
Received April 19, 2019, accepted June 17, 2019, date of publication June 24, 2019, date of current version July 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2924744

Dual U-Net for the Segmentation
of Overlapping Glioma Nuclei
XIELI LI 1,2, YUANYUAN WANG 1,2,3, QISHENG TANG4, ZHEN FAN4, AND JINHUA YU 1,2,3
1Department of Electronic Engineering, Fudan University, Shanghai 200433, China
2Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
3Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention, Shanghai 200433, China
4Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China

Corresponding author: Yuanyuan Wang (yywang@fudan.edu.cn)

This work was supported by the National Basic Research Program of China (2015CB755500).

ABSTRACT Themorphology and surroundings of cells have been routinely used by pathologists to diagnose
the pathological subtypes of gliomas and to assess the malignancy of tumors. Thanks to the advent and
development of digital pathology technology, it is possible to automatically analyzewhole slides of tissue and
focus on the nucleus in order to derive a quantitative assessment that can be used for grading, classification,
and diagnosis. During the process of computer-assisted diagnosis, the accurate location and segmentation
of nuclei from hematoxylin and eosin (H&E)-stained histopathological images is an important step. In this
paper, we proposed aU-Net-basedmulti-task learning network in which the boundary and region information
is utilized to improve the segmentation accuracy of glioma nuclei, especially overlapping ones. To refine the
segmentation, a classification model is used to predict the boundary, a regression model is used to predict the
distance map, and the final segmentation is obtained by using the fusion layers. The proposed approach was
compared with other specially designed boundary-aware methods by using a pathological section dataset
that consists of 320 glioma cases from the Huashan Hospital at Fudan University. Both the pixel-level and
object-level evaluations showed that the structural modification is effective in segmentation with an F1-score
of 0.82, a Hausdorff distance (HD) of 3.95, and an aggregated Jaccard index (AJI) of 0.66 (+0.46%,−3.75%,
and +4.09% compared with the unimproved methods, respectively). In addition, comparative experiments
on multi-organ nuclei segmentation (MoNuSeg) open dataset proved the advanced nature of the proposed
method in the field of nuclei segmentation, especially separating touching objects. The proposed method
obtains an AJI of 0.59 and an F1-score of 0.79.

INDEX TERMS Cancer research, deep learning, digital pathology, nuclei segmentation.

I. INTRODUCTION
The histological phenomena observed by pathologists when
viewing tissue biopsy images are central for pathological
grading, diagnosis and treatment of cancer [1]. Convention-
ally, a tumor tissue specimen processed by dehydration, sec-
tioning, staining and fixation will be examined optically by
pathologists via a microscope [2]. However, recently, with
the application of whole slide imaging, this analysis has
become digital. One necessary and important step within
digitalized histological analyses is the nuclear segmentation
of pathological images. Manual annotation and counting
lack reproducibility, require considerable effort, and are time
consuming. Therefore, automated segmentation methods are
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highly needed to improve the robustness of nuclear location
and segmentation.

However, automating nuclei detection is not a trivial task
and can be challenging for a number of reasons. First, there
are various kinds of cells with different nuclear shapes,
even in one typical tumor patch. Among the whole slide
images (WSIs) of gliomas that we processed, there were
triangular nuclei from nerve cells, tiny round nuclei from
glial cells, oval nuclei from astrocytes, dark round nuclei
with light rings from oligodendrocytes, slender nuclei from
endothelial cells, and irregular nuclei from malignant tumor
cells (see Fig. 1). The methods must be robust enough to
detect all kinds of nuclei effectively. Second, one of the
major challenges of nuclear segmentation is the separation of
overlapping objects [1]. Overlapping occurs when the cells
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FIGURE 1. Six kinds of nuclei with various shapes and sizes in gliomas.
From top to bottom and left to right are the pictures of a nerve cell, a glial
cell, an astrocyte, an oligodendrocyte, an endothelial cell and a tumor
cell. The approximate size is given in the green label.

proliferate or nuclei from different depths are projected in
the same place. The undersegmentation of overlapping nuclei
results in the incorrect estimation of the nuclear density, size
and morphology. Third, the inevitable variation of the digital
image quality is another problem to be solved in nuclear seg-
mentation. Variations are introduced technically by staining,
fixating and scanning the tissue samples and biologically by
the development of the tumor. In conclusion, the diversity
and complexity of the nuclear phenotypesmake segmentation
difficult.

Considering these challenges and the development of
semantic segmentation, many automated algorithms have
been proposed. Two comprehensive review papers introduced
most of the nuclear segmentation techniques [1], [3].We sum-
marize these techniques as the conventional segmentation
methods and the deep-learning based methods.

