diag(L̃1, · · · , L̃r ), L̃k = diag(Lck−1+1, · · · ,Lck )
(k = 1, · · · , r), D = diag(d1, · · · , dN ), ζ = ‖0‖, B̃ =
diag(B1,B2, · · · ,Br ), Ã = (ãij)N×N , ãij = aij for i 6=
j, ãii = ζminaii/ζ , ζmin is the minimum eigenvalue of 0;
m = 0, 1, 2, · · · , 0 < p < 1, q > 1, α, β, γ and
di (i = 1, 2, · · · ,N ) are positive constants denoting the
control strengths. Moreover, the fixed settling time T̃f can be
estimated by

T̃f ≤
1

2
1+p
2 α(1− p)

+
1

2
1+q
2 (Nn)

q−1
2 β(q− 1)

. (55)

Remark 4: Each part of (37) has the unique contribution
for fixed-time cluster synchronization. The discontinuous
dynamics and coupled configuration are compensated by the
terms −diei(t) and −γ sign(ei(t)); the term −αepi (t) plays a
key role for fixed-time synchronization when V (t) > 1, while
the term−βeqi (t) plays a key role for fixed-time synchroniza-
tion when V (t) ≤ 1. Let β = 0, the results for finite-time
cluster synchronization of directed community networks with
discontinuous nodes based on periodically switching control
can be derived as:
Corollary 2: Suppose that Assumptions 1-3 hold. The

directed community network (1) can achieve finite-time
cluster synchronization under the periodically switching
controllers:

ui(t) =


−diei(t)− γ sign(ei(t))− αe

p
i (t),

mT ≤ t < (m+ θ )T ,
−diei(t)− γ sign(ei(t)),
(m+ θ )T ≤ t < (m+ 1)T ,

(56)

if the following conditions hold:

B̃+ cζ Ã+ L − D ≤ 0, l = 1, 2, · · · , n,

Nk − γ ≤ 0, k = 1, 2, · · · , r, (57)

where L = diag(L̃1, · · · , L̃r ), L̃k = diag(Lck−1+1, · · · ,Lck )
(k = 1, · · · , r), D = diag(d1, · · · , dN ), ζ = ‖0‖, B̃ =
diag(B1,B2, · · · ,Br ), Ã = (ãij)N×N , ãij = aij for i 6= j,
ãii = ζminaii/ζ , ζmin is the minimum eigenvalue of 0; m =
0, 1, 2, · · · , 0 < p < 1, α, γ and di (i = 1, 2, · · · ,N )
are positive constants denoting the control strengths; T > 0
denotes the control period, 0 < θ ≤ 1 is the ratio of
the control width to the control period called control rate.
Moreover, the settling time Ts can be estimated by

Ts ≤
V 1−p(0)

2
1+p
2 αθ (1− p)

. (58)

It is easy to see that, the control gains in (37) are fixed.
However, they usually give much larger feedback strengths
than those needed in practice, which means a kind of waste
in practice. A better way is a to use adaptive method to tune
the feedback strengths. On the other hand, the limitation of
periodicity for the switching control is quite restricted and
may not be realistic in many real applications. Therefore,
in the following, we will propose the results for fixed-time
cluster synchronization of directed community networks with
discontinuous nodes based on aperiodically adaptive switch-
ing control.
Theorem 2: Suppose that Assumptions 1-3 hold. The

directed community network (1) can achieve fixed-time clus-
ter synchronization under the aperiodically adaptive switch-
ing controllers:

ui(t) =


−di(t)ei(t)− γi(t)sign(ei(t))− αe

p
i (t)

−βeqi (t), tm ≤ t < sm,
−di(t)ei(t)− γi(t)sign(ei(t)),
sm ≤ t < tm+1,

(59)
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where m = 1, 2, · · · , t1 = 0, 0 < p < 1, q > 1, α, β > 0;
the feedback strengths di(t) and γi(t) are adapted according
to the following update laws:

ḋi(t) = λieTi (t)ei(t), (60)

γ̇i(t) = εisign(ei(t)), (61)

respectively, where λi and εi are arbitrary positive constants.
Moreover, the fixed settling time T ∗f can be estimated by

T ∗f ≤
1

2
1+p
2 αϑ(1− p)

+
1

2
1+q
2 (Nn)

q−1
2 βϑ(q− 1)

, (62)

where ϑ = lim
t→+∞

sup tm+1−sm
tm+1−tm

.

Proof: Construct the following Lyapunov function

V (e(t)) =
1
2

r∑
k=1

∑
i∈Ck

eTi (t)ei(t)+
1
2

N∑
i=1

1
λi
(di(t)− d∗)2

+
1
2

N∑
i=1

1
εi
(γi(t)− γ ∗)2, (63)

where d∗ and γ ∗ is the positive constants to be determined
below.

