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ABSTRACT A novel deep architecture, the sparse deep tensor extreme learning machine (SDT-ELM),
is presented as a tool for pattern classification. In extending the original ELM, the proposed SDT-ELM
gains the theoretical advantage of effectively reducing the number of hidden-layer parameters by using
tensor operations, and using a weight tensor to incorporate higher-order statistics of the hidden feature.
In addition, the SDT-ELM gains the implementation advantage of enabling the random hidden nodes to be
added block by block, with all blocks having the same hidden layer configuration. Moreover, an SDT-ELM
without randomness can also achieve better learning accuracy. Extensive experiments with three widely used
classification datasets demonstrate that the proposed algorithm achieves better generalization performance.

INDEX TERMS Extreme learning machine, deep learning, tensor, stacking, pattern classification.

I. INTRODUCTION
The extreme learning machine (ELM) has become an effec-
tive and efficient machine-learning technique in recent years,
requiring the use of neither a back-propagation algorithm
nor iterative techniques [1], [2]. It has been proved theo-
retically that single hidden layer feedforward networks with
arbitrary hidden parameters and a continuous active function
can universally approximate any continuous function. From
an application perspective, the ELM has shown excellent
generalization performance in various applications, includ-
ing face classification, human action recognition and image
segmentation. However, the ELM suffers from two major
drawbacks [3]. First, the accuracy of the ELM is dramati-
cally influenced by the number of hidden neurons. An excel-
lently performing ELMmodel can easily contain hundreds or
even thousands of hidden neurons for a practical application.
Second, feature learning using an ELM may not be effective.

To address the first of these drawbacks, current approaches
to finding the optimal number of hidden neurons are mainly
based on incremental learning methodologies that aim to
minimize the training error. Their weakness is that there
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might be many hidden neurons selected in the trained model
following the minimization of the training error in ranking
neurons, which will result in a high computational cost.

A variety of autoencoders (AEs) with different regular
constraints based on the ELM have been proposed to address
the second drawback. Furthermore, inspired by the deep
stacked autoencoder network (DSAE) [4], [5], the hierar-
chical extreme learning machine (H-ELM) has been pro-
posed [3]. Unlike the greedy layerwise training of the DSAE,
H-ELM can achieve better generalization performance with-
out requiring parameter fine-tuning of the entire system.
However, the H-ELM encounters the same problems as the
ELM. That is, for high generalization performance, large
numbers of hidden nodes are used. The broad learning sys-
tem (BLS) [6] has similar advantages to the ELM, in that
incremental learning can rapidly update and remodel the
system. However, the accuracy of the BLS is also drastically
influenced by the number of neurons in the last hidden layer.

In recent years, DSAEs [7] and deep stacking net-
work (DSN) [8], [9] have been trained by using layerwise
learning and fine-tuning mechanisms [10], [11], which can
improve efficiency and performance. However, for DSAEs,
the AE uses an unsupervised-learning paradigm, which does
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FIGURE 1. Left: Traditional feed-forward mode. Right: Feed-forward mode
with tensor operations.

not utilize the category-prior information of the samples. For
the DSN, each block can output an estimate of the final label
class, and this estimate is concatenated with the input to
form an augmented input for the next block. However, DSNs
do not aim to discover transformed feature representations.
Besides, the DSN is a scalable deep architecture amenable to
parallel weight learning, which can be trained in a supervised,
block-wise fashion, without the need for back-propagation
over all blocks. Because the original input is retained for each
higher block in the DSN, it is guaranteed to perform with
better accuracy on the training set than the previous block.

To preserve the original data format and their respective
correlations and to achieve more-compact representations,
tensor operations are embedded into the DSN [9]. Building on
this, the new deep architecture presented in this paper, which
we call the sparse deep tensor extreme learning machine
(SDT-ELM), improves and extends the DSN architecture in
two significant ways. First, the linear and non-linear layers
inherited from ELM makes the stacking up of deeper lay-
ers both simple and easy to implement. Second, the tensor
operations can effectively reduce the number of hidden-layer
parameters, as shown in Fig. 1. That is, if we assume s ,
s1 · s2, we have h = h1 ⊗ h2 ∈ Rs, where ‘⊗’ denote
the tensor operation. Clearly, from x to h, we will have
m · s parameters in the traditional feed-forward mode, and
m·(s1+s2) parameters for the feed-forwardmode using tensor
operations. In general, if s is relatively large, we will have
(s1 + s2) < s. Extensive experiments on various widely used
classification data sets show that the proposed SDT-ELM
can achieve better and faster convergence than the existing
state-of-the-art deep stacking learningmethods. Furthermore,
The motivation of extensive practical use of the theoretical
results presented SDT-ELMmainly lies in the fact that tensors
can maintain the structural information contained in data,
and this advantage makes tensors have great potential in the
high-dimensional data processing.

