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ABSTRACT With the development of image processing technology, pencil drawing has been widely used in
video games and mobile phone applications. However, the existing pencil drawing algorithms require a large
amount of time to convert a real picture into a pencil drawing; hence, it is difficult to apply them to real-time
systems. This paper proposes a parallel fast pencil drawing generation algorithm based on the graphics
processing unit (GPU) to accelerate the real-time rendering process of sketch painting. The parallelism of
the pencil drawing generation algorithm is identified via a theoretical analysis at first. Then, sub-algorithms
of the sequential algorithm are designed in parallel using the compute unified device architecture (CUDA)
programming model and executed via thread-level parallel techniques. Furthermore, an optimal cache
pattern of data that reduce the access time of the most frequently used data is structured using shared
memory and constant memory. Finally, task-level parallelism is achieved by the CUDA stream technology,
which overlaps independent sub-tasks for further acceleration. On the CUDA platform, the experimental
results demonstrate that the proposed parallel algorithm can achieve a significant increase in speedup. The
proposed algorithm achieves a performance improvement of 448.59 times compared with the sequential
algorithm, on 2560×1920-resolution images, and maintains a high degree of similarity with the real pencil
paintings. Hence, the proposed algorithm is suitable for real-time pencil drawing rendering and has promising
application prospects in non-photorealistic rendering.

INDEX TERMS Non-photorealistic rendering, pencil drawing, parallel algorithm, GPU platform, convolu-
tion operation, CUDA.

I. INTRODUCTION
Pencil drawing is a prevalent art form, which is widely
used in art, architecture, games, animation and other fields.
With the development of digital image technology, people
began to use software, such as Adobe Photoshop, to create
paintings. Pencil drawing generation algorithms can con-
vert a picture that was captured by a camera into a sketch
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approving it for publication was Ligang He.

automatically, without any human involvement.Most of those
algorithms [1]–[5] are based on line integral convolution
(LIC) [6]. Based on various criteria, digital image process-
ing (DIP) algorithms [7]–[11] achieve a better performance.
However, both types of algorithms require a long time to
provide real-time rendering and the results of the LIC-based
algorithms lack texture details.

Using compute unified device architecture (CUDA), which
is a general parallel computing platform that was cre-
ated by NVIDIA, it is possible to solve this problem
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efficiently [12]–[18]. In such data-parallel scenarios, graph-
ics processing unit (GPU) has been applied with satis-
factory results over the past decade, mainly due to the
high parallel processing performance offered by the single
instruction multiple thread (SIMT) model [19]–[21]. Both
LIC-based [22], [23] and DIP-based [24]–[27] algorithms
were transplanted onto the GPU platform to reach a large
acceleration. However, the results that were rendered by the
LIC-based and DIP-based algorithms differed from the real
pencil paintings.

In recent years, Lu C et al. proposed an algorithm based on
a combination of sketch and tone, which achieves an excellent
performance on various types of art [28]. However, because
it is a sequential algorithm, it requires a substantial amount of
time to produce a pencil drawing. Consequently, the original
algorithm is unable to render a pencil drawing in real time.
In this paper, this sequential algorithm was transplanted onto
the GPU parallel platform successfully. The main contribu-
tions of this paper are as follows:

1) The sequential algorithm is designed and implemented
in parallel on the CUDA platform. The speedup is up
to 448.59 times on 2560 × 1920-resolution images,
and for image for each resolution, less than 0.5 mil-
liseconds are required to automatically produce a pencil
drawing.

2) Each sub-algorithm is designed and implemented in
parallel using the CUDA programming model and exe-
cuted concurrently via thread-level parallelism technol-
ogy. The data are maximum-blocked for execution in
parallel by SIMT. High-frequency data are placed in
caches such as shared memory and constant memory
to minimize the memory access time.

3) Multiple independent tasks are concurrently performed
via the CUDA Stream technology. The algorithm is
divided into multiple sub-tasks and these sub-tasks are
scheduled and executed in parallel by overlapping inde-
pendent parts of each sub-task, such as data transmis-
sion and calculation.

The pencil drawing generation algorithm is implemented
by the CUDA programming model on a high-performance
server with two NVIDIA Tesla P100 GPUs. The parallel
algorithm makes full use of the parallelism of the pencil
drawing generation algorithm and accelerates the drawing
process. The experimental results demonstrate that the par-
allel pencil drawing generation algorithm achieves an aver-
age acceleration of 448.59 times on 2560×1920-resolution
images and the grayscale histogram is very close to the true
pencil drawing.

