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ABSTRACT This paper investigates cooperative spectrum sensing in multi-channel cognitive radio net-
works (CRNs) with energy harvesting. Our goal is two-fold: first, to determine the optimal sensing parame-
ters for effective management of the limited energy budget in order to maximize the achievable throughput,
and second, to exploit the benefits of a practical CRN towards improving the performance of the energy
constrained CRN. Two different scenarios are considered. In the first, the secondary user (SU) is assigned a
single radio frequency (RF) harvesting source, while in the second, the SU is assignedmultiple RF harvesting
sources and can opportunistically harvest from any of the sources. For these scenarios, the problem is
formulated as a stochastic optimal control systemwith infinite and continuous state and action spaces. This is
known to be computationally intractable and becomes even more complicated in a two-dimensional problem
such as considered. In order to reduce the computational complexity, a myopic optimization approach
is taken, and the problem is formulated into a mixed integer nonlinear problem (MINLP) to determine
the channel assignment, the sensing duration, the distribution of the sensing duration associated with the
assigned channels and the detection threshold under the constraint of energy causality and primary user (PU)
protection. A near-optimal solution is obtained to the MINLP based on the alternating convex optimization
technique. The simulation results obtained show that the considered work can improve the amount of energy
harvested and, by extension, the active probability of the SUs by exploiting the multi-channel benefits of
practical CRN for enhanced throughput.

INDEX TERMS Energy harvesting cognitive radio network (EH-CRN), cooperative spectrum sensing,
energy harvesting sources, primary user (PU), multi-channel, optimization problem.

I. INTRODUCTION
Recent development in energy harvesting [1]–[4] has initi-
ated research efforts towards exploiting the possibility of
alternative energy supply to the A.C rechargeable/replaceable
batteries in cognitive radios. This intends to jointly reduce
energy cost and deal with the problem of having to replace
batteries, promising a cognitive radio system with cheaper
and more convenient energy supply. In the RF energy
harvesting-based scheme, spectrum sensing and data trans-
mission activities of the SU can only occur with enough
harvested RF energy (a phenomenon referred to as energy
causality). The system is however a stochastic process in
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terms of the secondary user energy state over time. The
energy level at the beginning of each frame depends on the
residual energy and the action taken in the previous frame.
The RF energy arrival is also intermittent and random, while
the magnitude of the electrical energy derived from the har-
vested RF may not always be sufficient to maximize through-
put. It is therefore imperative that the CRN is energy efficient
in terms of balancing the energy consumption during sensing
and transmission activities with the amount of energy har-
vested. In the conventional cognitive radio networks (which
can otherwise be referred to as unconstrained energy counter-
part), a sensing-throughput trade-off [5] exists, which hinges
on the sensing time and sensing accuracy. However, in the
context of energy harvesting CRN, the outcomes of the
sensing process (i.e. the sensing time and sensing accuracy)

84784 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-5043-7997
https://orcid.org/0000-0002-7827-5448


A. A. Olawole et al.: Cooperative Spectrum Sensing in Multichannel CRNs

are energy constrained, making the energy harvesting-based
CRN (EH-CRN) a more complicated scenario.

A. RELATED WORKS
The effect of energy arrival rate on spectrum sensing and
access policy in EH-CRN is investigated in [6] and [7], where
the authors formulated the problem as a constrained partially
observable Markov decision process (POMDP). In partic-
ular, the studies in [6] identify the optimal sensing policy,
while [7] is an extension of [6] that determines the optimal
sensing policy and detection threshold that maximizes the
expected total throughput under energy causality and colli-
sion constraints. Chung et al. [8] investigated the relationship
between the optimal sensing duration and the corresponding
sensing threshold with the purpose of conserving energy
while the average throughput is maximized. In [9], Park and
Hong analyzed the theoretical upper bound on the maxi-
mum achievable throughput of the energy harvesting based
secondary user as a function of the energy arrival rate and
the temporal correlation of the primary traffic under an
energy causality and collision constraints. The fundamental
trade-off between spectrum sensing and the SU expected
throughput for a conventional energy unconstrained CRN
is studied in [10]. Inspired by [10], Yin et al. [11] focused
on the harvesting-sensing-throughput trade-off and the joint
optimization for save-ratio (i.e. the proportion of the frame
length expended on harvesting energy, denoted as ρ : 0 ≤
ρ < 1 ), sensing duration, sensing threshold and fusion rule
to maximize the expected throughput in the EH-CRN. The
work in [12] jointly optimizes energy harvesting and spec-
trum sensing in the EH-CRN subject to the constraints on the
energy causality, collision, and temporal correlation of prob-
ability of sensing the idle/occupied channel to maximize the
achievable throughput. In [13], Khoshabi Nobar et al. inves-
tigate the performance of an RF-powered green cognitive
radio network (RF-GCRN), where a central node, called a
power beacon (PB), harvests green energy from ambient
sources and wirelessly delivers random harvested energy
to cognitive users. Nevertheless, [6]–[9], [11]–[13] merely
address a non-cooperative spectrum sensing where a single
SU co-exits with only one PU on the channel.

Biswas et al. [14] however, investigated a sensing-
throughput optimization problem in EH-CRN based on
cooperative spectrum sensing among the participating SUs.
In particular, the authors focused on the trade-off between
sensing time and sum capacity of the SUs with respect to
transmission power and sensing time. In [15], Celik et al.
considered the design of a heterogeneous energy efficient and
energy harvesting cooperative spectrum sensing (EEH-CSS)
scheme subject to the fundamental EEH-CSS constraints. The
authors considered the heterogeneity of the SUs in terms
of the non-identical harvesting, sensing, and reporting char-
acteristics. The problem in [15] is formulated to determine
the optimal asymptotic active probability, sensing duration,
and detection threshold that maximize the achievable total
throughput. The study in [14] formulated the problem as a

mixed integer non-linear program (MINLP) with the objec-
tive to determine the access decision variables, the transmit
power, the optimal sensing time and the number of slot that
maximize the average throughput. In [16], Pratibha et al.
employ the finite-horizon POMDP model to derive the opti-
mal policy that can maximize the expected throughput while
satisfying the PU detection and the energy causality con-
straints. The study in [17] optimizes the optimal sensing time
that maximizes average throughput and the harvested energy.
In [18], for an overlay EH CRN, the authors aim to find
an optimal sensing time to maximize throughput of SU and
the harvested RF energy. Residual energy maximization is
explored with spectrum sensing and SU transmission in [19].

The critical issue in EH-CRN from the afore-mentioned
literature is that the RF energy arrival from the ambient RF is
random, while the magnitude of the electrical energy derived
from the harvested RF may not always be sufficient to max-
imize throughput. The works in [15] and [20] considered a
hybrid energy harvesting networkmodel where the secondary
user is capable of harvesting energy from both renewable
sources (e.g. solar) and ambient radio frequency signals.
However, the concern with this is that the application of such
conventional renewable energy could be limited in certain
environments, time and weather and, this could be critical in
applications where quality of service is of utmost concern.
In [21], the SU splits the channel into two sub-channel sets.
One for sensing the PU and the other for collecting the RF of
the PU signal. In the transmission slot, the harvested energy
is supplied to compensate the sensing energy loss in order
to guarantee the throughput. The problem is formulated to
determine the optimal sub-channel set, sensing time, and
transmission power that maximize the aggregate throughput,
harvested energy and the energy efficiency of the SU over all
the sub-channels. However, the details of the energy source
for data transmission is not mentioned. In [22], RF energy
could be harvested from the PU and the reporting SUs, and
the problem is formulated into a multi-objective optimiza-
tion (MOP) to optimize the spectrum sensing performance,
under the constraints of the harvested energy at SU and the
interference from SU on PU receiver. The afore-mentioned
works only investigate a single channel case, which is quite
simplistic for communication systems. Practical wireless
communication networks are inherently multi-user and mul-
tichannel with peculiar challenges and benefits.

The authors in [23]–[25] propose a multi-channel harvest-
ing schemes where an SU can sense the spectrum to deter-
mine the harvesting and communication geographical zones,
such that it can take a decision to harvest or transmit data
based on the zone it belongs to. An SU requiring to transmit
data would need to stay in at least one of harvesting zones
of active PUs, otherwise the SU will have no energy for
transmitting data. In [24] the problem is formulated to jointly
optimize the number of sensing samples and sensing thresh-
old in order tominimize the sensing time and hencemaximize
the harvested energy. Xu et al. [25] investigated the problem
to determine the optimal channel selection probability that
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maximizes the average throughput of SUs. In these papers,
cooperative spectrum sensing is not considered.

Optimal multi-channel cooperative spectrum sensing in
energy unconstrained CRN has been studied in [26], where
the authors formulated the problem to determine the optimal
sensing time in a slot and how the total sensing time can be
distributed to all channels. However, for energy harvesting
system, the sensing-throughput trade-off that naturally exits
in a conventional CRN is further complicated by energy
constraint. Nevertheless, inspired by [26], the work presented
in this paper focuses on finding the optimal cooperative spec-
trum sensing parameters in multi-channel cognitive radio net-
works with energy harvesting. In addition, the work presented
here also investigates a different network scenario from the
study in [26], in terms of the channel assignment to each
user. In what follows, the main contributions of this paper are
summarized.