This paper is organized as follows. Section 2 intro-
duces the related works, including the fundamental ideas
and capabilities of ELM and the framework of DSN.
Section 3 describes the SDT-ELM and gives details of its
proposed algorithm. Section 4 presents our experimental
results, comparing the performance of various deep sys-
tems. Finally, a discussion and our conclusions are given in
Section 5.

FIGURE 2. ELM: Single-hidden-layer feed-forward network.

II. RELATED WORK
To facilitate the understanding of the proposed the algorithm,
we first review the related theory of the ELM and the frame-
work of DSN.

A. ELM: A REVIEW
An ELM is a unified framework for a broad type of gen-
eralized single-hidden-layer feedforward networks (SLFN).
It randomly chooses hidden-node parameters and analytically
determines the output weights [1].

For an ELM (see Fig. 2), we have the mathematical model,{
h = σ (xW + b)
y = hβ,

(1)

where W and b are randomly chosen parameters, β is the
parameter to be learned, and the activation function σ (·) used
in classical ELM is a simple sigmoid function or a infinitely
differentiable function. The hidden-layer output vector h can
remain unchanged after random values have been assigned to
these parameters at the beginning of the learning process. For
N arbitrary distinct samples {xn, yn}, where xn ∈ R1×m and
yn ∈ R1×c, we have{

H = σ (XW + b)
Y = Hβ,

(2)

where X ∈ RN×m and Y ∈ RN×c are matrices composed
of sample sets

{
xn, yn

}
, n = 1, 2, · · · ,N , the weights W ∈

Rm×s,β ∈ Rs×c, and the bias b ∈ R, where s is the number
of hidden nodes. The optimization objective function is

min
β
‖Y − Hβ‖2F + λ ‖β‖

2
F . (3)

The smallest-norm least-squares solution of Eq. (2) is

β = H†Y = (HTH + λI)−1HTY , (4)

where H† is the Moore–Penrose generalized inverse [12] of
the matrix H , which is called the hidden-layer output matrix.
In theory, an ELM tends to provide good generalization per-
formance at an extremely fast learning speed.

At present, some mathematical theorems prove [13], [14]
that randomly generated networks with the outputs being
solved by least mean square is able to preserve the universal
approximation capability, if and only if the activation function
is non-constant piecewise and linear span of radial basis func-
tion with this activation function is dense in L2(R). Further,
with the continuous development of research, more and more
scientific research workers develop many improved networks
based on ELM. Amore detailed overview of the current ELM
architecture (but not limited to) is shown in TABLE.1.

As can be seen from TABLE.1, with the continuous pop-
ularization of research on deep network architecture, people
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TABLE 1. The overview of the current ELM architecture.

FIGURE 3. DSN: Deep stacking network.

are gradually inclined to combine ELM with deep mode to
construct many new models with excellent generalization
performance suitable for the pattern recognition task.

B. THE FRAMEWORK OF DSN
Different from the classical deep stacked autoencoder net-
work, DSN architecture adopts the hierarchical stack form of
supervised learning, that is, each module of the DSN network
can effectively estimate the output label. Its network structure
is shown in Fig. 3.

For the first module, the input is x1 , x, then the output of
the module is

y1 = UT
1 σ (W

T
1 x1) (5)

where W1 and U1 are the parameters to be learned in this
module, respectively; and σ is the activation function usually
takes the sigmoid function. y1 is the approximation of the first
module to the output label or target y.

For the second module, its input is x2 , [x1, y1], then the
output of this module is

y2 = UT
2 σ (W

T
2 x2) (6)

whereW2 andU2 are also the parameters to be learned in this
module, respectively; and σ is the activation function. y2 is
also the approximation of the first module to the output label
or target y. Similarly, we can build a deep stacking network
for a given number of layers in this way.