The conventional segmentationmethods include threshold-
ing following morphological operations [4], [5], watershed
segmentation [6], deformable models [7], graph-based mod-
els [8], [9], and their variants along with multitudes of pre-
and post-processing steps and are designed to achieve the
aforementioned goals. These methods focus on the distribu-
tion, variation, gradient and other color features. However,
due to inter- and intra-nuclear color variations in the wide
spectrum of tissue morphologies, these methods fail to gen-
eralize the scene of a whole slide nuclear segmentation.

Techniques based on machine learning can obtain better
results because they can be trained to recognize shape and
color variations. In recent years, convolutional neural net-
works (CNNs) have dominated the field of image classifica-
tion [10], [11] and image segmentation [12]. Based on the
recognition ability of CNNs, fully convolutional networks
improve the efficiency of semantic segmentation [13], [14].
Broadly speaking, previous studies of deep learning frame-
works on nuclear segmentation can be categorized into two
classes. (1) CNN-based nuclear detection with deformable
models. For this kind of method, the CNN is applied to
generate a probability map of a nuclear centroid or area

and algorithms like the watershed transform, clustering, and
active contour are utilized to post-process the boundary of
nuclei. In [15], a typical simple model of a CNN is pro-
posed to segment electron microscopy images. The deep
neural network pixel-by-pixel predicts the probability that
the center of the scanning patch is a neuronal membrane,
and the segmentation result of the whole image is given by
thresholding the spatially smoothed probability map. In [16],
the probability map produced by the learned CNN model
is regarded as the result of nuclei detection and the initial
contour of the nuclei. Next, shape deformation based on the
active contour model is performed to segment these nuclei.
In conclusion, this kind of method is computationally expen-
sive for large-scale images because nuclear segmentation
requires pixel-wise classification via a sliding-window and
a post-processing algorithm [3]. Therefore, previous stud-
ies are focused on the fast scanning strategy [17]–[20] and
unsupervised segmentation models [21]–[26]. (2) FCN-based
pixel wise segmentation. For this kind of method, the deep
learning model is expected to give pixel-wise segmentation
results end-to-end. Generally speaking, this kind of segmen-
tation model consists of an encoder-decoder architecture that
includes fully convolutional layers and is sometimes embed-
ded with a refining algorithm such as watershed transform
and conditional random field (CRF). In [14], a symmetric
structure called U-Net is proposed to segment the neuronal
membranes end-to-end and achieved state-of-art performance
on the 2015 ISBI challenge. In [27], the FCN learning of the
nucleus region is used to guide the graph construction and
generate an in-region cost function. In other words, the lat-
ter method is more efficient and time-economical than the
former.

In the research process of deep-learning based segmenta-
tion models, many new approaches have emerged to solve
the challenge of overlapping targets. Hao Chen et al pro-
posed the deep contour network (DCAN), which generates
both the object and contour predictions in the segmentation
of histopathological images [28]. DCAN took the boundary
information into consideration in order to separate touching
or overlapping targets. Haocheng shen et al improved the
DCAN to the boundary-aware FCN by adding a combination
stage at the end of the network [29]. The results proved
that the convolutional deduction of the combination stage
works better than the conditional judgment. Based on the
idea of being boundary/contour-aware, a method that fuses
two FCNs to segment nuclei was proposed in [30]. The
two FCNs are independently trained to recognize boundaries
and overlapping targets, while the third FCN is trained as a
fusion network for the separation of targets. Similar meth-
ods of boundary recognition occurred in [31]. A tri-partition
CNN with a simple architecture was used predict an image
pixel by pixel and classified the background, nuclei and the
boundary outside the nuclei. In addition, Peter Naylor et al
formulated the problem as a regression task by replacing
the binary annotation with a distance map to train the net-
work [32]. By concentrating on the nuclear core area instead
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FIGURE 2. Flowchart of the proposed method. The top branch is a classification model for boundary segmentation, and
the lower branch is a regression model for the distance map prediction. The intermediate results are combined for the
final segmentation.

of the fuzzy boundary, the segmentation performance is
better.

In this paper, we propose a novel dual U-Net architecture
to solve the challenging problem of nucleus segmentation.
The proposed network adopts the encoder-decoder structure
from U-Net, and it shares the downsampling path yet equips
a pair of upsampling paths: one classifies the nuclear region,
and the other is sensitive to the nuclear boundary. To refine
the segmentation, the nuclear boundaries are obtained by the
classification model while the coarse regions are given by
the regression of the distance map. By combining the infor-
mation of the coarse region and boundary via some special
fusion layers, the model is capable of segmenting overlapping
nuclei in gliomas. The main advantages of the proposed
model are that it (1) enables the simultaneous segmentation
of multiple nuclei in glioma and (2) improves the separation
of touching and overlapping nuclei. The remainder of this
article is organized as follows. Section II gives the details
of the proposed model and its theoretical basis. Section III
introduces the dataset and the evaluation metrics we used in
the experiments. Section IV presents the comparison results
of the nuclear segmentation, including the experiments of the
training optimization, the robustness testing, the effectiveness
of the improvements, and the advanced nature of the model.
Section V discusses these performances, and Section VI con-
cludes the paper.