B. MAIN CONTRIBUTIONS
1) Different from the studies on EH-CRNs, which focus

on single channel network model [14], [15], the work
presented in this paper considers the performance of
energy harvesting secondary users in a practical multi-
channel environment. In order to enhance the spectrum
sensing performance, the secondary networks (SN) is
modeled as overlapping clusters, where the number and
the candidate channels assigned to each user are not
necessarily equal. In addition, the heterogeneity of the
network is also considered in terms of sensing quality
of the cooperating secondary users.

2) The performance of the EH-CRNs in terms of
the achievable throughput has been reported to be
dependent on the energy arrival rate [6], [9]. This
paper shows that by exploiting the benefit of the
multi-channel scenario, the amount of energy harvested
can increase with increasing number of the assigned
channels to each SU. This improves the probability
that the SU is active and correspondingly improves
throughput. However, this is not without a cost, since
energy consumption also increases with the number of
channels sensed, revealing that there is an optimum
number of PU channels to SU which, maximizes the
energy efficiency of the EH-CRN.

3) With a goal to maximize the average throughput of the
energy harvesting based SUs, the problem is formu-
lated as a mixed integer non-linear optimization prob-
lem (MINLP) to jointly determine the optimal channel
assignment, sensing duration in each frame, distribu-
tion of the sensing duration among the assigned chan-
nels for every SUs, and the detection threshold of each
SU sensing each channel. This differs from [14], [15]
and [26], in that while [14] and [15] only considered
the problem in a single channel EH-CRN, the authors
in [26] investigated the problem in a conventional
(energy unconstrained) CRN, where a set of SUs are
made to sense the same group of PU channels.

II. SYSTEM MODEL
This section describes themodel and assumptions adopted for
the cooperative spectrum sensing in multichannel cognitive
radio networks with energy harvesting

A. COGNITIVE RADIO NETWORK MODEL
This paper considers a cooperative spectrum sensing in mul-
tichannel cognitive radio networks with energy harvesting
secondary users. The network comprises N SUs and M
PUs, both randomly deployed within Am2 area. The distance
between PUj and SUi is denoted as d spi,j whereas the distance
between SUi and SUk (i 6= k) is d ssi,k . Both d

sp
i,j and d

ss
i,k are

random values, since the deployment of both PUs and SUs are
assumed random. The secondary users’ network includes a
central controller (CC) located within the transmission range
of the SUs. The CC gathers the individual SU parameters
such as the evaluated non-cooperative probability of miss-
detection, the channel list, and the co-ordinates of the SUs
locations. The CC is responsible for the frequency assignment
based on the received information from the SUs. Therefore,
the frequency assignment is done centrally, while coopera-
tive spectrum sensing for channel access is distributed since
SUs in each cluster cooperatively decide the status of each
channel.

The considered time slotted operation of active energy
harvesting based secondary users (EH-SUs) with heteroge-
neous SNR is illustrated in Figures 1a and 1b, in which
cluster formation (or channel assignment) precedes the
sensing-transmission/ harvesting frame. The frame length T
is divided into a sensing period with duration τs, the report-
ing/data fusion/broadcasting time of τr and the transmis-
sion/harvesting period of tT = T − τs − τr . During the
sensing phase, each SU executes local spectrum sensing of
the assigned K channels within period τs based on energy
detection method. The SUs then report the sensing results to
the corresponding cluster heads in each of the K clusters for
cooperative decision. Each SU is updated with the channel
status by the cluster heads through broadcast. It is assumed
that the secondary user network is scheduled to transmit on
time division multiple access (TDMA) protocol. Therefore,
the transmission period in each frame is further divided into
(data transmission) slots, and each SU i is allocated a slot ti,j
on its transmit channel j, which is equivalent to

ti,j =
(T − τr − τs)

zj
, ∀i ∈ {1, 2, · · · zj}, (1)

where the parameter zj denotes the number of SUs assigned
to transmit on channel j.

Fig. 1a shows a scenario where each SU can opportunis-
tically transmit or harvest RF energy from the PU of the
transmit channel only. For instance, SU1 in the figure first
cooperate with other SUs in all the K clusters to sense the
PU channels in those K clusters. If the transmit channel is
determined idle H t

0, the SU would transmit its data in the
transmission slot S2 and then sleep in the remaining period.
However, if the transmit channel is busy H t

1, the SU harvest
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FIGURE 1. System model illustrating the frame structure of the
cooperative spectrum sensing activities in EH-CRNs. Cluster formation
precedes the sensing-transmission frame. Each frame is divided into z j

time slots (S1,S2, · · ·Sz), where z is the number of SUs allocated on
channel j for opportunistic access: (a) single RF harvesting source
(b) multiple RF harvesting sources.

RF energy from the PU throughout the period. It is assumed
that channel status does not change within a frame. Fig. 1b
on the other hand illustrates the scenario where SU can
opportunistically harvest from multiple RF sources.

In Fig. 1b, after cooperative spectrum sensing to determine
the channel status, SU1 harvest RF energy from the transmit
channel (CH1) if the channel is busy H1,t

1 . If the channel
is idle H1,t

0 , the SU transmits on slot 2 of CH1 and then
harvest opportunistically from any of theK−1 (i.e. 2, · · · ,K )
channels for the remaining period. Fig. 2 illustrates the con-
sidered (overlapping) clusters, in which multiple channels
are assigned to each SU, while each PU can cooperatively
be sensed by multiple SUs. This is a case of many-to-many
combinatorial assignment.

Therefore, a cluster is made up of a group of SUs that
cooperate to sense a particular PU channel. In this case, an SU
can belong to multiple clusters. Hence, all the SUs in a cluster
may not necessarily share one channel for transmission in
every frame. Following the channel assignment at the begin-
ning of each frame, each SU selects one of the K assigned
channels randomly as a transmit channel. It is assumed that

FIGURE 2. Network model illustrating overlap clustering assignment.

the energy requirement for cluster formation is negligible in
comparison with the energy demand for spectrum sensing
and data transmission, since the bulk of the cluster forma-
tion/channel assignment work is performed by the central
controller.

B. PRIMARY NETWORK MODEL
A primary network (PN) with M narrow band spec-
trum (channels) is considered. The network equally com-
prises of M PUs that share these spectrum, such that each
PU is licensed to one channel. The primary user traffic on
each channel is modeled as a time homogeneous discrete
Markov process as assumed for example in [15]. There-
fore, the spectrum randomly alternates its states between
the channel being vacant and occupied. If Sj,t denotes the
spectrum occupancy state of channel j on slot t , then the
binary hypothesis of the channel status can be represented
as Sj,t ∈ {0(vacant), 1(busy)}. The steady state probabilities
of the channel being idle and busy are denoted as P(H0) and
P(H1).

C. COOPERATIVE SPECTRUM SENSING
Spectrum sensing is executed during the sensing phase. The
number of channels assigned to SU i (otherwise referred to
as channel list) is denoted as Ki, where Ki (1 ≤ Ki ≤ M ) is
the number of channels assigned to SU i. The channel list may
be different for different users. Each SU independently senses
the assigned channels sequentially within the sensing period
denoted by τs =

∑M
j=1 xi,jτi,j, ∀i = {1, . . . ,N }, where xi,j

is the assignment variable and τi,j denotes the sensing time
of SU i on channel j. The sensing results are then reported
to the corresponding head in each cluster through a dedi-
cated common control channel (CCC) based on time-slotted
scheme. Each cluster head makes a cooperative decision
about the channel status and updates the SUs through broad-
casts. Hence, SU i is updated with the cooperative sensing
decisions of the Ki assigned channels from the respective
cluster heads. Therefore, the work models a centralized chan-
nel assignment scheme for a distributed cooperative spectrum
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sensing. The secondary users only exchange their sensing
decisions with the cluster heads in the respective clusters for
the cluster-based cooperative spectrum sensing.

Assuming a complex value PSK modulated signal and
circularly symmetric complex Gaussian (CSCG) noise for
primary signal and additive noise in the wireless channel,
the probabilities of detection and false alarm as evaluated by
SU i on channel j can be expressed as

Pd,i,j = Q

((
εi,j

σ 2
w
− γ̄i,j − 1

)√
τi,jfs

2γ̄i,j + 1

)
(2)

Pf ,i,j = Q
((

εi,j

σ 2
w
− 1

)√
τi,jfs

)
(3)

where, εi,j, γ̄i,j, fs and σw denote the detection threshold of
SU i on channel j, the average SNR of channel j on SU i,
the sampling frequency and the noise variance respectively.
The probability of a miss-detection can be obtained from (2)
as

Pm,i,j = 1− Pd,i,j (4)

The cooperative probability of detection and the cooperative
probability of false alarm as computed by each cluster head
for each channel based on OR decision fusion are evaluated
as

QD,j = 1−
N∏
i=1

(
1− PId,i,j

)xi,j
, ∀j = {1, · · · ,M} (5)

QF,j = 1−
N∏
i=1

(
1− PIf ,i,j

)xi,j
, ∀j = {1, · · · ,M} (6)

where PIm,i,j = Pm,i,j(1 − Pe) + (1 − Pm,i,j)Pe and PIf ,i,j =
Pf ,i,j(1 − Pe) + (1 − Pf ,i,j)Pe. The parameter Pe denotes
the probability of reporting error. The OR rule is adopted
as a decision fusion rule being the optimal rule to minimize
interference to the primary user.