How do we optimize these parameters in each module?
Without loss of generality, we give the parameter optimiza-
tion method of the first module. Suppose the training sets in
the form of a matrix is X , and the corresponding output label
is denoted by Y . According to the Eq. (5) of the first module,
we have the following optimization objective function,

min
W ,U

J ,
∥∥∥Y − UTH

∥∥∥
F
=

∥∥∥Y − UTσ (W TX )
∥∥∥
F

(7)

where H , σ (W TX ). The parameters are optimized by
alternating iterations as follows. 1) when W is fixed, and H
is known, then the parameter U can be given by the solution
in the closed form,

U = H†Y T (8)

where H† is the Moore–Penrose generalized inverse of the
matrix H . 2) when U is fixed, the parameter W is given in
the following iterative way,

W (k+1)
= W (k)

− α
∂J
∂W
|W=W (k) (9)

where α is the learning rate and k is the number of iterations.
In particular,

∂J
∂W
=

∂Tr
[
(UTH − Y )(UTH − Y )T

]
∂W

=

∂Tr
[
YY T − YHT (HHT )−1HY T

]
∂W

= 2X
[
HT
◦ (1− H )TV

]
(10)

where V , [H†(HY T )(YH†) − Y T (YH†)]. By alternately
optimizing and updating the parameters, we can solve the
parameters U and W in the first module. The parameters of
other modules can be solved similarly. Different from DSAE,
DSN does not need to carry out error back propagation adjust-
ment on all modules, but only needs to update parameters on
each module.
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FIGURE 4. ST-ELM architecture.

III. SDT-ELM
In this section, we provide an overview of the SDT-ELM
architecture and describe its fundamental properties. First,
we design a shallow-architecture sparse tensor extreme learn-
ing machine (ST-ELM), in which sparsity is mainly reflected
in the setting of the weight matrix and the active function.
We extend this design to the SDT-ELM by stacking ST-ELM
modules, for which the main parameter-estimation burden is
shifted to a convex sub-problem with a closed-form solution
for the ST-ELM.

A. ST-ELM
The structure of the proposed ST-ELM (see Fig. 4) is based
on the original ELM. In an ST-ELM, the mathematical mod-
elling from input x ∈ R1×m to output y ∈ R1×c is given by

hi = σi(xW i + bi) ∈ R1×si ,

h = h1 ⊗ h2 ⊗ · · ·⊗ hP ∈ R1×s,

y = hβ ∈ R1×c,

(11)

where, for i = 1, 2, · · · ,P, W i ∈ Rm×si , and bi ∈ R1×si are
randomly chosen parameters, and σi(·) is the active function
usually takes the sigmoid function. ‘⊗’ denotes the Kro-
necker tensor product and s ,

∏P
i=1 si. β ∈ Rs×c is the

parameter to be learned. Note that W i and bi are randomly
assigned with the sparsity degree of ρ (0 < ρ ≤ 1), giving

Sparsity (Wi) ,
‖Wi‖0

m× si
= ρ,

Sparsity (bi) ,
‖bi‖0
si
= ρ,

(12)

where ‖·‖0 represents the number of zero elements in amatrix
or vector.

For the training samples {xn, yn} (n = 1, 2, · · · ,N ),
we have


Hi = σi(XW i + bi) ∈ RN×si ,

H = H1 � H2 � · · ·� HP ∈ RN×s,

Y = Hβ ∈ R1×c,

(13)

where the ‘�’ operation is the Khatri-Rao product, which
produces a columnwise Kronecker product [32].

We solve for the parameter β by using Eq.(3) and Eq.(4).
Without loss of generality, the ST-ELM algorithm reverts to
the classical ELM with respect to sparsity when satisfying
si = s and sj = 1(j 6= i). To summarize, we have

a generalization from the mapping of Rs
→ Rc in the

ELM to the mapping of Rs1 ⊗ Rs2 ⊗ · · · ⊗ Rsp → Rc in
the ST-ELM.