II. PROPOSED METHOD
In this section, we describe in detail the construction of
our proposed dual U shape network for overlapping cell
segmentation and the theoretical explanation of the network
structure.

To make full use of the boundary information and the
region information, the contour/boundary-aware [28], [29]
structure is employed. An end-to-end segmentation net-
work based on U-Net [14] that was modified according to
the images of glioma cells is utilized as the backbone of
the method. Moreover, to improve the recognition ability

of overlapping targets, the deep regression of the distance
map [32] is embedded. Finally, all the information is inte-
grated by the fusion layers to produce the refined segmenta-
tion results. The flow chart of the proposed method is shown
in Fig. 2.

Since ourmethod is amultitasking segmentation in a sense,
we hereby make some symbolic explanations. In this section,
let I be the space of RGB images (in particular, hematoxylin
and eosin (H&E) stained histopathological images) where
I = Rr×c×3. Let A be the space of annotated images (the
inner part of the nuclei) where A = {0, 1}r×c. The target of
our model is to find a prediction function f that establishes a
map from I to A. Assuming an unseen image I ∈ I, f helps
us to predict its annotated image A ∈ A. By the means of
some transformations, it is easy to get the region annotation
R ∈ {0, 1}r×c (the whole part of nuclei) and the bound-
ary annotation B ∈ {0, 1}r×c (the boundary line separating
the nuclei), which provide more useful information in the
search of f .

A. DUAL U SHAPE NETWORK
After the proposition of the FCN, several novel pixel-wise
networks came into being for various kinds of segmenta-
tion tasks. What these networks have in common is the
downsampling-upsampling structure (or the encoder-decoder
architecture). For example, SegNet [12], which consists of a
VGG-like encoder, an inverse decoder and special unpooling
layers, was trained for scene segmentation. U-Net [14] is an
elaborate deformation of the FCN-VGG16 [13] and likewise
consists of an encoder-decoder pair. Compared to a natural
image, the content of a biological image is simpler. Therefore,
although the architecture of U-Net is not so deep, it performs
well in biological tasks. For the sake of the model’s size and
performance, we take the structure of U-Net as the foundation
of our network. The structure of the proposed network is
presented in Table 1 and Table 2.

In our study, the digital pathological images of glioma
are cropped into small image blocks, and thus, the input
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TABLE 1. Dual U-Net Architecture.

TABLE 2. Detailed settings of convblock with five different types.

size is modified as 128 × 128 pixels. The downsampling
path in our network, which is known as the encoding part,
includes four downsampling blocks, each containing two

3× 3 convolutional layers and one 2× 2 max pooling layer.
Symmetrically, the upsampling path or the decoding part has
four upsampling blocks, each of which is embedded with one
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2 × 2 deconvolutional (convolution transposition) layer and
two 3× 3 convolutional layers. In order to keep the size con-
sistent and avoid discarding image fringe information, all the
feature maps are padded with 0 before the 3× 3 convolution
operations. Moreover, we placed Batch Normalization [33]
and a Rectified Linear Unit [34] between all convolutions.
Inspired by the idea of a contour/boundary-aware network,
we copied the upsampling path for multitask segmentation.
After four downsamplings, the data flow is split into two
lines. The one for the boundary classification defined as
fB is trained using the boundary annotation B. The other
for the coarse region segmentation defined as fR is trained
using the region information. Each upsampling block in both
branches concatenates the feature map from the last layer
and the same-scale intermediate results in the downsampling
block into one. In this way, each encoder-decoder branch
could be regarded as one complete U-Net for a specific task.
Meanwhile, the training errors that are back-propagated from
the two decoders synchronously tune the parameters in the
encoding part. In our hypothesis, there is a high correlation
between region and boundary segmentation. Therefore, it is
reasonable that the two segmentation tasks partly share the
same features.

B. REGRESSION OF THE DISTANCE MAP
In the task of nuclear segmentation, the most annoying prob-
lem is the undersegmentation of overlapping or touching
nuclei. For most learning based approaches, loss obtained
by calculating the belonging of pixels is usually applied for
object segmentation task. This practice works well when we
want to get the position and outline of the object. However,
in the optimization process, the contribution of somemisclas-
sified pixels to the global loss can be neglected, which will
lead to the improvement of the pixel-level accuracy, yet also
lead to undersegmentation of individual objects. Therefore,
the close or overlapping nuclei tend to be segmented as one
in histopathology images. Thus, we want to refine the coarse
segmentation before the fusion stage.