The remainder of this paper is organized as follows:
In Section II, the pencil drawing generation algorithm,
the CUDA platform and CUDA Stream are described briefly.
In Section III, the parallel design and implementation of
the parallel fast pencil drawing algorithm are described.
Section IV analyzes experimental results. In Section V,
related work is introduced and summarized. Finally, the con-
clusions of this paper are presented in Section VI.

FIGURE 1. Image processing in a sketch algorithm.

II. PRELIMINARIES
A. PENCIL DRAWING GENERATION ALGORITHM
Non-photorealistic rendering (NPR) converts a traditional
computer image to a variety of expressive styles for art.
A pencil drawing generation algorithm is a type of NPR
algorithm and it transforms a digital image into a sketch. The
algorithm is improved based on the combination of sketch
and tone [28]. As shown in Figure 1, it mainly includes two
functions: contour extraction and texture rendering. Contour
extraction is aimed to draw the edge of the object. Convo-
lution operations, as the main step of contour extraction, are
used to do this according to the gradients and lines in 8 direc-
tions. Texture rendering is used to render the real image into
the pencil-drawn textures via the grayscale transform. Finally,
the two parts of the processing results are combined to obtain
the final pencil drawing.

1) CONTOUR EXTRACTION
First, the original image is denoised via median filtering.
Then, 8 response maps are calculated by performing con-
volution operations on the gradients of the denoised images
for classification. The response maps can be calculated via
Eq. (1).

Gi = Li ∗M (1)

where i ∈ {1, 2, 3, 4, 5, 6, 7, 8} denotes eight directions with
22.5-degree increments. M is the gradient of the denoised
image,Gi for i ∈ {1, 2, 3, 4, 5, 6, 7, 8} denotes the 8 response
maps after the grouping, and Li for i ∈ {1, 2, 3, 4, 5, 6, 7, 8}
denotes 8 convolution kernels whose spans are set to 1/30 of
the image height or width to yield more accurate results.
The convolution kernels are 8 edge detection templates,
each of which is 22.5 degrees apart in direction, as shown
in Figure 2 using a size of 5× 5 as an example.

After that, pixels will be classified by selecting the maxi-
mum value ofGi. The pixels that have the maximum response
value in direction i are classified into a sub-image, which is
expressed by Eq. (2).

Ci(p) =

{
M (p) if max argi{Gi(p)} = i
0 otherwise

(2)

Via this approach, the pixels in the same direction can be
correctly classified. In Eq. (2), p represents a pixel in the
image, M (p) denotes value of the gradient of the denoised
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FIGURE 2. 8 edge detection templates.

image at p and Ci(p) for i ∈ {1, 2, 3, 4, 5, 6, 7, 8} denotes
the sub-image represented by the classification in eight direc-
tions.

Since each group in Ci(p) has the same orientation,
a straight line is used instead of discrete pixels. The convo-
lution operation can gather the pixels along the direction and
the steps of line drawing are completed again using the same
kernel, namely, Li, for a second convolution.

S ′i = Li ∗ Ci (3)

Finally, all the S ′i i ∈ {1, 2, 3, 4, 5, 6, 7, 8} matrices are
added together to calculate the combined result of and the
final pencil outline is obtained, as expressed in Eq. (4).

S =
8∑
i=1

S ′i (4)

2) TEXTURE RENDERING
In texture rendering, as illustrated in Figure 3, a histogram
of the original image and the target histogram, which is
expressed in Eq. (5), are calculated. Then, the original his-
togram is converted to the target histogram via histogram
matching and the actual pencil texture is added to the
image.

To express the tone map distribution of pencil draw-
ings, Lu Cewu et al. proposed a parametric model for
representing the tone distribution of pencil drawings [28].
Eq. (5) describes this parametric model of target histogram
J , in which v is the color grayscale value, which ranges from
0 to 1 after normalization. Here, pi(v) for i ∈{1, 2, 3} denotes
the probability that a pixel in a pencil drawing has value v
and represents the three tonal layers of the pencil drawing,
as expressed in Eq. (6) to Eq. (8); ωi represents the weight
of the corresponding tonal layer; and z is the normalization
factor such that

∫ 1
0 p(v)dv = 1.

J =
1
z

3∑
i=1

ωipi(v)S (5)

p1(v) =


1
σb

exp(− 1−v
σb

) v ≤ 1

0 otherwise
(6)

FIGURE 3. Procedure of texture rendering.