B. SDT-ELM
In this subsection, we provide an overview of the SDT-ELM
architecture, as shown in Fig. 5. For each ST-ELM sub-
module of the SDT-ELM, its output vector y is not used for
decision-making but is concatenated with its input vector to
feed to the next sub-module. This leads to the mathematical
model

ỹl = h(l)β(l)
=

(
h(l)1 ⊗ h(l)2 ⊗ · · ·⊗ h(l)Pl

)
β(l),

h(l)i = σ
(l)
i

(̃
xl−1W

(l)
i + b

(l)
i

)
,

x̃l+1 =
[̃
xl, ỹl

]
,

(14)

where Pl denotes the number of paths in the ST-ELM sub-
module and L represents the number of simple modules
(i.e., the depth of the SDT-ELM), for i = 1, 2, · · · ,Pl and
l = 1, 2, · · · ,L. Note that the output of the l-th ST-ELM
sub-module ỹl represents an approximation to the targets of
classification. Clearly, the dimensionality of the augmented
input x̃l ∈ Rml is a function of the module number, that is,

ml = m+ c · (l − 1), (15)

wherem is the dimensionality of input x ∈ R1×m, and c is the
dimensionality of target y ∈ R1×c.

In particular, l = 0 corresponds to the first module, and
x̃0 corresponds to x. In a totally different approach from
those of available DSAE frameworks, the SDT-ELM does
not aim to discover a transformed feature representation.
Instead, it makes full use of a simple layer-by-layer stacking
architecture, which concatenates intermediate outputs with
previous input maps to maintain more complete information.

There are five hyper-parameters of an SDT-ELM, namely
the depth of the SDT-ELM (L), the sparsity of the
weight matrix and bias (ρ), the active function (σ ),
the number of paths (P), and the number of hidden units
(si (i = 1, 2 · · · ,P)) in the ST-ELM sub-modules. This can
be denoted by the five-tuple

ζ , [L, ρ, σ,P,V ], (16)

where V = [s1, s2, · · · , sP].
In addition, the parameters of the SDT-ELM are θ ={
W (l)

i , b
(l)
i ,β

(l)
i

}
i,l , where W (l)

i andb
(l)
i are randomly cho-

sen parameters. According to the predefined description,
the parameters remain unchanged after being assigned their
random values. Note that the pseudo-inverses of all the matri-
ces involved can be computed by Eq.(4) and the parameters
at each ST-ELM sub-module can be computed deterministi-
cally. Note also that the key advantage of the SDT-ELM is its
novel ability to capture higher-order feature interactions via
the Kronecker tensor product.
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FIGURE 5. SDT-ELM architecture: All ST-ELM blocks have the same hidden-layer configuration [ρ, σ,P, s].

C. REMOVE RANDOMNESS
In the SDT-ELM, one of the main mechanisms involves the
randomness of the weight matrix W and the bias b for each
ST-ELM sub-module, which is inherited from the ELM. The
removal of randomness means that the parameter values for
each module need to be updated. The advantages brought by
randomization will be weakened by the independent update
of each module and by the fine tuning of the whole network.
In particular, the process of training becomes more com-
plicated. We can identify two approaches to removing ran-
domness. The first involves an ELM-based sparse AE, which
can be regarded as an important tool for modest fine-tuning
of the random features into sparse and compact features.
The second involves the use of a gradient-descent algorithm
for the objective function. Here, we briefly outline this second
approach.

In an ST-ELM, we have the optimization objective
function,

min
β,W ,b

J = ‖Y − H (X;W , b)β‖2F + λ ‖β‖
2
F . (17)

where H (X;W , b) can be written as,{
H (X;W , b) = H1 � H2 � · · ·� HP
Hi = σ (XW i + bi), i = 1, 2, · · · ,P.

(18)

Here,W , [W1,W2, · · · ,WP] and b , [b1, b2, · · · , bP].
First, if we fixW and b, then Eq.(17) has the closed-form

solution,

β = (HTH + λI)−1HY . (19)

Second, if we fix β by the chain rule, then we have

∂J
∂W i

=
∂Hi
∂W i
·
∂H
∂Hi
·
∂J
∂H

, (20)

where i = 1, 2, · · · ,P. In particular, from the definition of
the Khatri-Rao product, we obtain[

∂H
∂Hi(j, r)

]
= H1 � · · ·�M (j,r)

i � · · ·� HP, (21)

where symbol Hi(j, r) denotes the (j, r)th element of matrix
Hi and M (j,r)

i means that the mask of matrix Hi is 0

everywhere except for a value of 1 in the (j, r)th position.
Furthermore, we have

∂J
∂H i(j, r)

=< 2,
∂H

∂Hi(j, r)
>, (22)

where ‘<,>’ denotes matrix inner product and 2 denotes

2 =
∂J
∂H
= 2(Y − Hβ)βT . (23)

We can also compute

∂Hi
∂W i

= XTi. (24)

Here, Ti can be obtained by

Ti(u, v) =

{
1, if Fi(u, v) > 0,
0, if Fi(u, v) ≤ 0,

(25)

where Fi = W ix + bi and the active function is sigmoid
function.