In the region segmentation branch, we borrowed the idea
of deep regression from [32] to improve the coarse segmen-
tation. In the binary ground truth, values inside the object
are the same and value jumps near the boundary. But in
the distance map, the value assigned to the background gen-
tly evolves to the value assigned to the object along the
gradient, which is more in line with the description of the
nuclei boundary in histopathology images. Nuclei boundaries
are often fuzzy and ill defined, especially between touching
nuclei where the local color characteristics on both sides are
consistent. For these local patches, binary annotation assigns
a same value to two nuclei and leaves a pixel-wide gap at the
boundary which stands a good chance to be ignored during
the optimization. The well-trained model has no ability to
distinguish between interior and edge pixels, so high val-
ues of the score map on both sides submerge the bound-
ary line. However, the distance map assigns a numerical
valley between touching nuclei and assigns a buffer area

with moderate numerical change along the fuzzy boundary.
Although the incorrectly predicted value of the boundary
line contributes little to the global loss, the loss caused by
the numerical valley and slop prediction errors cannot be
negligible. Thus, the well-trained model is able to acquire
the patterns of different nuclei regions and produce regression
map with continuously varying values from which touching
objects can easily be separated. The rationale of distance map
is that it can be regard as a series ground truth versions result-
ing from successive erosions. Hence, the distance map can
provide more useful information and models can acquire the
difference between background, boundary, interior and core
area. Moreover, since two branches of the proposed model
share part of the features, the distance map interacts with
boundary segmentation. Because the distancemap partly con-
tains boundary information and have more in common with
boundary annotation than binary ground truth, two branches
reinforce each other. With the increasing of the coarse seg-
mentation accuracy, the fine result is improved.

Distance maps are used for this part of the network train-
ing and take the place of binary maps. Similar to [32],
we define the space of the distance map as D =

{D;D = Dist (R) ,R ∈ R}, where Dist is the distance trans-
form for each pixel from the Chebyshev distance to the
closest background. For each individual nucleus, the nucleus
that overlaps with it is regarded as the background. The
Chebyshev distance between pixels x = (ix , jx) and
y = (iy, jy) is Dch = max(

∣∣ix − iy∣∣ , ∣∣jx − jy∣∣). Meanwhile,
the Softmax layers in the region segmentation branch were
removed, and the mean square error (MSE) took the place
of cross entropy in the loss function. For the regression task,
it can be regarded as a well-constructed U-Net whose output
ought to be consecutive positive integers rather than one-hot
vectors. Thus, MSE is used as the loss function for distance
map regression. We define the prediction of the distance map
from input image I as D̂, i.e., D̂ = fR(I ). The loss in this
branch is defined as follows:

LR
(
D, D̂

)
=

1
np

∑
i,j
(D(i, j)− D̂(i, j))

2
. (1)

In the testing case, we use a threshold value between
0 and 1 to get the coarse region segmentation.

C. FUSION LAYERS
After obtaining the boundary and the coarse region segmenta-
tion, we applied additional convolutional layers as the fusion
method. Different from [29], we concatenate the predicted
distance map with the probability map of the boundary.
Therefore, the input depth of the fusion layer is 3. Two 3× 3
convolutional layers retransform the integrated information
into feature maps, and one 1× 1 convolutional layer predicts
the refined segmentation result. We define the fusion function
as fF . The total loss of our method consists of three parts: the
loss from boundary segmentation, the loss from distance map
regression and the loss from fusion segmentation. The loss
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function is given as follows:

Ltatal (I ;D,B,A)

= LR (D, fR (I ))+ LB (B, fB (I ))+LF (A, fF (fR (I ) , fB (I )))

=
1
np

∑
i,j

[
α(D(i, j)− D̂(i, j))

2
− βlogP

(
B [i, j] ; B̂ [i, j]

)
− γ logP

(
A [i, j] ; Â [i, j]

)]
, (2)

where B̂ and Â have similar definitions as D̂. α, β, and γ con-
trol the weight of each loss due to the different calculations
of the MSE and cross entropy. By minimizing the function
above, we get the well-convergent dual U-Net, in which fR
allows us to get the distance map, fB helps us to recognize
the boundary and the output of fF is the precise nuclear
segmentation result.

III. DATASETS AND EVALUATION METRICS
A. GLIOMA NUCLEI DATASET
The method proposed in this paper was evaluated by using
an H&E stained glioma sections dataset. We generated a
dataset at Huashan Hospital of Fudan University consisting
of annotated H&E stained histology images at 40x mag-
nification (see Table 3). All slides are taken from various
glioma patients (grade, II to IV; type, astrocytoma, oligo-
dendroglioma, or glioblastoma). They were scanned using an
Aperio Scanscope XT and saved as WSIs.