FIGURE 4. Histogram matching of pencil drawings.

p2(v) =


1

ub − ua
ua ≤ v ≤ ub

0 otherwise
(7)

p3 (v) =
1

√
2πσd

exp(−
(v− µd )2

2σ 2
d

) (8)

The first layer is the bright tone layer, which is represented
by the Laplacian distribution with standard deviation σb. This
distribution converges when v is close to 1. Then, the middle-
tonal layer is represented by a descriptive model expressed
as a uniform distribution from ua to ub, which indicates the
uniform brightness of the image background. Finally, the dark
tone layer is represented by a descriptive model expressed
as a normal distribution with the mean µd and standard
deviation σd .

Figure 4 illustrates the process of pencil drawing histogram
matching. This process requires 2 input images: an original
image and a pencil drawing. By changing the gray values of
the pixels in the original image, the gray distribution of the
original image is made consistent with the distribution of the
pencil drawing. The matching target histogram is calculated
via Eq. (5), instead of using a real pencil drawing image.

The method of pencil texture rendering is to determine the
parameter β by solving a linear equation of the tone map,
as expressed in Eq. (9).

β = 1− J∗ (9)

Here, J∗ is the result of matching histogram J . The final
pencil texture map, which is denoted as T, is computed via an
exponentiation operation, as expressed in Eq. (10), in which
H is an actual pencil texture image.

T = Hβ (10)
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FIGURE 5. CUDA structure.

Finally, the pencil outline and the pencil texture are com-
bined to obtain the pencil drawing result and the calculation
method is expressed as Eq. (11).

R = S × T (11)

B. COMPUTE UNIFIED DEVICE ARCHITECTURE
As high-performance computing has evolved, CUDA, with
its excellent performance and outstanding ecology, has
attracted the attention of many developers and researchers.
The main advantage of CUDA in image processing is that
it commands many thread-level parallel tasks through the
single instruction multiple data (SIMD) parallel computer
architecture. By binding a pixel to a thread to complete
pixel-level parallelism, it does not increase the geomet-
rical growth of the combining time as the image size
increases.

Figure 5 illustrates a typical CUDA in one GPU. Threads
are the smallest unit of GPU execution and can perform par-
allel tasks. A warp is a collection of 32 threads that perform
as a SIMD operation and a block is a collection of multiple
warps. Only threads in the same block can communicate
directly, e.g., access the same shared memory or synchronize
quickly. The grid consists of several blocks and the global
memory, constant memory and texture memory, which can
be accessed by every block and thread in it. These three types
of memory in the grid differ in terms of access speed and
application and must be used according to the characteris-
tics of the algorithms. Warps are executed via the lockstep
synchronous approach; hence, branches of threads will cause
divergent execution paths, which will lead to an increase in
the total number of instructions executed, which needs to
be avoided. In the CUDA parallel computing framework,
locking operations are implemented via atomic commands.
An atomic command is an independent operation and there
is no interference from other threads, which satisfies the
requirements of the lock operation.

FIGURE 6. Calculation process of the two-dimensional convolution
operation.

The CUDA programming model is a heterogeneous model
in which both the CPU and GPU are used. In CUDA, the host
refers to the CPU and its memory, while the device refers to
the GPU and its memory. The code run on the host can man-
age memory on both the host and device and launch GPU ker-
nels, which are functions executed on the device and by many
GPU threads in parallel. The CUDA Stream processor (SP)
is a mechanism for implementing the concurrent execution of
the CUDA task level. It is similar to the multi-task scheduling
of the CPU; however, it lacks the ability to adapt to new
conditions or scenarios. The concurrent execution of tasks
can be achieved due to the CUDA streaming mechanism.
Therefore, the speed of the GPU program can be further
accelerated by computing the data overlap in preparation for
the data of the next computation, rather than performing the
computations separately.

III. PARALLEL DESIGN AND IMPLEMENTED OF PENCIL
GENERATING ALGORITHM
The pencil drawing algorithm can be divided into two
functions: contour extraction and texture rendering. In this
section, the parallelism of these functions is analyzed and the
parallel design and implementation are presented using the
CUDA programming model.

A. CONTOUR EXTRACTION
1) IDENTIFYING THE PARALLELISM
The time spent on 2D convolution grows geometrically as
the size of the image increases for the sequential contour
extraction function, and the most time-consuming part of
contour extraction is the convolution operation. The perfor-
mance of the function would be significantly improved if the
convolution operation could be parallelized.