Finally, from Eq.(22) and Eq.(24), we can easily obtain
the ∇W iJ required to update the weight matrix W . Each
parameter bi can be updated similarly. Especially, in the
training process, we have chosen the mini-batch gradi-
ent descent (MBGD) for updating parameters Wi and bi,
i = 1, 2, · · · ,P for each ST-ELM.

D. REDUCING THE NUMBER OF HIDDEN PARAMETERS
For ELM, the number of nodes in the hidden layer is s in
Eq.(2) and Eq.(4), and N is the number of distinct training
samples. Generally, the upper bound of the required number
of hidden nodes is less than the number of distinct training
samples in most cases, that is, s ≤ N . In addition, the larger
the s, the better generalization performance of ELM can be
guaranteed [1], [42]–[44]. For the ELM without randomiza-
tion, and the weights W ∈ Rm×s and b ∈ R1×s also needs
to be optimized, then the number of hidden parameters to
learn is (m + 1) × s. We can embed tensor operation in
ELM (ST-ELM) to reduce the number of hidden parameters
W , b in ELM. Tensor manipulation brings two advantages.
One is to preserve the structural information contained in the
data; the other is the advantage of computing, that is, lower
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computational complexity. And expressly, assume that we
have P paths in Eq.(11), s can be written as,

s ,
P∏
i=1

si (26)

then the number of hidden parameters (Wi ∈ Rm×si ,

bi ∈ R1×si ) for ith path to learn is (m+ 1)× si. For ST-ELM
without randomization, the number of hidden parameters is

(m+ 1)×
( P∑

i=1

si

)
(27)

In general, when s is large, we have,( P∑
i=1

si

)
≤ s (28)

Therefore, on the premise that randomness is removed for
ELM and ST-ELM, the number of implicit parameters that
ST-ELM needs to learn is relatively small.

IV. EXPERIMENTAL RESULTS
In this section, we report on the extensive experiments con-
ducted to evaluate the effectiveness and efficiency of the
proposed SDT-ELM framework. Three well-known image
databases for benchmarking were used, namely MNIST,
NORB, and Fashion MNSIT.

In addition, the SDT-ELMwas compared with other meth-
ods involving both shallow and deep networks, as listed
below.

DSAE: a deep stacked AE network based on a sparse AE
network [7], [33].

PCANet: a simple deep learning architecture, which is
a cascaded network based on principal component analy-
sis (PCA) and binary quantization [34].

DBN: a stacking architecture based on the restricted Boltz-
mann machine (RBM) [4].

ELM: the original ELM.
H-ELM: an ELM for multilayer perception based on a

sparse AE.
ELM-LRF: a local receptive field (LRF) implementation

based on the ELM [35].
BLS: an effective and efficient learning system that does

not have a need for deep architecture.
CNN: in this paper, the classical LeNet5 [36] is included

to enable a fair comparison.
All the simulations for these algorithms were carried out

in the MATLAB2016b environment on a machine with an
IntelrXeon(R)CPUE5 − 2630v3@2.40 GHZ × 16 running
the Ubuntu 14.04 LTS with a 64-bit OS using Gallium0.4 on
llvmpipe.

A. DATA DESCRIPTION
MNIST [37]: This dataset comprises 70, 000 handwritten

digits partitioned into a training set of 60, 000 samples and a

FIGURE 6. Examples from the MNIST (left) and NORB (right) datasets.

FIGURE 7. Examples from the Fashion MNIST dataset.

test set of 10, 000 samples. The task is to classify each 28×28
image into one of the 10 digits, as shown on the left of Fig. 6.

NORB [38]: This dataset comprises images of 50 different
3D toy objects belonging to five disjoint categories. It com-
prises 48, 600 images partitioned into a training set of 24, 300
stereo images of 25 objects and a testing set of 24, 300 images
of the remaining 25 objects. Each image has a 2 × 32×
32-voxel format, as shown on the right of Fig. 6.