D. ENERGY MODEL
It is assumed that the SU can only perform either spectrum
sensing followed by data transmission, or energy harvesting
at a time. Therefore, the charging process must stop while
the SU draws energy from the storage device to either sense
the spectrum or transmit the data in its queue. The power
consumption by each SU for spectrum sensing, cooperative
spectrum sensing overhead and data transmission activities
are denoted as ps, pr , and pt respectively. The energy state of
the SU storage facility (e.g. a super-capacitor) at the begin-
ning of the nth frame is denoted as ei,n. Hence, SU can-
not participate in the cooperative spectrum sensing when
ei,n < (psτs + prτr ).

It is assumed that secondary users harvest RF energy from
the transmitting primary users. Nevertheless, the model can
equally address a scenario where energy can be harvested
from other sources in addition to the primary user RF. The

maximum amount of energy that can be harvested in the nth

frame is expressed as:

eh,i,n = Pavail tT Pr(%), (7)

where tT = (T − τs − τr ) is the maximum period available
for energy harvesting in each frame. The parameter P(%)
denotes the probability that there is an harvested RF energy,
and Pavail = PR ηH/C represents the output of the secondary
user harvesting circuit, which is defined as the product of
the amount of received RF power PR at the SU and the
harvesting circuit efficiency ηH/C . The amount of harvested
RF energy by secondary users therefore, depends on the
magnitude of the received RF power, the harvesting circuit
efficiency, the harvesting duration and the probability that an
RF harvesting source is available.

The total energy consumption by SU i in the nth frame
denoted as ec,i,n can explicitly be expressed as

ec,i,n = psτs + prτr +
{
P(H0)(1− QF,j)

+P(H1)(1− QD,j)
}
× pt tT , (8)

where the first, second and third expression on the RHS of (8)
are the sensing energy, the reporting energy and transmission
energy respectively. Parameters P(H0) and P(H1) are the
probabilities that the transmit channel is vacant and occu-
pied with PU signal respectively. When the harvested and
consumed energy are both put into perspective, the residual
energy (state) at the beginning of the next (n+ 1)th frame for
an infinite energy storage capacity device can be updated as

ei,n+1 = max{0, [ei,n + eh,i,n − ec,i,n]} (9)

III. PROBLEM FORMULATION
In this section, two different scenarios are considered namely:
A) single harvesting source where the SU can harvest only
from the PU occupying the transmit channel, and B) multiple
RF harvesting source in which the SU can opportunistically
harvest from any of the PU in the assigned channels.

A. SINGLE RF ENERGY HARVESTING SOURCE
Under this scenario, the SU can only harvest from the elected
transmit channel when occupied with a primary user signal.
This model can also be used for EH-CRN with a single
dedicated RF energy harvesting source. The possible energy
states during the nth frame are as follows
1) The channel correctly detected to be busy with proba-

bility P(H1)QD,j. In this case, secondary user does not
transmit, but can harvest energy from the transmitting
primary user in the rest of the nth frame. Therefore,
the throughput is zero.

2) Channel correctly detected to be idle with probability
P(H0)(1−QF,j). The SU transmits in the nth frame for
a period of T−τr−τszj and sleep for the rest of the frame.
Energy harvested is zero.

3) Channel incorrectly detected to be busy (false alarm)
with probability P(H0)QF,j. The SU’s opportunity to
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es,1h,i,n = Pavail tTP(H1), ec,i,n = psτs + prτr : P(H1)QD,j

es,0h,i,n = 0, ec,i,n = psτs + prτr + pt

(
tT
zj

)
: P(H0)(1− QF,j)

es,0h,i,n = 0, ec,i,n = psτs + prτr : P(H0)QF,j

es,1h,i,n = 0, ec,i,n = psτs + prτr + pt

(
tT
zj

)
: P(H1)(1− QD,j) (10)

esi,n+1 =


ei,n + e

s,1
h,i,n − psτs − prτr : P(H1)QD,j

ei,n − psτs − prτr , : P(H0)QF,j
ei,n − psτs − prτr − pt

(
tT
zj

)
: P(H0)(1−)QF,j)+ P(H1)(1− QD,j)

(11)

access the channel is lost. No energy is harvested and
the achievable throughput is also zero.

4) Channel incorrectly detected to be vacant (miss-
detection) with probability P(H1)(1 − QD,j). The SU
transmits in the nth frame, but the data interferes with
the primary user’s signal, and nothing is gained.

Therefore, under this scenario, the SU can harvest energy
on the transmit channel with probability P(H1)QD,j, transmit
data with probability P(H0)(1 − QF,j) + P(H1)(1 − QD,j),
or remain idle (neither harvesting RF nor transmitting) with
probability P(H0)QF,j. The amount of energy consumed and
energy harvested es,µh,i,n (where, µ ∈ {0, 1} denotes the chan-
nel’s idle and busy status respectively) in each state can be
expressed as in (10), as shown at the top of this page. While
an action is taken, the SU energy state in the next frame is
evaluated as (11), as shown at the top of this page. Therefore,
from (10) the amount of harvested energy in a single source
scenario can be expressed as

esh,i,n = Pavail · tT · P(%s), (12)

where P(%s) = P(H1).

B. MULTIPLE RF ENERGY HARVESTING SOURCES
This is particularly useful in a network where primary user
services may be inactive for a long period of time (e.g., digital
TV broadcasting), and the stored energy in the SUs would
more likely get depleted resulting in outages. The possible
states during the nth frame are:

1) The transmit channel correctly detected to be busy
with probabilityP(H1)QD,j. In this case, secondary user
does not transmit, but can harvest energy in the rest of
the nth frame. Therefore, the throughput is zero.

2) Transmit channel correctly detected to be idle with
probability P(H0)(1 − QF,j). The SU transmits in the
nth frame for a period ti,j (as defined in (1)) and can
then harvest from any of the Ki − 1 channels that is
found busy for the rest of the frame.

3) Transmit channel incorrectly detected to be busy (false
alarm) with probability P(H0)QF,j. The SU’s oppor-
tunity to access the channel is lost. The achievable

throughput is therefore zero, and no energy is
harvested.

4) Transmit channel incorrectly detected to be vacant
(miss-detection) with probability P(H1)(1−QD,j). The
SU transmits in the nth frame, but the data interferes
with the primary user’s signal, and nothing is gained.
However, energy can be harvested from any of the
Ki − 1 channels for the rest of the frame.

Therefore, different from the single harvesting source sce-
nario, the SU can opportunistically harvest energy in every
frame except when there is a false alarm on the transmit
channel. The amount of energy consumed and harvested in
each state can be expressed as in (13), as shown at the top
of the next page. When an action is taken, the SU energy
state in the next frame can similarly be expressed as (14), as
shown at the top of the next page. The parameter P(�1) is
the steady state probability that at least one of the remaining
Ki − 1 assigned channels would be occupied by PU and thus
be available for energy harvesting by the SU. This probability
follows a binomial distribution given as

Pr(�1) =
Ki−1∑
j=1

(
Ki − 1
j

)
Pr(H1)j(1− Pr(H1))Ki−1−j, (15)

where (
Ki − 1
j

)
=

(Ki − 1)!
(Ki − 1− j)!j!