Figure 6 illustrates the calculation process of the 2D- con-
volution operation. The kernel is placed on the image, each
pixel value that overlaps with the kernel is multiplied by the
corresponding kernel value, and the products are summed.
The result is placed in a new image that corresponds to the
kernel center. The kernel moves one pixel and repeats this
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FIGURE 7. Serial algorithm processing mechanism of the convolution
operation.

process until all possible locations in the image have been
visited. For convenience of description, two-dimensional data
of size 7 × 7 and a convolution kernel of size 5 × 5 are
considered. According to Figure 6, the convolution operation
requires 25 multiplication operations for each element in the
image and the total number of multiplication operations to
be performed is 49 × 25 = 1225. In a 1024 × 1024 image,
the number of calculations will reach 1024 × 1024 × 25 =
26214400. It would be very time consuming to use a serial
algorithm to implement this process.

However, in a GPU parallel architecture, it will be possible
to complete this operation in an instruction cycle because the
data involved in the convolution operation are irrelevant.

Figure 7 and Figure 8 illustrate the disparity in computing
power between the serial and parallel platforms. The original
image is represented by the squares on the left, while the
convolution kernel is represented by the squares on the right.
Two-dimensional data of size 5× 5 and a convolution kernel
of size 3 × 3 are considered in these figures. One pixel or
one convolution kernel unit is represented by a number in the
square. Each line that connects the left picture and the right
picture represents a calculation performed by a thread.Within
one fetch-and-execute cycle, Figure 7 and Figure 8 illustrate
the differences in the processing methods between the serial
and parallel processing mechanisms. If only multiplication
operations are considered, the serial algorithm requires 5 ×
5×3×3 = 225 steps to complete the task, while the parallel
algorithm requires only 3 × 3 = 9 steps. The time-cost is
reduced from M×N×J×K to M×N for an M×N image and
a J×K convolution kernel. The number of computations that
can be performed at the same time depends on the number of
threads.

According to the calculation process of the convolution
operation, the following parallelism can be obtained. The
convolution operation is independent of other calculations;
consequently, the calculation results between the elements
have no dependencies and can be calculating in parallel,
which is consistent with the characteristics of large-scale
parallel computing. Each step of the convolution operation
involves a neighborhood element; as a result, data are shared
between the input elements. Therefore, the input image can be
chunked using shared memory. This shared-memory-based

FIGURE 8. Parallel algorithm processing mechanism of the convolution
operation.

blocking strategy can increase the memory bandwidth and
reduce the global memory access frequency. Constant mem-
ory is visible to all threads and has lower access latency
than global memory; hence, using constant memory to store
convolution kernel data can enhance the memory access effi-
ciency.

2) DESIGN AND IMPLEMENTATION
First, a convolution algorithm for calculating the response
map and drawing the lines is designed. Since the output of
a convolution operation involves only one pixel, assigning a
thread to each pixel would be a reasonable strategy. However,
the convolution operation requires the eight pixels around
each pixel as input, which inevitably poses the problem of
boundary processing. In addition, read conflicts will occur,
which will directly affect the data reading speed of the sub-
algorithm.

The image is divided into blocks such that the number of
pixels in each picture is the same as the number of threads
in a thread block. The objective is to allocate shared memory
for each thread block such that threads must only access the
high-speed shared memory instead of the low-speed global
memory.

However, pixels at thread block boundaries cannot retrieve
data from the shared memory. To overcome this problem, this
paper considers a circle of ‘‘halo elements’’ when initializing
the shared memory. As shown in Figure 9, ‘‘halo elements’’
will fill elements outside the boundary to prevent going out of
bounds when the array is visited, which will be performed by
the thread associated with each pixel at the edge of the image.

Since the shared memory size is related to the image size
and the size of the convolution kernel, the dynamic shared
memory function provided by CUDA is used to determine
the size of the shared memory at runtime. After the data have
been chunked, thread synchronization is required to ensure
that the partition loading process has been completed so that
the weighted summation calculation can be performed safely.

Sub-algorithm 1 details the CUDA kernel implemented
for the convolution. The input of the algorithm is an orig-
inal image, a convolution kernel, and the image size. The
thread identifier of each thread and memory is initialized.
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FIGURE 9. Halo elements.

Sub-Algorithm 1 Parallel Algorithm for the
Two-Dimensional Convolution Operation

Input: I : Input image;M : Convolution kernel; width:
Width of the image;

height: Height of the image; ks: Kernel size; bs: Block size;
Output: R: Result image;
1 initialize value to 0;
2 compute thread indices: idx and idy;
3 compute indices in every block: lidx and lidy;
4 allocate shared memory cache of size bk × bk;
5 r ←ks/2;
6 cachelidx,lidy← Iidx,idy;
7 if threadIdxx < r or threadIdxy < r
8 fill border elements;
9 synchronize threads;
10 value← 0;
11 for y from 0 to ks
12 for x from 0 to ks
13 value←value+cachelidx−r+x,lidy−r+y×Mx,y;
14 end for
15 end for
16 Ridx,idy← value;