Fashion MNIST [39]: This is a new dataset comprising
28 × 28 gray-scale images of 70, 000 fashion products from
10 categories, with 7, 000 images per category, as shown
in Fig. 7. The training set contains 60, 000 images and the
test set contains 10, 000 images.

B. SDT-ELM PERFORMANCE ANALYSIS
First, we evaluated the performance of the ST-ELM archi-
tecture with the MNIST database. The hidden-layer config-
uration of the ST-ELM can be described in terms of the
four-tuple [ρ, σ,P,V ]. Given the parameter values ρ = 0.05
and σ (t) = 1/(1 + exp(−t)), we can observe the impact of
the relationship between P and V on network performance.
The relationship between (P,V ) and s is

s =
P∏
i=1

V (i) =
P∏
i=1

si, (29)

where V (i) = si.
Without loss of generality, we investigated the three cases

s = 10, 000, 8, 100, and 1600. Clearly, the decomposition of
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TABLE 2. ST-ELM (L = 1): Testing accuracy rate and training time for
hidden-layer configuration s with MNIST.

s can vary widely (from Eq.(29)), but we only experimented
with the three cases given in TABLE.2. Note that, for the
ST-ELM, the regularization parameter λwas 2−20 in Eq.(17).
After averaging the results from 30 trial simulations for each
case, we obtained the testing accuracies and training times
shown in TABLE.2. Further, from the experimental results
presented in TABLE.2, when P is larger and the elements in
vector V are relatively smaller, the corresponding ST-ELM
behaves with a significantly lower accuracy rate. In addition,
when the performance for P = 2 is compared with that
for P = 1, the generalization performance of the ST-ELM
is almost unchanged, but the training time is significantly
reduced.

In the second set of experiments, we set parameter values
P = 2, s1 = s2 (i.e., V (1) = V (2)), ρ = 0.05, and
λ = 2−20, and observed the effect of parameter L on network
performance.

Here, we investigated the three cases s = 1, 024, 2, 304,
and 4, 096. To enable comparison with the classical ELM,
and considering the time-consuming training phase for the
SDT-ELM, we chose the L values for the various s values
given in TABLE.3. Note that the condition for an SDT-ELM
to degenerate to an ELM with sparsity is P = L = 1.
After averaging the results of 30 trial simulations for each
case, the testing accuracies and training times are as shown
in TABLE.3.

Clearly, with an increasing L, the generalization per-
formance for the SDT-ELM gradually improves. In addi-
tion, although the ELM is a special case of the SDT-ELM,
the SDT-ELM can effectively mitigate the first drawback of
the ELM. That is, the accuracy of the ELM is dramatically
influenced by the large number of hidden neurons. For exam-
ple, the performance of an SDT-ELM with [L, ρ, σ,P,V ] =
[15, 0.05, Sigmoid, 2, (48, 48)] is better than an ELM with
[L, ρ, σ,P,V ] = [1, 0.05, Sigmoid, 1, 10000].
In addition, we analysed the convergence trend of the

SDT-ELMwith respect to parameter L. The results, as shown
in in Fig. 8, indicate that, when a new ST-ELM sub-module

TABLE 3. SDT-ELM: Testing accuracy rate and training time for parameter
L with MNIST.

FIGURE 8. MNIST: The trend of the mean square error curve for
increasing L.

is added to the SDT-ELM, the objective loss of the
SDT-ELMwith hidden-layer configuration [L, ρ, σ,P,V ] =
[80, 0.05, Sigmoid, 2, (32, 32)] can appear in the conver-
gence trend.

Finally, one convenient aid to setting the parameter V is
illustrated in TABLE.4. For a given number of implicit hidden
units s and a given value for L (in this example, s = 1, 024
and L = 80), then using a ‘symmetric’ V is relatively better
than using an ‘asymmetric’ V for P = 2. In particular, lower
values in V resulted in poorer network performance.

C. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS
For the third group of experiments, the hyper-parameters
for the SDT-ELM were set as follows. The sparsity degree
ρ = 0.05, the active function used Sigmoid , P = 2, s1 = s2
(to give a ‘symmetric’ V ), and the depth L of the SDT-ELM
network was obtained by searching for L ∈ [1, 100]. In addi-
tion, the randomly chosen parameters W and b followed a
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TABLE 4. The influence of different configuration of V on SDT-ELM
performance.