. (16)

From (13), the amount of harvested energy in the multiple
harvesting sources scenario can be expressed as

emh,i,n = Pavail tT · P(%m), (17)

where P(%m) = min
(
1,
(
P(H1) + P(�1)

(
zj−1
zj

)))
is the

probability of energy harvesting in amultiple source scenario.
At Ki = 1, the expression in (17) becomes emh,i,n = esh,i,n
since there is no event to choose from, making Pr(�1) = 0.
Therefore, the multichannel gain on the harvested energy (i.e.
the ratio of the harvested energy in a multiple harvesting
source to the harvested energy in a single harvesting source)
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em,1h,i,n = Pavail · tTP(H1), ec,i,n = psτs + prτr : P(H1)QD,j

em,0h,i,n = Pavail
(zj − 1)(tT )

zj
P(�1), ec,i,n = psτs + prτr + pt

(
tT
zj

)
: P(H0)(1− QF,j)

em,0h,i,n = 0, ec,i,n = psτs + prτr : P(H0)QF,j

em,1h,i,n = Pavail
(zj − 1)(tT )

zj
P(�1), ec,i,n = psτs + prτr + pt

(
tT
zj

)
: P(H1)(1− QD,j) (13)

emi,n+1=


ei,n + Pavail tT · P(H1)− psτs − prτr : P(H1)QD,j
ei,n − psτs − prτr , : P(H0)Qf ,j
ei,n + Pavail

(zj−1)(tT )
zj P(�1)

− psτs − prτr − pt
(
tT
zj

)
: P(H0)(1− QF,j)+ P(H1)(1− QD,j)

(14)

can be evaluated as

Gmh,i,n =
emh,i,n
esh,i,n

=
P(%m)
P(%s)

, (18)

where the expression in (18) is upper bounded as P(H1)−1.
In both cases considered in Sections III-A and III-B,

the EH-CRN results in a dynamic secondary user energy
state over time, and the energy level in the (n + 1)th frame
depends on the residual energy and the action taken during
the nth frame. The design strategy for the EH-CRN can thus
be formulated as a stochastic optimal control problem given
by π∗ = argmax

π
V π (S0), and the expected reward is defined

as [27]

V π (s0) = argmax
π

E
[ G∑
r=1

δr−1R(sr , ar )
]
, (19)

where 0 < δ < 1 is a discount factor that trades off the
importance of the immediate and future reward. The target is
to determine the optimal policy π which specifies the optimal
action in the state and maximizes the long-term expected
reward. The policy π therefore, maps the SU energy state
at each frame to the possible action taken, while G repre-
sents the planning horizon. Therefore, (19) models a general
class of Markov decision processes (MDP), in which states
{s1, · · · sG} ∈ S refer to the SU energy states, and the action
{a1 · · · aG} ∈ A refers to the amount of energy to be used for
spectrum sensing and data transmission. The optimal value
functionV π

∗

of policyπ represents themaximum cumulative
function of rewards (i.e. V π

∗

≥ V π ) which can be obtained
as a solution of the Bellman recursion, given by

Vn(S) = max
a∈A

E
[
R(s)+ δ

∑
s′∈S

T (s, a, s′)Vn−1(s′)
]

= max
a∈A

E
[
tT
T

{
(1− QF,j)P(H0)C0,j

+ (1− QD,j)P(H1)C1,j

+ δ
∑
s′∈S

(
P(H0)(1− QF,j)+ P(H1)(1− QD,j)

)

×

(
ei,n − psτs − prτr − pt

(
tT
zj

)
+ βh,i,n

)
+P(H1)QD,j

(
ei,n + φh,i,n − psτs − prτr

)
+P(H0)QF,j

(
ei,n − psτs − prτr

) }]
, (20)

The parameterφh,i,n represents the energy harvestedwhen the
transmit channel is correctly detected to be busy (as expressed
in both (10) and (13)). The parameter βh,i,n represents the
energy harvested from any of the Ki − 1 channels, which
is zero for Ki = 1, whereas T (s, a, s′) = Pr(s′|s, a) is
the transition function, which expresses the probability that
the SU energy state changes from s′ to s when action a is
taken.

However, the state and action space in (19) for EH-CRN are
continuous and infinite, making the solution computationally
intractable, more especially for the multi-user, multi-channel
case under consideration. Hence, in the subsequent section,
the impact of the current action on the future reward will be
ignored, and focus only on maximizing the expected imme-
diate reward in an optimal myopic strategy. This approxima-
tion method is also adopted in the works presented in [11]
and [15] among others.

IV. APPROXIMATE FORMULATION AND SOLUTION
Optimizing the original problem in (20) is a sequential deci-
sion making process which attempts to determine the imme-
diate and future rewards based on the possible actions taken.
However, this becomes very difficult due to the tight coupling
between the current action and the future reward. In this
section, the original stochastic optimal control problem is
approximated to a myopic policy such that the optimal policy
in (20) can be approximated as

Vn(S) ≈ R(xi,j, τs, τi,j, εj)

=
(T − τs − τr )

T

{
(1− QF,j)P(H0)C0,j

+ (1− QD,j)P(H1)C1,j

}
, (21)
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where (21) is the immediate reward on channel j based on the
current action, the parameter C0,j = log2(1+ ξi,j) represents
the average capacity of the SU i on the idle channel j, and
C1,j = log2(1 +

ξi,j
1+ξj

), denotes the capacity of the SU i
when there is collision with the primary user signal (with
SNR ξj) due to miss-detection. Since SUi can only select one
of the Ki channels randomly as a transmit channel, a mean
value of ξi,j = ξ̄ s and ξj = ξ̄p are assumed for SNR values
of SU and PU on the transmit channel. Hence, the average
capacity of the SU on the transmit channel without or with
the presence of PU signal can be expressed as C0 = log2(1+
ξ̄ s) and C1 = log2(1 +

ξ̄ s

1+ξ̄p
) respectively. Different from

the solution to the problem in (20), this policy is essen-
tially a static approach. Existing studies have however shown
that myopic policy is close in performance to the optimal
policy [28]–[30].

The objective is to jointly determine the optimal channel
assignment (xi,j), the detection threshold (εi,j), the sensing
duration (τs), and the distribution of the sensing duration
among the assigned channels (τi,j). This is done with a goal
to maximize the average throughput of the secondary users.
The time taken by SU i to sense channel j, j ∈ {1, 2, ..,M}
is denoted by τi,j, i ∈ {1, 2, . . . ,N }, and both τs and τi,j
are continuous variables. The average normalized throughput
maximization per channel can thus be formulated as
Problem P1:

max
τs,{τi,j},{εi,j},{xi,j}

R(τs, τi,j, εi,j, xi,j)

= max
τs,{τi,j},{εi,j},{xi,j}

[
T − τs − τr

TM

×

M∑
j=1

(
(1− QF,j(τi,j, εi,j, xi,j))P(H0)C0,j

+ (1− QD,j(τi,j, εi,j, xi,j))P(H1)C1,j

)]
,

(22)

subject to: QD,j(τi,j, εi,j, xi,j) ≥ β, (C1)

ec,i,n ≤ ēh,n, i ∈ {1, . . . ,N }, (C2)

0 ≤ τs ≤ (T − τr ), (C3)

M∑
j=1

xi,jτi,j = τs, τi,j > 0, ∀i ∈ {1, . . . ,N },

(C4)

M∑
j=1

xi,j ≤ Kmax , ∀i ∈ {1, . . . ,N }, (C5)

N∑
j=1

xi,j ≤ nmax , ∀j ∈ {1, . . . ,M}, (C6)

xi,j ∈ {0, 1}, (C7)

where

ēc,i,n = psτs + prτr

+
T − τr − τs

M
pt

M∑
j=1

(
P(H0)(1− QF,j)

+ P(H1)(1− QD,j)
)
.

In problem P1, the expression in (22) defines the objective
function. Constraint (C1) guarantees the protection of PU
against interference from SUs, while (C2) and (C3) ensure
that the energy causality and time causality are satisfied.
The constraints in (C2) and (C3) guarantee that the average
energy budget of the SU does not exceed its total available
energy and that the time budget does not exceed the frame
period respectively. Constraint (C4) ensures that the total time
spent by any SU in sensing the assigned channels Ki, (1 ≤
Ki ≤ M ) does not exceed the sensing duration τs in a frame.
In constraints (C5) and (C6), the number of PU channels
that can be assigned to any SU, and the number of SUs
that can be assigned to a single PU channel are limited to
a specified values. Constraint (C7) defines the assignment
variable type. From constraints (C5) and (C6), the assignment
problem defines an overlapping cluster scheme, where an
SU can belong to multiple clusters. Each cluster is however,
identified with a particular channel or frequency.

The problem in P1 is a mixed integer non-linear optimiza-
tion (MINLP) and non-convex jointly in xi,j, τs, τi,j, and εi,j.
The problem defines a more complicated scenario due to the
consideration for a practical overlapping clustered network
in the multi-channel scenario. High degree of coupling also
exists among the optimization variables, which makes direct
decomposition difficult. In order to solve it, the approach
of alternating convex optimization is adopted [31]. That is,
given a non-convex problem f (x) with variables (x1, . . . xn)
∈ Rn, while t1, . . . , tk ⊂ {1, . . . n} are index subsets with
tj ∈ {1, . . . , n}, and supposing the problem is convex in subset
of variables xi, i ∈ tj, then alternating convex optimization
method involves cycling through j, in each step optimizing
over variable xi while, i /∈ tj are fixed [32]. Hence, the proce-
dure alternates between determining the optimal assignment
xi,j with fixed τs, εi,j, and τi,j, and then, given xi,j, with fixed
εi,j and τi,j, optimize over τs. Finally, with given xi,j and τs
optimize over τi,j, and εi,j, and vice-versa iteratively until the
algorithm converges.