TABLE 3. Composition of the glioma nuclei dataset.

For the 320 WSIs, we extracted five typical images with
an average size of 245 × 240 from different areas of the
tissue perWSI. Among all of these images, the longest length
is 412 pixels, and the shortest is 143 pixels. The number,
the morphology and the surroundings of the cells in these
images have great variations because they were selected in
order to present the heterogeneity of the data.

We invited experts to annotate a large number of nuclei.
The overall dataset consists of 1600 images with a total
of 32255 annotated nuclei. The maximum number of nuclei
is 116 while the minimum is 2 in one image. Each image
has an associated ground truth annotation depicting the inside
and the outer edge of the nucleus and background area. Here,
the inner and edge labels are used to generate A and B in
Section II, respectively, while R is the union of A and B.
Samples of the image with annotations are shown in Fig. 3.
The annotation was performed by experienced pathologists.
One annotates the image, another checks the first, and the
third arbitrates if there is a disagreement.

Due to the limitation of the nuclear number, we augment
the dataset by random rotation, color disturbances and elastic

FIGURE 3. Sample images with annotations and symbolic explanations
from our dataset. The first row is the original image extracted from the
WSI, and the second row is an augmented image deformed by elastic
deformation and rotation in our training dataset. A and B are generated
from manual annotations, and R is the union of A and B. D is derived
from R by using the distance transformation and region disconnection.

deformation. Since each image has a different size, we crop
them into patches of 128×128 by random translation. Finally,
25600 patches are involved in the experiments, with 70% for
training, 10% for validation and 20% for independent testing.

We used the glioma nuclei dataset to find the optimal train-
ing conditions and verify the effectiveness of the structure
improvement.

B. MULTI-ORGAN NUCLEI DATASET
The second dataset is multi-organ nuclei segmentation
(MoNuSeg) dataset. In total, this dataset involves 30 images
from 7 different organs with 21623 annotated nuclei. Com-
pared with the first dataset, MoNuSeg is more comprehen-
sive and professional, and many methods were trained on it.
Therefore, it is more suitable for verifying the universality
and the advancement of the model. We used the same subset
of images used in [31], [32], [35] for training and testing,
so the results can be directly compared. We cut 16 training
images into overlapping pieces, augmented them, and finally
obtained 25600 patches.

C. EVALUATION MEASURES
Because the aim of the proposed method is accurate segment
overlapping glioma nuclei, we employed four types ofmetrics
to assess the performance in terms of the pixel-level and the
object-level.

At pixel-level, we evaluated models by pixel accuracy (PA)
and the F1 score (equivalent to the Dice index and Zijdenbos
similarity index). PA is the most basic segmentation metric,
calculating the proportion of the correctly classified pixel.
We used PA to measure the quality of the dual U-Nets under
different training conditions. F1 score is defined as the har-
monicmean between the recall and precision of the pixel level
segmentation. The calculation of F1 is as follows:

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

. (3)

We use F1 score to measure the segmentation performance of
different models at the pixel level.

At object-level, we evaluated models by the Hausdorff
distance (HD) [36] and the aggregated Jaccard index
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(AJI) [31]. HD is used for assessing the similarity between
the predicted object and the ground truth, even if it is less
popular due to the computational complexity. Assuming that
Pi is the ith predicted nucleus and Gi is the matched ground
truth, HD is defined as the Euclidean distance of the furthest
pixels on the contours of these two shapes, which means that
the lower the HD, the higher the similarity is:

HD = max{max
p∈Pi

[Dist (p,Gi)] ,max
g∈Gi

[Dist(g,Pi)]}, (4)

where Gi is the nucleus that has the maximum overlap area
with Pi in ground truth map and will not match the remain-
ing predictions. If no nucleus matches Pi, then HD will be
assigned the distance from the furthest pixels inside Pi as
a punishment. In this way, both the undersegmentation and
oversegmentation get a low similarity, even if they have high
pixel accuracy. The AJI is the extension of the global Jaccard
index and is defined as follows:

AJI =

∑L
i=1 |Gi∩Pi|∑L

i=1 |Gi ∩ Pi| +
∑

i∈rest |Pi|
, (5)

where Pi is the predicted nucleus that maximizes the Jaccard
Index with the ground truth nucleus Gi and rest refers
to the collection of Pi with no match. AJI reflects the
proportion between the common region of matched ele-
ments and the segmented results. Any imprecise segmen-
tation, whether under- or oversegmentation, will lead to a
decrease in AJI .