After that, the thread checks whether the data are out of
bounds or not. Lines 7-10 in the algorithm fill the ‘‘halo ele-
ments’’. The warps must be synchronized after completion.
The threads each read one pixel in parallel from the original
image according to their ids. Because the id of each thread
is unique, the input data differ and are independent. After
that, the threads will put the data into the shared memory
in parallel and the threads at the edge of the block will fill
the ‘‘halo elements’’ by performing extra readings from the
original image. Lines 11-16 in Sub-algorithm 1 correspond
to the loop in which 8 adjacent pixels are computed by each
thread. All threads will convolve based on the data in the
shared memory, after which each thread will return a value
and write to the result image.

Then, image smoothing is implemented via median filter-
ing. The parallel implementation method and data assessment
of median filtering are approximately the same as the con-
volution operation, in which each point requires the values

Sub-Algorithm 2 Parallel Algorithm for Pixel Classification
Input: Gs: Response maps;M : Gradient image; width:

Width of the image; height: Height of the image; t:
Time of classification; depth: Number of response
maps

Output: Cs: Result images;
1 compute thread indices: idx and idy;
2 compute offsets: offsetx and offsety;
3 while idx < width and idy < height
4 compute the index of the maximum element in the 8
response maps;

5 if indexmax = t
6 Ct idx ,idy← Midx ,idy;
7 end if
8 idx←idx+offsetx
9 idy←idy+offsety
10 end while

of the 9 pixels around it. The median filter will encounter
the same problem when calculating data on the edge of a
block. Consequently, the median filter also requires ‘‘halo
elements’’ for filling the boundary. The general method of
finding the median is implemented via a sorting algorithm.
Due to the small number of elements that are sorted, a simpler
sorting approach is used here and determining the median
does not require sorting all the elements, namely, only half
of the elements must be sorted. This technique theoretically
reduces the computing time by nearly half. The pseudocode
and analysis are skipped here.

Next, the pixel classification algorithm is designed in par-
allel. To compare the values of eight response maps, threads
must process the same point in 8 images in parallel. First,
the maximum ID of each position in the 8 response maps is
calculated. Then, according to the maximum id, the values of
the pixels of the denoised image will be written back to the
classification result images in parallel.

Sub-algorithm 2 details the CUDA kernel implemented
for the pixel classification. The inputs are the 8 response
maps generated by Sub-algorithm 1, the gradient image
generated by Sub-algorithm 3 and the classification time.
Lines 1-2 initialize the index of the target pixel for pro-
cessing. Then, lines 3-10 define the loop for finding the
largest response value among 8 directions and recording the
result.

The gradient calculation algorithm is also parallelized.
This algorithm uses matrix operations to implement gradi-
ent calculations for images. The gradient calculation based
on matrix subtraction must perform matrix subtraction in
the X-direction and the Y-direction of the image and sum
the absolute values of the subtraction results. In the matrix
subtraction operation, not all elements are subtracted. In the
subtraction operation along the X-axis or Y-axis direction,
the first column or row element of the subtracted matrix
and the last column element of the subtraction matrix do not
participate in the operation.
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Sub-Algorithm 3 Parallel Algorithm for Gradient Calcula-
tion

Input: I : Input image; width: Width of the image; height:
Height of the image;

Output:M : Gradient;
1 initialize value to 0;
2 compute thread indices: idx and idy;
3 if idx+ 1 < width
4 gradx← Iidx,idy − Iidx+1,idy;
5 end if
6 if idy+1 < height
7 grady← Iidx,idy − Iidx,idy+1;
8 end if
9 Midx,idy←|gradx | + |grady|

FIGURE 10. Flow chart of texture rendering.

Sub-algorithm 3 details the CUDA kernel implemented
for the gradient calculation. The partial derivatives in the
X- and Y-directions are calculated and the gradient is calcu-
lated from the result of partial derivatives. Here, the partial
derivatives are represented by the differences between a pixel
and its adjacent pixels. The gradient is simplified as the
sum of the absolute values of the differences. The indices
of the target points are initialized to calculate the gradient
and to write back after the parallel calculation has been
completed.

B. TEXTURE RENDERING
1) IDENTIFYING THE PARALLELISM
As illustrated in Figure 10, texture rendering can be divided
into the following steps and the parallelism of each step is
analyzed.

The target histogram calculation aims at generating a
histogram in accordance with a stroke based on the input
parameters. In this algorithm, the output calculations are
independent of one another and can be easily parallelized by
calculating one corresponding grayscale value per thread.