A. OPTIMAL CHANNEL ASSIGNMENT
With fixed values of τs, εi,j, and τi,j, problem P1 reduces
to a channel assignment problem. Furthermore, for a fixed
sensing budget in terms of the time-bandwidth product in
the energy detection-based sensing scheme, the sensing per-
formance is an increasing function of the received signal-to-
noise-ratio. Therefore, by taking SNR as an active parameter
for determining the optimal channel assignment, the first
expression in the RHS of the objective function in (22)
reduces to a constant term since the probability of false
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alarm (2) is independent of SNR. Moreover, in the overlay
CRN under consideration, the secondary users cannot have
a successful transmission when the channel is occupied with
the PU signal. Therefore, it is only reasonable to minimize
the second expression on the RHS of the objective function
in problem P1, (i.e. (1 − QD,j)P(H1)C1,j) in order to reduce
interference to PU signal and the energy consumption for
unsuccessful transmission. This is equivalent to
Problem P2:

max
χ

Z (xi,j, τs, τi,j, εi,j) = min
χ

M∑
j=1

{
1− QD,j(xi,j)

}
, (23)

subject to :
N∑
i=1

xi,j ≤ nmax , j ∈ {1, 2, . . . ,M} , (C1)

M∑
j=1

xi,j ≤ Kmax , i ∈ {1, 2, . . . ,N } , (C2)

xi,j ∈ {0, 1} . (C3)

The assignment matrix is represented by χ = {xi,j}M×N , that
is xi,j = 0 or 1 depending on whether SU i is assigned channel
j or not. The problem in (23) is a nonlinear integer program-
ming problem. However, by substituting (5) into (23), and
then using the identitiesmin(.) ≡ min loge(.) and loge

∏
(.) =∑

loge(.), the objective function in (23) can be linearized,
such that problem P2 can otherwise be expressed as a linear
problem as follows
Problem P3:

max
χ

Z (χ, τs, τi,j, εi,j) = min
χ

M∑
j=1

N∑
i=1

xi,jloge
{
PIm,i,j|γi,j

}
(24)

subject to :
N∑
i=1

xi,j ≤ nmax , j ∈ {1, 2, . . . ,M} , (C1)

M∑
j=1

xi,j ≤ Kmax , i ∈ {1, 2, . . . ,N } , (C2)

xi,j ∈ {0, 1} , (C3)

where Pm,i,j|γi,j is the non-cooperative probability of miss-
detection based on outdated channel state information [33],
evaluated as

Pm,i,j|γi,j

≈ 1− exp

(
−
εi,j

2
−

γi,jρ
2
i,j

γ̄i,j(1− ρ2i,j)

)

×

L∑
k=0

{
γ̄i,j(1− ρ2i,j)

}k
{
γ̄i,j(1− ρ2i,j)+ 1

}k+1 u+k−1∑
q=0

1
q!

(εi,j
2

)q

× 1F1

−k, 1;− γi,jρ
2
i,j

γ̄i,j(1− ρ2i,j)
{
γ̄i,j(1−ρ2i,j)+ 1

}
. (25)

The motivation for (25) is to compensate for the indepen-
dence of the PU activities and the effect of small scale
fading during the channel assignment. The parameter γi,j
represents the instantaneous SNR of PU j at SU i, and γ̄i,j
denotes the average SNR of PU j at SU i. The parameter
ρi,j = J0(2πFmaxd,i,jεi,j) is the correlation coefficient between
the predicted channel response ĥi,j and the outdated channel
response hi,j (based on Jakes’ correlation model), J0(.) is
the Bessel function of the first kind and zeroth order, and
Fmaxd,i,j denotes the maximumDoppler shift. Therefore, ĥi,j and
hi,j represent the channel responses at time t + εi,j, and the
outdated channel response at t respectively.

Equation (25) is however, a generalized expression for the
probability of miss-detection in a practical channel. The case
where the SU might only have access to causal CSI (which
is equivalent to εi,j = 0) is already embedded. Since, as
ρ2i,j→ 1, which happens when εi,j → 0 or in a properly
correlated channel, Pm,i,j|γi,j → 1 − Qu

(√
2γ̄i,j,

√
εi,j
)
[33].

On the other hand, as ρ2i,j → 0, i.e., with increasing εi,j, (25)
approaches

P̂m,i,j ≈ 1−
L∑
k=0

{
γ̄i,j
}k{

γ̄i,j + 1
}k+1 exp(εi,j2 )

u+k−1∑
q=0

1
q!

(εi,j
2

)q
(26)

where P̂m,i,j is the average probability of miss-detection over
Rayleigh fading without CSI.

Problem P3 is thus a linear integer programming, that
describes a generalized assignment problem (GAP) with
overlapping clusters (since 1 ≤ Ki ≤ Kmax). By defining
another variable yj as the value of the cooperative probability
of miss-detection in each cluster, the linear integer problem
in problem P3 can then be written as follows
Problem P3B:

Z (χ, y)

= min
χ,yj

M∑
j=1

yj (27)

subject to :
N∑
i=1

xi,j ≤ nmax , j ∈ {1, 2, . . . ,M} (C1)

M∑
j=1

xi,j ≤ K , i ∈ {1, 2, . . . ,N } (C2)

N∑
i=1

xi,jψi,j = yj, j ∈ {1, 2, . . . ,M} (C3)

xi,j ∈ {0, 1} , yj ∈ < (C4)

where,

ψi,j = loge{Pm,i,j|γi,j (1− Pe)+ (1− Pm,i,j|γi,j )Pe}

If the equality constraint in (C3) of P3B is relaxed and
replaced by an inequality, then the problem in P3B can be
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written as P3C following some algebraic manipulations and
vectorization [36]
Problem P3C:

min
z

(0 CT )z (28)

subject to : (Aj 0)z ≤ nmax , j ∈ 1, . . . ,M (C1)

(Qi 0)z ≤ K , i ∈ 1, . . . ,N (C2)

(ψj Ci)z ≤ 0, j ∈ 1, . . . ,M (C3)

xi,j ∈ {0, 1} , yj ∈ < (C4)

where z =
(
x
y

)
and Aj,Qi, and Ci represent the coefficient

of the assignment variables define as

A =
[
I (1)m , · · · , I (n)m 0m

]

Q =


1 · · · 1 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 · · · · · · 0 · · · 0 0 · · · 0
...
. . .

...
...
. . .

...
...
. . .

...
...
. . .

...

0 · · · 0 0 · · · 0 1 · · · 1 0 · · · 0


C =

[
ψI (1)m , · · · , ψI (n)m −Im

]
By concatenating the constraints (C1) - (C3) in problem

P3C in the form

P =



A1 0
...

...

AM 0
Q1 0
...

...

QN 0
ψ1 C1
...

...

ψM CM


, R =



nmax
...

nmax
K
...

K
0
...

0


the problem in P3C can simply be written as
Problem P3D:

min
z

c̄T y (29)

subject to : Pz ≤ R (C1)

xi,j ∈ {0, 1}, yj ∈ < (C2)

where c̄T = (0 CT ).
The solution to problem P3D follows a similar pattern

as in [37], using the solver from the optimization toolbox
provided by MATLAB which is designed to solve a similar
mixed integer linear problem (MILP) formulated as [38].

min
x

f T x : A · x ≤ b, lb ≤ x ≤ ub

The vectors lb, ub, matrices A and corresponding vector b and
a set of indices integer constraints (intcon) were initialized.
Following initialization, the MILP solver is run to solve the
problem for vector x, where f (x) is the coefficient matrix
of the objective function, lb and ub are lower and upper

bounds respectively. Since this is an assignment problem,
x can only be binary, such that lb = 0, and ub = 1. The
solver (intlinprog) involves the following main steps [38]:

• Reducing the problem size using linear program pre-
processing.

• Solve an initial relaxed (non-integer) problem using lin-
ear programming (dual-simplex method). The objective
functions and constraints remain the same, but any inte-
ger constraints are removed.

• Perform mixed-integer program pre-processing to
tighten the linear programming relaxation of the
mixed-integer problem.

• Try ‘‘Cut GenerationâĂİ to further tighten the linear
programming relaxation of the mixed integer problem.

• Try to find integer-feasible solutions using heuristics
• Use a Branch and Bound (BnB) algorithm to search
systematically for the optimal solution. This solves lin-
ear programming relaxations with restricted ranges of
possible values of the integer variables. It attempts to
generate a sequence of updated bounds on the optimal
objective function value.

• The bud nodes continue to generate further nodes as
it analyzes and discards the ones that do not improve
the value of the objective function until it reaches an
incumbent solution such that the absolute gap tolerance
is 10−5.