By using a similar argument as the proof of Theorem 1,
it can be shown that, for tm ≤ t < sm (m = 1, 2, · · · ),

V̇ (e(t)) ≤ ẽT (t)(B̃+ cζ Ã+ L − D(t))ẽ(t)

+

r∑
k=1

ck∑
i=ck−1+1

n∑
l=1

Nk |eil(t)|

−

N∑
i=1

γi(t)sign(ei(t))− 2
1+p
2 αV

1+p
2 (e(t))

−2
1+q
2 β(Nn)

1−q
2 V

1+q
2 (e(t))

+

N∑
i=1

eTi (t)(di(t)− d
∗
i )ei(t)

+

N∑
i=1

(γi(t)− γ ∗i )sign(ei(t))

≤ ẽT (t)(B̃+ cζ Ã+ L − d∗IN )ẽ(t)

+

r∑
k=1

ck∑
i=ck−1+1

n∑
l=1

(Nk − γ ∗)|eil(t)|

−2
1+p
2 αV

1+p
2 (e(t))

−2
1+q
2 β(Nn)

1−q
2 V

1+q
2 (e(t)), (64)

where D(t) = diag(d1(t), · · · , dN (t)).
Let γ ∗ = max1≤k≤r {Nk}, d∗ = λmax(B̃+ cζ Ã+L), where

λmax(·) is the maximum eigenvalue of matrix, we have

V (e(t)) ≤ −2
1+p
2 αV

1+p
2 (e(t))

−2
1+q
2 β(Nn)

1−q
2 V

1+q
2 (e(t)), (65)

for tm ≤ t < sm (m = 1, 2, · · · ).

FIGURE 1. A directed community network with 3 clusters consisting of 8
nodes.

Similarly, for sm ≤ t < tm+1 (m = 1, 2, · · · ), we get

V̇ (e(t)) ≤ 0. (66)

From Lemma 3, the community network (1) under con-
trollers (59) is said to achieve cluster synchronization in fixed
time. This completes the proof. �

IV. NUMERICAL SIMULATIONS
In this section, in order to illustrate the effectiveness of
the proposed methods in fixed-time cluster synchronization
obtained above, we consider a directed community network
of 8 dynamical nodes with 3 communities C1 = {1, 2, 3},
C2 = {4, 5, 6}, C3 = {7, 8}. Fig. 1 shows the topological
structure of the proposed directed community network.

The node dynamics of the 3 communities are, respectively,
chosen as discontinuous Chen system [35], Chua circuit [17],
[26] and cellular neural networks [28]:

ṡ1(t) = B1s1(t)+ f1(s1(t)), (67)

ṡ2(t) = B2s2(t)+ f2(s2(t)), (68)

ṡ3(t) = B3s3(t)+ f3(s3(t)), (69)

where si(t) = (si1(t), si2(t), si3(t))T ∈ R3 (i =

1, 2, 3), f1(s1(t)) = (0, sign(s11)(5.82 − s13), sign(s12)s11)T ,
f2(s2(t)) = (3.86sign(s21), 0, 0)T , f3(s3(t)) = G(g(s31(t)),
g(s32(t)), g(s33(t)))T and

g(v) =

{
0.5(|v+ 1| − |v− 1|)− 0.002, v ≤ 0,
0.5(|v+ 1| − |v− 1|)+ 0.001, v > 0,

G =

 1.25 −3.2 −3.2
−3.2 1.1 −4.4
−3.2 4.4 1

 ,
B1 =

−1.18 1.18 0
0 0.7 0
0 0 −0.168

 ,
B2 =

−2.57 9 0
1 −1 1
0 −17 0

 ,
B3 = −I2.
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FIGURE 2. Chaotic trajectories of discontinuous Chen system, Chua circuit
and cellular neural networks, respectively.

By simple computation, it is easy to know L1 = 0.5, N1 =

36.0078, L2 = 0, N2 = 3.72, L3 = 7, N3 = 0.0364.
Fig. 2 presents the chaotic trajectories of (67)-(69) with initial
values s1(0) = (0.6, 0.25, 8)T , s2(0) = (0.5, 0.3, 1)T and
s3(0) = (0.1, 0.1, 0.1)T , respectively.

For brevity, taking the coupling strength and inner connect-
ing matrix as c = 1 and 0 = I3, respectively. The outer
connecting matrix A is given by:

A =



−1 1 0 −1 0 1 0 0
1 −2 1 0 0 0 −1 1
0 1 −1 0 0 0 0 0
0 0 0 −1 1 0 −1 1
−1 1 0 1 −2 1 0 0
0 0 0 1 1 −2 0 0
0 0 0 −1 0 1 −1 1
0 0 0 0 0 0 1 −1


.