Image histogram generation is used to calculate the fre-
quency of each gray scale value. Generating a histogram of a
two-dimensional image is simple. It only requires the prepa-
ration of an array of histograms and the traversal of every
pixel of the image. According to the pixel value, the value at
the corresponding position of the array of histograms can be
selected.

In grayscale histogram matching, which is the main pro-
cess of texture rendering, the original image is converted to
the target histogram. In this process, the calculations of the
elements are independent of one another. Histogram calcula-
tion requires access to all data of a two-dimensional image,
where the traversal of each element is independent; therefore,
thread-level parallelism can be achieved.

Sub-Algorithm 4 Parallel Algorithm for Parameter Model
Generation

Input: None
Output: H : Target histogram
1 compute thread index: idx;
2 compute offset: offset;
3 while idx < 256
4 value← p1(idx) + p2(idx) + p3(idx);
5 Hidx ←value;
6 atomic operation: H256← H256+value;
7 idx←idx+offset
8 endwhile

The processes of pencil texture rendering and image merg-
ing are mainly performed using matrix calculations; conse-
quently, the parallelism of linear algebra operations can be
easily exploited. Pencil texture rendering mainly uses matrix
subtraction and matrix exponentiation operations. Both oper-
ations are point-to-point calculations. The calculation of each
element is independent and does not require data from other
pixels. The process of image merging mainly uses matrix
multiplication, which has the same characteristics as the pre-
vious two operations. Therefore, texture rendering and image
merging can be parallelized.

2) DESIGN AND IMPLEMENTATION
The pseudocode of target histogram calculation is presented
in Sub-algorithm 4. Atomic operations are used to ensure that
no conflicts occur when competing to write to memory. The
accumulated result and the gray histogram array are succes-
sively stored in the same block of memory to avoid mul-
tiple discontinuous memory transfer overheads. This paper
simplifies the operation process by combining three tonal
functions into a single function. This process does not require
any additional input; the gray level range of 0-255 is traversed
and the corresponding function value is calculated.

The pseudocode of histogram calculation is presented in
Sub-algorithm 5. First, the image is loaded to the shared
memory for each block and each thread only counts the data
in the shared memory. In this process, atomic operations are
needed for counting, which guarantees that no write conflicts
will occur. Then, the statistics in all blocks in parallel reduc-
tion are summarized. Because these two steps have strict
dependencies, after the end of the previous step, the algorithm
must use a thread synchronization fence to ensure that the
operations in all thread blocks are completed.

Pixelmapping and histogram calculations are implemented
in the opposite direction. They do not involve sharing data;
hence, each thread must only traverse each pixel of the input
image, find the value in the histogram and assign it to the
specified position of the target image. Since the calculation
methods of pixel mapping, texture rendering and final image
merging are similar and closely related, the 3 steps are com-
bined in the same kernel function. The pseudocode of this
kernel function is presented in Sub-algorithm 6.
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Sub-Algorithm 5 Parallel Algorithm for Histogram Calcula-
tion

Input: I: Image
Output: H: Histogram
1 allocate shared memory: T;
2 Tidx,idy← 0;
3 synchronize threads;
4 compute thread indices: idx and idy;
5 compute offsets: offsetx , offsety;
6 while idx < width and idy < height
7 atomic operation: TIidx,idy← TIidx,idy +1;
8 idx ← idx + offsetx
9 idy← idy + offsety
10 endwhile
11 synchronize threads;
12 atomic operation: Hidx,idy← Hidx,idy +Tidx,idy;

Sub-Algorithm6 Parallel Algorithm for PixelMapping, Tex-
ture Rendering and Image Merging

Input: I : Image; H: Histogram; S: Stroke image; P: Pencil
image; J: Tone map

Output: H : Histogram R: Final result
1 compute thread indices: idx and idy;
2 Didx,idy← H (Iidx,idy);
3 value = P (1−Jidx,idy) idx, idy;
4 Ridx,idy←value×Sidx,idy;

TABLE 1. Configuration information of hardware and software.

IV. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
The experiment is performed on an Ubuntu workstation
equipped with an Intel(R) Xeon(R) CPU 5-2650 v4 @
2.20 GHz, accelerated by two NVIDIA Tesla P100 GPUs.
The NVIDIA Tesla P100 has 3,584 CUDA cores and 16 GB
of HBM2 memory. The core frequency is up to 1,328 MHz
and the floating-point performance is 10.6 TFLOPS. Addi-
tional configuration parameters are listed in Table 1.