B. OPTIMAL SENSING DURATION IN A FRAME
In the objective function of problem P1, τs only appears in
(T − τs − τr )/TM, but it is intertwined with τi,j by the constraint in
(C4), hence, direct decomposition cannot be achieved. In the
expression of the probability of detection and the probability
of false alarm in (2) and (3), both Pd,i,j and Pf ,i,j increase
monotonicallywith decreasing ε, but it is practically desirable
to have a high probability of detection but low probability of
false alarm. Hence, the objective function in problem P1 can
only achieve its maximumwhen constraint (C1) is at equality,
which can be satisfied when the probability of detection for
each user on channel j Pd,i,j = Pthd,j. The proof to verify
this is similar to that provided in [10]. The value of Pthd,j that
satisfies this constraint (based on the OR - fusion rule) can be
determined from (5) as

Pthd,j = 1− exp

(
loge(1− β)∑N

i=1 xi,j

)
, ∀j ∈ {1, . . . ,M}, (30)

where β is the constraint on the cooperative probability of
detection QD,j. Therefore, (2) is equivalent to

εi,j =

√
2γi,j + 1
τi,jfs

Q−1(Pthd )+ γi,j + 1, (31)

and (3) can then be expressed in terms of Pthd as

Pf ,i,j = Q
(√

(2γi,j + 1)Q−1
(
Pthd,j

)
+ γi,j

√
τi,jfs

)
. (32)
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Hence, the first constraint can be eliminated. Moreover, since
C0,j � C1,j, and (1−QF,j)� (1−QD,j) in general, the value
of the first expression in bracket on the RHS in (22) dominates
the average throughput. Furthermore, due to the consideration
for a network where the number of assigned channels to each
SU are not necessarily equal, there is a dependence of Ki on
the value of τi,j for each SU. Therefore, by substituting τi,j =
τ̄i,j :=

τs
Ki
, ∀i = {1, · · · ,N }, and Pd,i,j = Pthd,j, problem

P1 can be approximated as
Problem P4: with fixed τi,j and εi,j, given χi,j

max
τs

M∑
j=1

R̄|(τi,j=τ̄i,j)= max
τs

Tt
TM

×

M∑
j=1

N∏
i=1

(1− Pf ,i,j(τs/Ki,Pthd,j))
xi,jP(H0)C0,j, (33)

subject to: es +
Tt
M
pt

M∑
j=1

{ N∏
i=1

(1− xi,jPf ,i,j)P(H0)
}
≤ ēh,

(C1)

0 ≤ τs ≤ (T − τr ), (C2)

where es = (psτs + prτr ) and Tt = (T − τr − τs).
The Gaussian Q-function expression in (29) can also be

written in terms of the complementary error function for ease
of mathematical analysis as

Pf ,i,j =
1
√
2
erfc

√2γi,j + 1 Q−1(Pthd,j)+ γi,j
√

fsτs
Ki

2


(34)

Using the same approach as in Section IV-A, problem P4 can
be re-written in terms of logarithmic function as

max
τs

loge R̄|(τi,j=τ̄i,j)= max
τs

{
loge

Tt
TM

P(H0)C0

+

M∑
j=1

N∑
i=1

xi,j loge
(
1− Pf ,i,j(τs/Ki,Pthd,j)

)}
, (35)

subject to: Es +
Tt
M
pt

M∑
j=1

{ N∏
i=1

(1− xi,jPf ,i,j)P(H0)
}
≤ ēh,

(C1)

0 ≤ τs ≤ (T − τr ). (C2)

Properties of Problem P4: In order to verify the convexity
or otherwise of problem P4, there is a need to show that the
objective function in (33) or (35) is concave in the range
0 ≤ τs ≤ (T − τr ). To satisfy this, the function should be
monotonically increasing for 0 ≤ τs ≤ τ

opt
s , and monotoni-

cally decreasing for τ opts ≤ τs ≤ (T −τr ), such that R(τ
opt
s ) is

the only maximal in the entire range. Therefore, the objective
function must satisfy three conditions as follows

1) The first order derivative must be positive at τs = 0,
i.e., R′(τs)|(τs=0) > 0

2) It must be negative at τs = T − τr , i.e.,
R′(τs)|(τs=T−τr ) < 0

3) The second order derivative must be negative, i.e.,
R′′(τs) < 0
Proof: The first two conditions together imply that there

must be a point in 0 ≤ τs ≤ T −τr that maximizes R(τs). The
first and the third conditions together infer thatR(τs) is strictly
increasing in the range 0 < τs < τ

opt
s , while the second

and the third conditions together indicate that R(τs) is strictly
decreasing in the range τ opts < τs < T − τr . Therefore,
the three conditions together imply that R(τs) attains a global
maximum within the range 0 ≤ τs ≤ T − τr . The first
order derivative of the objective function can be expressed
as in (36), as shown at the top of the next page. For the
expression in (36) to be positive, the second expression on
the RHS must be less than the first expression. In which case,
it is necessary to show that (37), as shown at the top of the
next page is satisfied.

In (37), as τs approaches a value very close to zero (e.g.,
10−6), the first expression on the RHS can be approximated
to − 1

T−τr
. Generally, exp(.) < 1 (for Pf ≤ 0.1) while,

the complementary error function erfc. ≤ 1. Therefore,√
2π fsτs
Ki
≈ 2 (for the value of fs as selected in Table 1). Hence,

the second expression on the RHS takes a value close to fsγi,j,
which is obviously much greater than the first expression,
i.e., fsγi,j � 1

T−τr
. Therefore, ∂

∂τs
R(τs)|(τs≈0) > 0 in (36)

and the first condition is satisfied.
However, at τs very close to T − τr , the value of the

first expression in the RHS of (36) tends to negative infin-
ity (−∞), while the second expression approximates to
−

fsγi,j
√
Ki

2π fs(T−τr )
. It is obvious that fsγi,j

√
Ki

2π fs(T−τr )
< ∞, satisfying

the second condition that is, ∂
∂τs
R(τs)|(τs≈T−τr ) < 0.

The second order derivative of the objective function can
be expressed as (38), as shown at the top of the next page.
Following the same logic, it can easily be seen that the first
expression on the RHS of the second order derivative (38),
denoted as A is a positive value for all values of τs. The
denominator (numerator) of the second expression denoted as
B is negative (positive) for all values of τs (for the same reason
as stated earlier), making the second expression negative.
Both the numerator and denominator of the third expression
designated as C are positive. The fourth expression denoted
asD is negative since its denominator (numerator) is negative
(positive). Therefore, putting A,B,C andD together, the sec-
ond order derivative in (38) is a negative value for all values
of τs, that is,

∂2 R(τs)
∂τ 2s

< 0, satisfying the third condition. Fig-
ures 3a, 3b and 3c are the plots of the expressions in (33), (36)
and (38), illustrating the behavior of the objective function,
the first order derivative, the second order derivative respec-
tively. The characteristic of the plots shown also validates
the analysis that the objective function is concave, making
P4 strictly convex in the range 0 < τs < (T − τr ).
Therefore, R(τs) satisfied the three conditions that the

objective function is strictly (unimodal) concave with respect
to τs in the range 0 ≤ τs ≤ (T − τr ).
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∂

∂τs
R(τs) =

1
τr−T + τs

−
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M

M∑
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N∑
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xi,j

fsγi,j exp
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Ki
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(
erfc

(
ϑ +
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√
fsτs
Ki

2

)
− 2

)√
2π fsτs
Ki

(36)

1
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>
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xi,j
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fsτs
Ki

2

)2


(
erfc

(
ϑ +
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√
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)
− 2

)√
2π fsτs
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∂2

∂τ 2s
R(τs) = −

1

(τr−T + τs)2︸ ︷︷ ︸
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1
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√
2

− 1
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D

}
,

ϑ =
√
2γi,j + 1Q−1(Pthd,j).

Having proved that the objective function in P4 is a uni-
modal function, which by extension can also show that the
first part of the constraint in (C1) of P4 is equally concave,
the optimization problem in P4 can easily be solved as a
convex problem. In order to do this, the problem is analyzed
under two scenarios as follows.
Case 1 (Optimal Solution With Unconstrained Energy):

Under this scenario, the operation of the energy harvested SU
is not limited by energy, and the SU can achieve maximum
average throughput. Figure 4a shows the characteristic of
the problem under energy unconstrained situation. In this
case, the solution to the problem can be obtained merely
through the sensing-throughput trade-off based on the objec-
tive function in (32) and the accompanied constraint in (C2).

The problem is strictly unimodal and there exists an optimal
solution τ ∗s,o, which can be determined using Golden section
search method for a fixed τi,j, j ∈ {1, · · · ,Ki}, ∀i.
Case 2 (Optimal Solution With Energy Constrained): In

this case, the operation of the energy harvested SU is subject
to the energy causality constraint. Fig. 4b illustrates the char-
acteristic of the problem under energy constrained scenarios
with the feasibility regions shown shaded. From the figure,
the parameter ec,n|(τs = 0) =

∏N
i=1(1 − 0.5)xi,jptT , while

ec,n|(τs = T − τt ) = ps(T − τr ) + prτr . The intersection
of the energy consumption curve and the energy harvested
(i.e. when constraint (C1) is at equality) shows the possible
sensing time (τs,e) that could maximize the objective func-
tion in problem P4 while satisfying the energy causality.
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FIGURE 3. Plots of the objective function and the derivatives w.r.t. the
normalized sensing time in problem P4 illustrating its concavity:
(a) objective function, (b) the first order derivative, (c) second order
derivative.