Choosing α = 5, β = 10, T = 0.2, θ = 0.8, γ = 36.0078,
di = 6.10 (i = 1, 2, · · · , 8), p = 0.5 and q = 1.5
in the controller (37). The above parameters are substituted
into the conditions (38), which are met after calculating.

FIGURE 3. Trajectories of the synchronization error for cluster 1 under
controllers (37).

FIGURE 4. Trajectories of the synchronization error for cluster 2 under
controllers (37).

FIGURE 5. Trajectories of the synchronization error for cluster 3 under
controllers (37).

From Theorem 1, the community network (1) can achieve
cluster synchronization in fixed time under the periodically
switching control (37) as shown in Figs. 3-8, and the settling
time can be estimated as Tf ≤ 0.3448.
It is shown from inequality (39) that the periodically

switching control rate θ heavily influences the estimating for
the upper bound of the convergence time of synchronization
state. Figs. 9-11 show that the larger periodically switching
control rate is, the faster the convergence rate of network can
be obtained.

When θ = 1, the periodically switching controllers (37)
become the common feedback controllers. As shown in the
Figs. 12-14, the community network (1) can achieve cluster
synchronization in fixed time under the feedback controllers
(53) and we obtain that the settling time satisfies T̃f ≤ 0.2758
by primitive calculation.
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FIGURE 6. Trajectories of the synchronization error between clusters
1 and 2 under controllers (37).

FIGURE 7. Trajectories of the synchronization error between clusters
1 and 3 under controllers (37).

FIGURE 8. Trajectories of the synchronization error between clusters
2 and 3 under controllers (37).

FIGURE 9. Trajectories of the synchronization error for cluster 1 with
different control rates.

Comparing with the corresponding finite-time synchro-
nization, fixed-time synchronization can be achieved in a
settling time, which is bounded and independent of the

FIGURE 10. Trajectories of the synchronization error for cluster 2 with
different control rates.

FIGURE 11. Trajectories of the synchronization error for cluster 3 with
different control rates.

FIGURE 12. Trajectories of the synchronization error for cluster 1 under
controllers (53).

FIGURE 13. Trajectories of the synchronization error for cluster 2 under
controllers (53).

initial states. Figs. 15-17 shows the comparisons of finite-
time cluster synchronization and fixed-time cluster syn-
chronization, which proved that the convergence rate of
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FIGURE 14. Trajectories of the synchronization error for cluster 3 under
controllers (53).

FIGURE 15. Trajectories of the synchronization error for cluster 1 under
controllers (37) and (56), respectively.

FIGURE 16. Trajectories of the synchronization error for cluster 2 under
controllers (37) and (56), respectively.

FIGURE 17. Trajectories of the synchronization error for cluster 3 under
controllers (37) and (56), respectively.

fixed-time cluster synchronization (Tf ≤ 0.3448) is
faster than the rate of finite-time cluster synchronization
(Ts ≤ 1.7052). Therefore, compare with finite-time control

FIGURE 18. Trajectories of the synchronization error for cluster 1 under
the aperiodically adaptive switching control (59).

FIGURE 19. Trajectories of the synchronization error for cluster 2 under
the aperiodically adaptive switching control (59).

FIGURE 20. Trajectories of the synchronization error for cluster 3 under
the aperiodically adaptive switching control (59).

strategy, fixed-time control scheme shows more effectiveness
and superiority.

As we all know, the aperiodically switching controller
is more comprehensive and practical than the periodically
switching controller in the authentic application. Therefore,
the fixed-time cluster synchronization by the aperiodically
adaptive switching controllers will be given and time intervals
of intermittent controllers as follows:

[0, 3] ∪ [3.2, 6.4] ∪ [6.5, 9.6] ∪ [9.8, 12.8] ∪ [13, 16]

[16.2, 19.2] ∪ [19.5, 22.6] ∪ [22.8, 25.8] ∪ · · · .

By the computing, we acquire ϑ = 0.5 and the settling
time satisfies T ∗f ≤ 0.5517. From Theorem 2, the community
network (1) can achieve cluster synchronization in fixed time
under the aperiodically adaptive switching control (59) as
shown in Figs. 18-20.
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V. CONCLUSION
In this paper, we have studied the fixed-time cluster synchro-
nization problem for a class of directed community networks
with discontinuous nodes. By designing periodically switch-
ing control or aperiodically adaptive switching control, and
utilizing the theory of differential inclusions, some fixed-time
cluster synchronization criteria have been derived in which
the settling time function is bounded for any initial values.
Some remarks and numerical simulations have been used to
demonstrate the effectiveness of the obtained results. In fact,
time delays are widely existed in community networks. The
integrating of internal delay and coupling delay into com-
munity networks make them more realistic by allowing to
describe the effects of the finite speeds and spreading as well
as traffic congestion for nodes’ behaviors and transmission
exchange of information between nodes, respectively. There-
fore, this is an interesting problem and will become our future
investigative direction.
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