B. EXPERIMENTAL RESULTS AND ANALYSIS
1) IMAGE VISUAL EFFECT
The test set was obtained from the picture test suite of
the pencil drawing generation algorithm. All parameters are
consistent with the sequential algorithm [28]. This paper

FIGURE 11. Grayscale histogram of a real pencil drawing.

FIGURE 12. Time-costs of the algorithm with CPU, GPU and GPU Stream.

compares and analyzes the pencil drawing software and the
LIC algorithm. The comparison result is presented in Fig-
ure 13. Compared with the algorithm based on LIC, the lines
drawn by the algorithm proposed in this paper are more
delicate, the texture of the pencil drawing is clearer, and the
result is closer to the effect of pencil drawing. Compared to
the AKVIS Sketch, a software based on DIP, the color tone is
slightly flatter and does not reflect the shadow effect of pencil
painting. The results of the algorithm proposed in this paper
are rich in hue, and the algorithm can simulate the stereo
effect of pencil painting very well. Compared with Pencil
Sketch, another software based on DIP, it has obvious granu-
lar sensation and serious distortion in rendering people’s face.
The proposed algorithm has fine texture and can outline the
portraiture well.

Figure 11 is a real grayscale histogram of a hand-drawn
sketch. The effect of pencil drawing can be quantitatively
analyzed via the analysis of the grayscale histogram. The
graph of the established tone distribution model is shown
in Figure 14. By comparing the tone distribution maps of the
pencil drawings that were generated by LIC, AKVIS Sketch
and Pencil Sketch, it is possible to judge how close the pencil
drawings generated by the algorithms are to the actual pencil
drawing.

The grayscale histograms of the pencil drawings that were
produced by various algorithms or software in the previous
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FIGURE 13. Comparison with the LIC algorithm, the AKVIS sketch software and the pencil sketch software.
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FIGURE 14. Grayscale histogram comparison.

section were calculated using Matplotlib and their tone dis-
tribution maps were plotted. The tone distributions of the
results of the previous algorithm and software are shown
in Figure 14. According to the figure, the pencil drawing
result of the algorithm is closest to the tone distributionmodel
of the actual pencil drawing; therefore, the processing effect
is closest to that of the actual pencil drawing. The grayscale
histogram results demonstrate that grayscale is distributed in
the middle layer in this paper and these pixels are used to
describe the shadow structure and stereoscopic effect of the
image. There is a maximum when the grayscale is close to 0,
which is the line that represents the black outline.

2) SPEEDUP PERFORMANCE
The three sets of pictures in the test set in the experiment
were scaled using the image processing software. Each group
received images of 5 sizes for the test set of this experiment:
1024×768, 1280×960, 1440×1080, 1920×1440 and 2560×
1920. The performances of CPU algorithms, GPU algorithms
without CUDAStream (GPU(NS)), andGPU algorithmswith
CUDA Stream (GPU(S)) are evaluated on these three sets of
images.

The runtime diagrams for the algorithms, which were
obtained from a set of pictures, are shown in Figure 12, where
the horizontal axis corresponds to the size of the image and
the vertical axis to the average time-cost in seconds over
10 runs.

According to the experimental results, the running time
of the CPU serial algorithm increases with the image size
and exhibits a general trend of geometric growth. When the
image area increases from 1440 × 1080 to 1920 × 1440,
the area of the image is doubled and the computation time is
doubled. However, the time-costs of GPU parallel algorithm

is relatively stable and slowly growth by the size of the picture
within the range of picture sizes that were evaluated. It is
because that, by the resolution is increased, the GPU can use
more threads to process but the CPU still run in sequentially.
Therefore, as the size of the image increases, the performance
advantage of the GPU algorithm increases.

The speedup is a general measure of performance improve-
ment via parallel program optimization. It represents the ratio
of the running time of the pre-optimization program to the
running time after optimization and is calculated via Eq.12.

S =
Ts
Tp

(12)

The above three sets of pictures are processed and the
average computation times over ten runs are calculated. The
average of these results is calculated as the average speedup,
which illustrated in Figure 15.

3) COST ANALYSIS
Using NVIDIA’s program performance analyzer, namely,
NVPROF, the execution information of each function of the
program is obtained, including the execution time and the
number of calls. The time-cost execution results analysis at
1280 × 960-resolution image input is presented in Table 2.
The percentage of time-cost is shown in Figure 16. Here,
memory copy DtoH refers to data copying from GPU mem-
ory to CPU memory and memory copy HtoD refers to data
copying from CPU memory to GPU memory.