However, sensing time should be a small percentage of the
total frame length (for sufficient data transmission time).
Therefore, the optimal sensing duration can be obtained using
Newton Raphson’s method for a fixed τi,j, j ∈ {1, · · · ,Ki}, ∀i
as

τ ∗s,e : min
(
f (τs,e) = 0

)
,

subject to: 0 ≤ τs,e ≤ (T − τr ), (39)

where f (τs,e) is (C1) in problem P4 when the constraint is at
equality. Based on Newton-Raphson approach, the solution
to (32) can be determined as

τ k+1s,e = τ
k
s,e ±

f (τ ks,e)

f ′(τ ks,e)
, (40)

where the parameter k denotes an iteration index and f ′(τ ks,e)
is the derivative of f (τ ks,e), which is also formulated as con-

FIGURE 4. Characteristic curve of the problem P4 illustrating the
feasibility regions for the energy constrained cognitive radio networks:
(a) the objective function, (b) the energy constraint, where
ec,n|(τs = 0) =

∏N
i=1(1− 0.5)

xi,j pt T , and
ec,n|(τs = T − τt ) = ps(T − τr )+ pr τr .

straint (C1) in problem P4. The general solution to problem
P4 can therefore be expressed as τ opts = min(τ ∗s,o, τ

∗
s,e).

Both τ ∗s,o and τ ∗s,e are as earlier defined under case 1 (the
unconstrained energy region) and case 2 (constrained energy
region) respectively.

C. OPTIMAL SENSING PARAMETER PER CHANNEL
Given χ and τs, the optimal τi,j and εi,j that maximize the
objective function in problem P4 (with τi,j replacing τs/Ki)
becomes
Problem P5:

max
{τi,j},{εi,j}

M∑
j=1

R(τi,j, εi,j)|(τs=τ∗s ,χ=χ∗)

= max
{τi,j},{εi,j}

M∑
j=1

xi,j loge(1− Pf ,i,j(τi,j,P
th
d,j))P(H0)C0,j

∀i ∈ {1, . . . ,N }, (41)

subject to:
M∑
j=1

xi,jτi,j = τs, i ∈ {1, . . . ,N }, (C1)

0 < τi,j ≤ τs, i ∈ {1, . . . ,N }. (C2)

However, since the problem in P5 is maximized with Pd,i,j =
Pthd,j, then the optimal detection threshold can be simply
obtained, given τ opti,j , as

ε
opt
i,j =

√
2γi,j + 1

τ
opt
i,j fs

(
Pthd,j

)
+ γi,j + 1. (42)

The problem then reduces to a single variable optimization as
in
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M∑
j=1

xi,j

fsγi,j exp

(
−

(√
(2γi,j + 1) Q−1

(
Pthd,j

)
+

γi,j
√
fsτi,j

2

)2
)

(
erfc

(√
(2γi,j + 1) Q−1

(
Pthd,j

)
+

γi,j
√
fsτi,j

2

)
− 2

)√
2π fsτi,j

− λj = 0 (45)

M∑
j=1

xi,jτi,j − τs = 0, ∀i ∈ {1, . . . ,N } (46)

Problem P6:

max
{τi,j}

M∑
j=1

R(τi,j)|τs=τ∗s

= max
{τi,j}

M∑
j=1

xi,j loge(1− Pf ,i,j(τi,j,P
th
d ))P(H0)C0,j

∀i ∈ {1, . . . ,N }, (43)

subject to:
M∑
j=1

xi,jτi,j ≤ τs, i ∈ {1, . . . ,N }, (C1)

0 < τi,j ≤ τs, i ∈ {1, . . . ,N }. (C2)

Following the approach used in Section IV-B, it can be easily
verified that the objective function in problem P6 is a mono-
tonically increasing concave function in the range 0 ≤ τi,j ≤
τs since the first and the third conditions are also satisfied in
this case.

Using the Lagrangian multiplier approach, the Lagrangian
L(τ ,λ) of (39) is given by

L(τ ,λ) =
M∑
j=1

xi,j loge

{[
1− Pf ,i,j(τi,j,Pthd )

]

×P(H0)C0,j

}
− λj

{ M∑
j=1

xi,jτi,j − τs

}
,

∀i ∈ {1, . . . ,N }

subject to: 0 < τi,j ≤ τs, (44)

where τ = {τi,j}M×N is the channel sensing-time matrix, and
λ = {λj,∀i = {1, · · · ,N }} is the non-negative Lagrangian
multiplier associated with the channel sensing-time distribu-
tion for each secondary user. The Lagrangian dual function is
defined as g(λ) = max{τi,j} L(τ ,λ), and the dual problem as
minλ≥0 g(λ). The Lagrange dual variableλ can be obtained by
solving the corresponding optimization problem in P6 using
the following Karush-Kuhn-Tucker (KKT) conditions in (45)
and (46), as shown at the top of this page, whereby the
derivative of the Lagrangian with respect to the optimal and
the dual variables are each set to zero, and then obtain the
optimal variable as a function of the dual. It is however,
obvious that a closed form expression cannot be obtained
for the dual variable, hence, the need to determine both
the dual and primal variable iteratively using a sub-gradient

approach. Both the primal and Lagrangian dual variables are
iteratively updated as

τ t+1i,j = τ
t
i,j + δτ , i = 1, · · · ,N , j = 1, · · · ,M (47)

λt+1j = λtj + δλ, ∀i ∈ {1, · · · ,N } (48)

until convergence towards a feasible optimal solution
{τ∗,λ∗}. The parameters δτ and δλ denote step-sizes for the
primal and the dual variables respectively. Algorithm 1 gives
the summary of the solution method in Section IV

V. CONVERGENCE OF THE ALTERNATING
CONVEX OPTIMIZATION
The analysis of the convergence and optimality of the proce-
dure in Algorithm 1 is similar to that provided in [14], [39].
However, a brief explanation is given in this section. In the
context of the alternating convex optimization, the following
terms first need to be defined as given below [32].
Definition 1 (Marginally Optimum Coordinate): Let f be a

function of two variables constrained to be in the sets X ,Y
respectively. For any point y ∈ Y , it can be said that x̂ is
a marginally optimal coordinate with respect to y, i.e., x̂ ∈
mOPTf (y), if f (x̂, y) ≥ f (x, y) for all x ∈ X. Similarly for any
x ∈ X, it can be said that ŷ ∈ mOPTf (x) if ŷ is a marginally
optimal coordinate with respect to x.
Definition 2 (Bistable Point): Given a function f over

two variables constrained within the sets X ,Y respectively,
a point (x, y) ∈ X × Y is considered a bistable point if
y ∈ mOPTf (x) and x ∈ mOPTf (y) i.e., both coordinates are
marginally optimal with respect to each other.

Therefore, the optimum of the optimization problem must
be a bistable point, and the procedure must converge after it
has reached a bistable point. Although, the presented iterative
algorithm may converge to a possible local maximum point,
since the characteristic curve shown in Fig. 4 illustrates that
the EH-CRN problem could have more than one bistable
points, (one at τs close to zero, and the other at τs close to
(T−τr )). The bistable point to which the procedure converges
depends on where the procedure is initialized between 0 and
(T − τr ).
However, taking into consideration that the sensing time

must be a smaller fraction of the total frame length, the region
of attraction for this problem is a bistable point selected as
in (39). The objective function of the optimization problem in
P1 is monotonically nondecreasing at every iteration, since it
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Algorithm 1 Joint Channel Assignment and Cooperative
Spectrum Sensing in Multichannel EH-CRN
1: procedure Channel Assignment and Sensing Parameter opti-

mization.
2: Input β, Kmax , nmax
3: for j = 1 : M do
4: for i = 1 : N do
5: Obtain the channel assignment χ =

(
xi,j
)
N×M ; giving

τs and τi,j by solving problem P3 in section IV-A
• Generate the matrix 3 =

(
pm,i,j

)
N×M at the CC

based on the reported non-cooperative probability
of miss-detection on all PUs from each SU. Here,
pm,i,j (25) is the non-cooperative probability of
miss-detection of PU j evaluated by SU i.

• Determine the channel assignment scheme / cluster
formation following the method in [36].

χ∗ ⇐ χ

6: Initialization δ ⇐ 0
7: Repeat
8: Solve for optimal sensing duration τ ∗s with fixed τ̄i,j :=

τ ∗s/Ki, giving χ∗ in problem P4, section IV-B
• Obtain τs,o from the objective function in P4 based
on a Golden Section search method (for uncon-
strained energy case).

• Determine τs,e from constraint C1 of problem
P4 using Newton-Raphson method (for constrained
energy case).

• τ ∗s ⇐ min{τs,o, τs,e}
• τ

(δ+1)
s ⇐ τ ∗s

Solve for the optimal sensing time τ ∗i,j for every SU i
on channel j in problem P5 or P6, section IV-C: giving
χ∗i,j and τ

δ
s :

• Determine τ ∗i,j from problem P6 using Lagrangian
multiplier method.