TABLE 5. Comparison of learning accuracy with MNIST.

sparse normal distribution, (i.e., sprandn in MATLAB could
be used directly). Note that all ST-ELM sub-modules had the
same hidden-layer configuration in all experiments in this
group.

1) MNIST DATASET
For reference, the structures of DSAE, DBN, ELM, and
H-ELM were 1, 000→ 500→ 100, 500→ 500→ 2, 000,
12, 000, and 300 → 300 → 12, 000, respectively. We used
a state-vector-machine (SVM) classifier for PCANet, setting
the filter size k1 = k2 = 7, and the number of PCA filters
L1 = L2 = 8, with the overlapping region between blocks
being half the block size. For the ELM-LRF, the parameters
that required tuning included the size of the receptive field
(5 × 5), the number of features maps (10), the pooling size
(3), and the regularization parameter C (0.01). The BLS was
structured as 100×10 feature nodes and 11, 000 enhancement
nodes. For the DSN [8], the hidden-layer size was 1, 000.
The test results are shown in TABLE.5. If we use s =

5, 041 (i.e., V = [71, 71]) and L = 26, then an SDT-ELM
with randomness (SDT-ELM(R)) can achieve 99.04%
accuracy. Furthermore, an SDT-ELM without randomness

TABLE 6. Comparison of learning accuracy with NORB.

(SDT-ELM(D))1 can achieve 99.25% accuracy, but the time
consumption is nearly three times that for an SDT-ELM(R).

2) NORB DATASET
This database was used to further demonstrate the advan-
tages of an SDT-ELM. For reference, the structures of the
DSAE, DBN, ELM, and H-ELM were 1, 000 → 500 →
100, 4, 000 → 4, 000 → 4, 000, 15, 000, and 3, 000 →
3, 000 → 15, 000, respectively. We again used an SVM
classifier for PCANet, setting the filter sizes as k1 = k2 = 6
and the number of PCA filters as L1 = L2 = 8, with the
overlapping region between blocks being half the block size.
For the ELM-LRF, parameters that required tuning included
the size of receptive field (4×4), the number of feature maps
(3), the pooling size (3), and the regularization parameter C
(0.01). The BLS was structured as 100×10 feature nodes and
9, 000 enhancement nodes. For the DSN [8], the hidden-layer
size was 2, 000.
The test results are shown in TABLE.6. If we use

s = 1, 024 (i.e. V = [32, 32]) and L = 26, then the SDT-
ELM(D) achieves higher accuracy (92.43%) than any of the
state-of-the-art training algorithms. Note also that the number
of hidden nodes is again relatively small compared with those
for the ELM, H-ELM, or BLS.

3) FASHION MNIST DATASETS
In the experiments with this dataset, the structures of the
DSAE,DBN, ELM, andH-ELMwere 1, 000→ 500→ 100,
500 → 500 → 2, 000, 10, 000, and 1000 → 1000 →
10000, respectively. We again used an SVM classifier for
PCANet, setting the filter size k1 = k2 = 4, and the
number of PCA filters L1 = L2 = 8, with the overlap-
ping region between blocks being half the block size. For
the ELM-LRF, the parameters that required tuning included
the size of receptive field (5 × 5), the number of features

1Here, the ‘D’ means deterministic, removing the randomness by gradient
update.
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FIGURE 9. An improved architecture based on SDT-ELM.

TABLE 7. Comparison of learning accuracy with Fashion MNIST.

maps (10), the pooling size (2), and the regularization param-
eter C (0.05). The BLS was structured as 10 × 10 feature
nodes and 12, 000 enhancement nodes. For the DSN [8],
the hidden-layer size was 2, 000.

The testing results are shown in TABLE.7. If we use
s = 4, 096 (i.e., V = [64, 64]) and L = 18, then the proposed
SDT-ELM again achieves a relatively better performance.
When compared with other training algorithms, the
SDT-ELM leads to a promising set of principles for network
design. In addition, it is important to note that that the number
of hidden nodes is small, compared with those required for
the ELM, H-ELM, or BLS.

D. ANALYSIS OF EXPERIMENTAL RESULTS
Experimental results in all above pattern classification tasks
demonstrate the effectiveness of the SDT-ELM and the asso-
ciated (remove randomness) learning methods in a consistent
manner. In particular, compared with the classical model pre-
sented in this paper, the SDT-ELMwith randomness removed
can obtain the optimal test accuracy. Also, compared with
the model with randomness, the model without randomness
usually has higher training time consumption in parameter
optimization.