The convolution sub-algorithm occupies a substantial por-
tion of the runtime. The average execution timewas 905.75µs
over the 16 times that it was called, which corresponds to
64.49% of the total time. The acceleration of the algorithm
is mainly due to the acceleration of conv2D in the kernel
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TABLE 2. Time-cost execution results from NVPROF.

FIGURE 15. Speedups of the algorithm with GPU and GPU Stream.

function of the convolution operation in Sub-algorithm 1.
Memory copying takes up a total of 28.39% of the time.
However, due to the utilized CUDA streaming technology,
this part of the time can be overlapped with the calculation
process. In practice, it takes less time than this value. The
median filter should have the same average time as the con-
volution because they have the same data input scale and
parallel design. However, because of the simplified design
of the sorting algorithm in this paper, the average execution
time is reduced by 30.83% for convolution. The average
execution time of pixel classification is only about 93µs but
occupied 3.31% of the total time because the sub-algorithm
is called 8 times in different directions. At last, the rest of
sub-algorithms takes up no more than 1% of the total time.
In general, the time-cost of all sub-algorithms reach effect
within expectations and themost time-consuming part is fully
paralleled.

V. RELATED WORK
Currently, with the development of video games and ani-
mated movies, non-realistic rendering technology is attract-
ing increasing attention. Many relevant research studies have
been reported and many algorithms have been proposed
that achieve a satisfactory visual effect [29]–[34]. In [32],
Liang et al. proposed a method for automatically stylizing
portrait videos that contain small human faces that extends
the mask regions with the convolutional neural network
(R-CNN) features. The experimental results demonstrated
that the method could effectively preserve the small and dis-
tinct facial features. In [29], Hiraoka et al. proposed a method
for generating oil-film-like images via iterative processing

FIGURE 16. Time-cost and percentage of each sub-algorithm.

between a bilateral infra-envelope filter and an unsharp mask.
The results of the tests offered guidelines for generating oil-
film-like images from various color photo images. In [31],
Gao et al. proposed a framework for chromatic penciling style
generation from wild photographs. According to a series of
comparative experiments with previous work, the proposed
method more accurately captured the main features of real
chromatic pencil drawings and the results had an improved
visual appearance. An image can be depicted very beauti-
fully by utilizing these algorithms. However, these algorithms
require a long time to complete the painting; hence, it is
impossible to perform the task in real time.

With the development of parallel computing technology,
especially GPUs, image processing tasks with many com-
putations can be completed quickly. In [35], Royer et al.
proposed an adaptive cartoon-like stylization method for
color videos in real time. This framework consists of color
space conversion, bilateral filtering, color quantization and
edge detection. For running in real time, a parallel ver-
sion was implemented on the GPU, which runs 45 to
180 times faster than the CPU version. In [36], Park et al.
proposed a non-photorealistic rendering technique that ren-
ders three-dimensional objects and photo images into cartoon
and sketch styles. To accelerate the time-consuming segmen-
tation procedure, Park et al. used GPGPU for the parallel
computing using the GPU. As a result, it is 5.52 times faster
than the original version. In [37], Lu et al. discussed a non-
photorealistic real-time virtual sculpting system. Via touch-
enabled manipulation, haptic interaction is conducted to form
the deformable surfaces and the edge extraction is employed
to stress boundaries. The experimental results demonstrated
that the parallel realization of the system on GPU guarantees
real-time performance.
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These results demonstrate that the GPU facilitates the
acceleration of NPR. Compared with these studies, this
paper focuses on developing an efficient method for render-
ing pencil paintings and maximizing the parallelism of the
algorithm.

VI. CONCLUSION
For performing real-time rendering and accelerating pencil
drawing generation, this paper proposes a parallel fast pencil
drawing generation algorithm based on GPU. First, the par-
allelism of the pencil drawing generation algorithm is identi-
fied via theoretical analysis. Then, the CUDA programming
model is used to design and implement the parallel pencil
drawing algorithm. Next, the data access time is reduced
by designing an optimized memory access mode. Finally,
the running speed of the parallel algorithm is further accel-
erated via parallel execution of independent sub-tasks using
CUDA streaming technology. In addition, the synchroniza-
tion and atomic operations ensure the high accuracy of the
results.

The parallel fast pencil drawing generation algorithm is
implemented on the CUDA platform. The results demon-
strate that the CUDA-based parallel algorithm can obtain a
maximum speedup of 448.59 times on an NVIDIA Tesla
P100 graphics card, which represents a significant decrease
in execution time. Using an image test set, the fast pencil
drawing generation algorithm yields more realistic results
than other software and methods. The parallelization of the
algorithm based on combining a sketch and tone enables
real-time rendering of pencil drawings.
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