• τ
(δ+1)
i,j ⇐ τ ∗i,j

9: δ ⇐ (δ + 1)
10: until τ δs == τ

δ−1
s , τ δi,j == τ

δ−1
i,j

11: Determine the detection threshold ε∗i,j from (42)
12: end for
13: end for
14: Output:χ∗, τ ∗s , {τ

∗
i,j}, {ε

∗
i,j},

15: end procedure

can be concluded from Algorithm 1 that

R(τ δs , τ
δ
i,j, ε

δ
i,j) ≤ R

(
τ (δ+1)s , τ δi,j, ε

δ
i,j

)
≤ R

(
τ (δ+1)s , τ

(δ+1)
i,j , ε

(δ+1)
i,j

)
, ∀δ. (49)

Notwithstanding, the expression is upper bounded in the
extreme scenario with τ ∗s = 0, and Qf ,j = 0

as E
{
T−τr
TM

∑M
j=1

(
P(H0)C0,j + (1− β)P(H1)C1,j

)}
, which

indicates that it converges [21], [39]. In this particular case,
the value of the objective function remains unchanged after

a single iteration. Nevertheless, since the original problem
is jointly non-convex in the optimization variables and the
problem structure could have more than one bistable point,
the convergence could only be guarantee to reach a local
optimum.

VI. SIMULATION RESULTS
This section presents the simulation results of the energy
harvesting cognitive radio network. The channel assignment
is centrally implemented at the secondary user Base Sta-
tion (SBS) based on outdated CSI, while the spectrum sens-
ing and opportunistic energy harvesting are distributed. The
network consists of varying number of PU channels and SUs
randomly deployed in a 5km×5km square area. This becomes
necessary in order to evaluate the performance of the multi-
channel CRN under varying number of assigned PU channels
to each SU. The average number of assigned channels to each
SU is dependent on the ratio of SUs to PU channels in the
network [36]. For the simulations, the system parameters are
summarized in Table 1, which are drawn mainly from [6].
In addition, the following parameter values are used: L = 50,
u = 5, µ = 3, κ = 1.0 [40] and [41]. The parameters εi,j
and Fmaxi,j are chosen randomly as 0.001sec ≤ εi,j ≤ 10sec,
and 1 ≤ Fmaxd,i,j ≤ 7 respectively in order to obtain different
correlation factor ρi,j. The primary user’s transmit power PPU
and the noise power N0 are chosen as 50mW and −90dBm
respectively ( [40] and [41]), in agreement with standard
values, while the average SNR of PU j at SU i terminal (γ̄i,j)
is evaluated based on the inverse square law.

TABLE 1. System parameters.

A. PERFORMANCE OF CRN WITH SINGLE RF
HARVESTING SOURCE
Under this scenario, the values of N and M are set to 20 and
15 respectively. Therefore, based on this ratio, different num-
ber of PU channels are assigned to each SU across the net-
work. Each SU is required to sense the assigned channels
within the same sensing period τ opts . However, the SU can
only harvest RF energy from one source, which might be
a dedicated RF source or its elect transmit channel. Results
show that optimal sensing period in a frame increases with
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FIGURE 5. Plot showing the variation of sensing duration in a frame τopt
s

with the harvested energy in the secondary user: N = 25, M = 15.

the amount of harvested energy in the energy constrained
region as shown in Fig. 5. The behavior of the plot in Fig.5
is similar to that obtained by Chung et al in [8] for a single
SU, single channel case. The results In Figs. 6a and 6b show
the optimal sensing time that maximizes average throughput
and the average throughput to consumption ratiowith increas-
ing sensing duration (harvested energy). Interestingly, these
results illustrate that there exists different optimal sensing
duration that maximizes these two metrics. Average through-
put to consumption ratio is seen to be maximized at a smaller
sensing time.

Fig. 7 shows the sensing time distribution among the chan-
nels assigned to each SU in an overlapping cluster scheme.
The figure only shows the first ten secondary users in the
network for clarity. The sensing time on each channel is
directly related to the magnitude of the received SNR of the
PUs at the terminals of the SU. Hence, the sensing time are
distributed such that its optimal pairing with the detection
threshold and SNR of each PU signal at the SUs’ terminal can
achieve the target probability of detection on each channel
(or cluster). As a result, channel with low SNR requires a
larger sensing time than the one with smaller SNR in order
to achieve the same sensing accuracy.

B. PERFORMANCE OF CRN WITH MULTIPLE RF
HARVESTING SOURCES
The performance of the CRNs with multiple PU harvesting
sources is hereby analyzed. Each SU is required to sense the
assigned channels and opportunistically harvest RF energy
from any of the assigned channels. Simulation result shows
that the amount of energy harvested increases with the RF
harvesting sources, and sensing time in a frame is equally
enhanced with increasing number of channel (or PU har-
vesting sources) assigned per SU as shown in Fig. 8. Very
importantly, Fig. 9 shows that average harvesting to con-
sumption energy ratio (otherwise refers to as active prob-
ability) can increase with increasing number of assigned
PU harvesting sources. The result in Fig. 10a presents the
relationship between the average achievable throughput and

FIGURE 6. Optimal sensing duration τ
opt
s /(T − τr ) for throughput and energy

efficiency: (a) average throughput (b) average throughput to consumption
ratio N = 25, M = 15.

FIGURE 7. Optimal sensing time of each secondary user on the assigned
PU channels τopt

i,j : N = 25, M = 15.

the number of RF harvesting sources. It shows that there is
initial increase in the achievable throughput with increas-
ing number of harvesting sources, which is reversed after a
particular threshold. The logical explanation for this is that,
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FIGURE 8. Optimal sensing duration corresponding to the number of RF
harvesting sources Ki . Note that the SU can harvest RF from only one
busy channel in a frame: N = 30, M = 25, Pavail = 0.5Watts.

FIGURE 9. Active probability corresponding to the number of RF
harvesting sources Ki : N = 30, M = 25, Pavail = 0.5Watts.

increasing the number of RF harvesting sources enhances
the energy budget and allows for adequate sensing period
for better sensing accuracy. As sensing accuracy improves
in terms of reduced false alarm rate, average throughput
increases.

On the other hand, as the number of assigned RF harvest-
ing sources increases, more channels are sensed, leading to
increase in sensing time. As a result, the data transmission
time reduces resulting in reduced average throughput. There-
fore, a trade off exists between the number of RF sources
(available for spectrum sensing and opportunistic energy har-
vesting), and the average throughput, and an optimal number
of RF sources therefore exist, which maximizes the average
throughput. In the same vein in Fig. 10b, the amount of energy
consumption increases with the number of RF harvesting
sources, since this brings about an increase in both sensing
energy due to increased sensing time and data transmission
energy (courtesy of improved sensing accuracy). The fig-
ure shows that energy consumption is largest when through-
put is at its peak. On the other hand, as more channels are
sensed, increasing the sensing time, there is a continuous
increase in sensing energy but a decline in data transmission
energy due to the reduced data transmission time. The overall
effect is a reduction of energy consumption since the effect of

FIGURE 10. Performance of the energy harvesting cognitive radio
networks with multiple RF harvesting sources Ki : (a) average throughput
(b) average consumption and (c) average throughput to consumption
ratio: N = 30, M = 25, Pavail = 0.5Watts.

the loss of transmission energy is greater that the effect of the
gain in sensing energy. This accounts for the gradual decline
in energy consumption as shown in Fig. 10b.

Fig. 10c illustrates the relationship between average
throughput to consumption ratio, (which can otherwise be
referred to as energy efficiency) and the number of assigned
PU channels. This result shows that maximum numbers of
RF harvesting sources exist over which the energy effi-
ciency can bemaximized.Within this region, both throughput
and consumption increase at almost equal proportion with
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increasing number of RF harvesting sources. However, it can
be observed that throughput to consumption ratio is max-
imized at a lower number of RF sources than the average
throughput and consumption. While both average throughput
and consumption peak atK = 5, the ratio of average through-
put to consumption is maximum atK = 4. Nevertheless there
is a rapid decline in the average throughput and throughput to
consumption ratio at K = 5.

Comparing with the work presented in e.g. [8], the results
shown in Figs. 8, 9 and 10a provide insights into how
to practically achieve better performance in the EH-CRNs.
These results illustrate the performance gains that could be
achieved, and the losses that could be incurred in EH-CRNs
in terms of sensing time, the active probability of SUs and
the achievable throughput with increasing number of radio
frequency harvesting sources.

VII. CONCLUSION
The work presented in this paper has investigated an optimal
multichannel cooperative spectrum sensing in an energy har-
vesting based cognitive radio networks. This involves deter-
mining the total sensing time needed by any secondary user
in a frame and how to distribute the total sensing time among
all the assigned channels in cooperative hard decision spec-
trum sensing. The initial non-convex, mixed integer nonlinear
problem is transformed into a multiple convex optimization
problem, which is then solved using alternating convex opti-
mization technique. Simulation results obtained show that the
considered work can improve the active probability of the
SUs by exploiting themulti-channel benefit of practical CRN.
Nevertheless, an optimum number of PU energy harvest-
ing sources exits which maximizes the average achievable
throughput and average throughput to consumption ratio in
the energy harvesting based multi-channel cognitive radio
networks.
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