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL ENVIRONMENT
We performed the experiments using a NVIDIA TITAN
Xp with 12GB memory and Windows 10 installed on an
Intel(R) Xeon(R) CPU with 64 GB RAM. The deep learn-
ing algorithm is programmed in MATLAB R2017a with the
MatCovNet toolkit [36], [37] .

B. TRAINING OPTIMIZATION
Before comparing with the other nuclei segmentation meth-
ods, the optimal training settings for dual U-Net should be
studied. In this experiment, we took the weight of each part
of the total loss function, the optimizer, and the color space
of the training samples into consideration. The glioma nuclei
dataset is used for training and testing.

Since the calculations of MSE and cross entropy are dif-
ferent, the three loss functions have to be balanced. We pre-
trained the proposed model with α = 1, β = 1 and
γ = 1 to uncover the numerical size relation. The loss curves
are shown in Fig. 4, from which we can learn that two
cross entropy losses are about the same size while MSE
loss is four times bigger than them. In order to balance all
parts so that the total loss is not overwhelmed by MSE,
we set α = 0.2, β = 1 and γ = 1 in the subsequent
experiments.

Then comes the selection of the optimizer and the color
space. Stochastic gradient descent (SGD) algorithm has

FIGURE 4. MSE loss curve and cross entropy loss curves during the
pre-training.

FIGURE 5. Loss curve of the models trained by different conditions (left)
and pixel accuracy boxplot of models trained by three color spaces (right).

been widely used in CNN optimization while adaptive
moment estimation (ADAM) algorithm has a better opti-
mization performance. RGB color space is the basic storage
form of image, but shows nonlinearity when color changes.
We trained the following four models for 40 epochs with a
batch size of 256, a weight decay of 0.0001 and an initial
learning rate of 0.001 and decrease to a tenth every ten
epochs: 1. RGB images with SGD optimizer; 2. RGB images
with ADAM optimizer; 3. HSV images with ADAM opti-
mizer; 4. Lab images with ADAM optimizer. The momentum
of SGD is set to 0.9, and the parameters of ADAM are set
as β1 = 0.9, β2 = 0.99 and ε = 10 − 8. Images are
converted into specific color space then minus the statistical
mean before input into the model. The final segmentation
loss curves of these models are shown in Fig. 5. Apparently,
the ADAM optimizer converges faster and performs better
than SGD. The model trained by RGB space has a slight
advantage over the others on training set. However, the pixel
accuracy of independent test set is 0.966 for RGB, 0.967 for
HSV, and 0.910 for Lab. Paired t-test manifests that the pixel-
level segmentation accuracy of HSV is 0.001 higher than
that of RGB with significance (P = 0.02). Actually, hues,
saturation and brightness in HSV space are more in line
with the eye’s perception of color, which may contribute the
slight improvement. As a result, we use ADAM optimizer
and images of HSV color space to train the model in the
subsequent experiments.
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TABLE 4. Comparative results of independent testing and multiple cross-validation.

FIGURE 6. Comparison of the segmentation results of the deep-learning based methods. The green segmentation results from left to right are produced
by the following: 1) Ground Truth, 2) Proposed (ours), 3) BAU-Net (from BAFCN), 4) DCAU-Net (from DCAN), 5) BAFCN [29], 6) DCAN [28], 7) U-Net for
ternary segmentation, 8) Level Set algorithm [38].

C. DEPENDENCY ON DATA
Deep learning model is data driven and the performance
decrease when the training samples are insufficient or non-
homologous with the test sample. In order to verify that the
division of the dataset is random, to prove that the model
is robust when training data is reduced, and to make the
results of subsequent comparative experiments convincing,
we conduct the following experiments. First we randomly
extracted about 10% images from glioma nuclei dataset as
independent testing set and divided the patches augmented
from the rest images into 9:1 for training and validation.
Then we re-divided the dataset into 7:1:2 for training, vali-
dation and testing, and conducted five-fold cross validation.
Six models were trained by the optimal settings in Part B,
while the number and the content of the training samples
are not the same, and the test results are listed in Table 4.
The different division ratio of dataset has little impact on the
final performance. The overall results of cross validation have
no significant change comparing with independent testing.
Only one subset of cases shows a significant decrease in pixel
accuracy. The above results show that 70% of the samples are
sufficient for model training, the performance of our model is
convincing and robust. In the subsequent experiments, we use
70% for training, 10% for validation and 20% for testing and
the results are acquired by cross-validation.