SDT-ELM can obtain excellent generalization perfor-
mance in the pattern classification task mainly for the
following two advantages. The first advantage is that the

main parameter estimation burden in SDT-ELM is shifted to
a convex sub-problem with a closed form solution, which is
different from the traditional deep neural network parame-
ter optimization. The second advantage is that SDT-ELM is
equipped with the new stacking mechanism where the hidden
representations can be concatenated with the input data in
stacking the SDT-ELM blocks, which is different from the
traditional deep neural network stacked mechanism.

V. DISCUSSION AND CONCLUSION
In this paper, we have presented a novel deep-architecture
the SDT-ELM for pattern classification tasks, based on the
universal approximation capability of an ELM. The principle
novelty is to split the original large hidden layer (in each
block) into several smaller ones, and through their multiplica-
tive outer product and the associated tensor weights, to cre-
ate multiple non-linear models exploiting the higher-order
covariance structure in hidden feature interactions. Further,
It can offer an alternative approach to deep learning and
supporting architectures.

To benefit from the original ELM, the proposed SDT-ELM
is simple both in theory and implementation. Compared with
other some deep learning techniques, a similar or better gen-
eralization performance is achievable. One advantage is that it
can effectively reduce the number of hidden-layer parameters
by using tensor operations, thereby addressing a significant
drawback encountered by the classical ELM. Our proposed
ST-ELM and SDT-ELM implementations were tested on
three public image datasets, demonstrating the competitive
performance of the SDT-ELM against the ELM, H-ELM,
and BLS. A second advantage is that the SDT-ELM allows
the random hidden nodes to be added block by block (via
ST-ELM sub-modules), with all these elements having the
same hidden-layer configuration. In particular, the SDT-ELM
without randomness demonstrated better learning accuracy
than any of the other competing systems. In summary,
an SDT-ELM can produce a compact pattern classification
model of high generalization with relatively fast training
time. Moreover, the SDT-ELM is equipped with the new
stacking mechanism where the more compact hidden repre-
sentations can be concatenated with the input data in stacking
the ST-ELM.

VOLUME 7, 2019 119189



J. Zhao, L. Jiao: Sparse Deep Tensor Extreme Learning Machine for Pattern Classification

FIGURE 10. An improved kernel architecture with three layers based on
ST-ELM.

Note that the SDT-ELM does not aim to discover trans-
formed feature representations. However, encouraged by our
recent results, we aim to explore the significant extension
shown in Fig. 9, where we combine the hierarchical feature
representation in classical deep learning (e.g., DSAE) with
the computational advantages of an SDT-ELM.

Briefly, the output of each module of an SDT-ELM at level
k would include two parts, namely a prediction label y(k) and
a feature representation h(k), where k = 1, 2, · · · ,K . The
ultimate prediction y could then be obtained by

y =
K∑
k=1

λk · y(k), (30)

where λk indicates the contribution of the lth level to the final
target y. We hope that this extended architecture will be able
to achieve better and more robust results than existing state-
of-the-art methods.

Further, from the network architecture point of view,
it deserves further consideration is that the parallelism in
learning the SDT-ELM can be likely implemented either in
a CPU cluster or in a GPU cluster. If SDT-ELM parallelized
implementation can be achieved, then we expect meaningful
improvements in pattern recognition tasks and robust auto-
matic speech recognition tasks.

In addition, Kernel Deep Stacking Networks (KDSN)
belong to the class of deep learning algorithms, which have
emerged as powerful tools to discover complex non-linear
relationships. Compared to traditional neural networks that
relay on back-propagation algorithms, KDSN has the advan-
tage that high-level feature is obtained efficiently by fitting
a series of kernel ridge regression models. The direction
of further research is to combine KDSN with ST-ELM to
construct a new framework (see Fig.10) and algorithm for
deep learning. We expect greater success with the use of
SDT-ELM and its variants in some applications.

Finally, From the perspective of practical application,
the proposed SDT-ELM can also be used for three different
computer vision tasks (object detection, recognition, and
tracking [40], [41]), This is one of the applications tasks
we will be verifying in the future. In each application,
SDT-ELM can be used for feature extraction and pattern
classification.
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