D. IMPROVEMENT EFFECTIVENESS
The proposedmethodwas comparedwith other deep-learning
based methods such as the simple U-Net [13], DCAN [28],
boundary-aware FCN [29]. We conducted this experiment to
prove the effectiveness of the structural improvements and the
combination of the regression model. The training and testing
samples are from glioma nuclei dataset and set according
to Part B&C. For the simple U-Net, we trained a ternary
segmentation model by annotation A and B.Because the
contour/boundary-aware idea was first proposed in [28], [29],
we replicated them on our dataset for comparison and abbre-
viate them as DCAN and BAFCN, respectively. In addition,
we derived two other models by replacing the FCN struc-
ture with U-Net in former two models and abbreviate them
as DCAU-Net and BAU-Net, respectively. Moreover, tradi-
tional nuclei segmentation methods such as level set algo-
rithm [38] is also involved in the comparative experiment. All
approaches for comparison purposes have been trained for
enough epochs using groups of parameter settings to ensure
that they converge. Besides, no post-processing method is
involved in these approaches.

In terms of the visual results, as illustrated in Fig.6, all deep
learning based methods can detect the approximate region
of the nuclei. But traditional method like level set fails to
locate nuclei with irregular shapes (Fig.6, column 8). Due to
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FIGURE 7. Detailed comparison of the individual image segmentations. From top to bottom are 1) the original images overlaid by segmentations, 2) the
binary segmentation results, 3) the region information presented as the distance maps or the probability maps, and 4) the boundary probability maps.

the competition relationship between three labels, ternary
U-Net mistakenly detects some objects (Fig.6, column 7).
Because of the inconsistent between boundary segmentation
and nuclei segmentation, artifacts are introduced in the results
of DCAU-Net and DCAN (Fig.6, column 5&6). Three mod-
els embedded with fusion layers produce smoother contours
(Fig.6, column 2,3&4), indicating the effectiveness of the
fusion layers. Moreover, the contours produced by U-Net
based models are more consistent with the ground truth than
FCN based ones (Fig.6, column 3&4 versus 5&6), which
demonstrates the advantage of using U-Net as the basic
structure.

In high grade gliomas, nuclei connect with each other
due to high proliferation and atypia, which results in the
undersegmentation of several models. However, for both
sparsely distributed and touching nuclei, the results of the
proposed model are highly matched with the ground truth
(Fig.6, column 2), thus indicating that the combination of
regression model and classification model is effective. Some
intermediate results are shown in Fig.7. For region detection
task (Fig.7 row 4), the probability maps of U-Net based mod-
els have deep contrast between the object and the background
(column 3&5) while the ones of FCN based models are vague
(column 4&6). As for the distance map regression, the above
characteristic is more obvious and the model concentrates on
the core region of object (Fig.7, column 2). For the boundary
segmentation task (Fig.7, row 3), the performances are highly
related with the region detection task. Models with clear

objects produce distinct boundary probability maps. The two
intermediate results together determine the final segmenta-
tion performance. The proposed method obtains the thinnest
boundary lines and the clearest region and hereby performs
best.

In terms of the quantitative evaluation, the overall compari-
son of the evaluation metrics is provided in Table 5 and Fig.8.
According to the results, models with the U-Net structure
have a little improvement in their pixel-level indexes com-
pared to those with the FCN structure. The application of
the distance map makes the object-level segmentation more
accurate. Thus the proposed dual U-Net quantitatively out-
performs others. For the averages of the three measurements,
our method achieved 0.81, 0.66 and 3.95 for F1, AJI and
HD, respectively. In the pixel-level evaluation, the proposed
network and the BAU-Net are almost identical with respect to
their F1-scores. In the object-level evaluation, the proposed
network has the lowest HD. By combining these two aspects,
the AJI shows that our method has the best segmentation
performance.

E. OPEN DATASET COMPARISON
Finally, we used MoNuSeg dataset to train the dual U-Net
and validated its advanced performance. The data published
in [31], [32], [35] were used for benchmarking against their
methods. The results are listed in Table 6. DIST method
refers to distance map regression, whose basic structure
is U-Net. RIC is abbreviation of residual-inception-channel
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TABLE 5. Comparative analysis of individual images form the independent dataset.

FIGURE 8. Boxplot of the overall comparison results. From left to right are the F1 score, the AJI and the HD. The proposed method is shown in red.

TABLE 6. Comparative analysis for individual images from MoNuSeg dataset.

attention-U-Net specially designed for nuclei segmentation.
CNN from [31] is a ternary classification CNN model for
nuclei segmentation. The proposedmethod obtains 0.5899 for
AJI and 0.7913 for F1-score. Compared with the latest

methods, our method ranks second in F1-score which reflects
the pixel level accuracy. The advantage of our method is
separating overlapping nuclei, and the AJI which focus on the
object level segmentation ranks first. It’s worth mention that
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the proposed method surpasses DIST because our model uti-
lizes additional boundary information. The boundary infor-
mation on one hand constrains the contour of the final results
and on the other hand reinforces the regression model. The
experiment with open dataset indicates that the proposed
method is advanced.

V. DISCUSSION
In clinical practice and research, computer-assisted pathol-
ogy has gradually shown its advantages over the years. The
segmentation of nuclei is the first and most important step
in automatic histopathological analysis. However, many seg-
mentation methods suffer from challenges such as irregular
shapes, inter- or intra-nuclei color variations, and overlapping
or touching nuclei.

In this study, we utilized both the region and boundary
information and proposed a novel network to overcome these
difficulties. From the comparative experiments on glioma
nuclei dataset and multi-organ nuclei dataset, we show that
the combination of U-Net, the boundary-aware structure and
the distance map regression is effective and advanced in
overlapping nuclei segmentation problems.

The basic idea of this paper is integrating boundary
information and region information to separate overlapping
nuclei. Plenty of researches have focused on this thought
and our work is based on some existing foundations such as
boundary-aware structure, which is not designed for nuclei
segmentation, yet suitable for separating touching nuclei. In
these models, the final segmentation result is determined by
the performance of the region segmentation and boundary
segmentation. However, the final performance is restricted
by the poor intermediate results. Therefore, it’s necessary to
modify the internal structure.

One structural modification in this paper is replacing FCN
structure with U-Net structure. Thanks to the multiple convo-
lutional and concatenating layers in the upsampling process,
the results produced by U-Net structure are more delicate and
accurate than FCN. This modification was verified by experi-
ments in Section IV Part D. But the improvement of themodel
is limited due to the characteristic of classification model.
The classification model is insensitive to the pattern of the
boundary patches and several wrongly classified boundary
pixels contribute little to the global loss. Both the score map
of the boundary and the region is rough and vague. So new
ideas are needed to optimize the model.

We embedded the distance map regression in the previous
model. The most important innovation in this paper is to use
the regression model combining with U-Net to enhance the
regional detail prediction. Looking at the advantage of the
distance map regression alone, the distance map is more in
line with the description of the fuzzy boundary, and since the
regression model is applied to fit the distance map, the trend
of the numerical distribution is retained, avoiding the alias-
ing of touching regions. The basic principle is that the
regression of the distance map implicitly imposes a priori
shape on the network and enables the network to learn some

object-level knowledge. In addition, the network is forced to
generate a spatial smooth output, so the shape of the results
will be more regular. Furthermore, the combination of regres-
sion model and classification model enhances their respective
advantages. As we put the regression model and the bound-
ary classification model into one network and trained them
together, two branches interact with each other. The high
correlation between distance map and boundary annotation
makes the synchronous training and the reinforcing rela-
tionship possible. The boundary classification model forces
the network to be boundary sensitive, which regularize the
contour of the distance map. The regression model forces the
network to learn the difference between boundary and core,
which enhance the ability of features to express boundary.
From the results we can see that the proposed model has the
most accurate perception of the boundary. With the increas-
ing of two coarse segmentation accuracy, the fine result is
improved.

In spite of these advantages, the proposedmethod has some
shortcomings. For instance, when we attempt to solve the
under-segmentation problem, the over-segmentation problem
arises. As we can see in the 2nd row of Fig. 6, a nucleus is
divided into two parts by our method. although it may be due
to the non-uniform color distribution of the nucleus, it does
show that the proposed method is not perfect. Besides, there
is still a big gap between the proposed method and the latest
method in F1-score.

In conclusion, our method takes advantage of several
deep-learning strategies such as the U-Net structure, the
boundary-aware strategy and deep regression of the distance
map. By the acceleration of GPU TITAN Xp, The proposed
approach can segment an image with a size of 1000×1000 in
0.5 seconds. Hence, our method is capable of solving over-
lapping nuclei and outperforms the state-of-art methods.

VI. CONCLUSION
Nuclear segmentation is a challenging and important task in
computer-assisted histopathological analysis. In this paper,
we presented a novel network called the dual U-Net in which
the boundary information and distance map are combined
to help nuclear segmentation. The network has a special
dual-upsampling structure for multiple task training and a
combination layer for refined segmentation. The regression
branch for predicting the distance map enables the network
to detect the nuclear core region while the classification
branch for boundary segmentation enables the network to
separate touching objects. By using the convolution operation
of the fusion layer, accurate nuclear segmentation results are
extracted from the coarse segmentation. The experimental
results on the glioma nuclei dataset demonstrate that the com-
bination of these structure is effective and proposed method
is competent for glioma cytopathology research. Further-
more, the comparative experiments on open dataset verify
the advanced nature of the proposed method. Not limited to
gliomas, the proposed network is easy to apply to segmenting
various kinds of nuclei of other tumors.
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Although the dual U-Net has outstanding performance in
glioma cases, the accuracy of the touching nuclei with seri-
ous deformations still has space for improvements and the
over-segmentation problem remains to be solved.
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