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ABSTRACT This paper proposes a novel algorithm to compute the 2-D discrete wavelet transform (DWT)
of high-resolution (HR) images on low-cost visual sensor and Internet of Things (IoT) nodes. The main
advantages of the proposed segmented modified fractional wavelet filter (SMFrWF) are reduced compu-
tation (time) complexity and energy consumption compared to the state-of-the-art low-memory 2-D DWT
computation methods. In particular, the conventional convolution-based DWT is very fast but requires large
random access memory (RAM), as the entire image needs to be in the systemmemory. The fractional wavelet
filter (FrWF) requires only a small RAM but has high complexity due to multiple readings of image lines.
The proposed SMFrWF avoids the multiple readings of image lines, thus reducing the memory read access
time and, thereby, the complexity. We evaluated the proposed SMFrWF through MATLAB simulations with
70 popular gray-scale test images of dimensions ranging from 256×256 up to 8192×8192 pixels. The results
show that for images of size 2048 × 2048 pixels, the proposed SMFrWF (with four segments per line) has
16.8% and 53.6% lower time complexities than the conventional DWT and FrWF, respectively. The proposed
SMFrWF has also been modeled in a hardware description language (HDL) and implemented on an Artix-
7 field-programmable gate array (FPGA) platform to evaluate the hardware performance. We observed that
the proposed SMFrWF has 65% lower energy consumption than the FrWF (both implemented on the same
board). Thus, the proposed SMFrWF appears suitable for computing the wavelet transform coefficients of
HR images on low-cost visual sensors and IoT platforms.

INDEX TERMS Discrete wavelet transform (DWT), low memory, low complexity, low-cost portable
devices, visual sensors.

I. INTRODUCTION
A. MOTIVATION
High-resolution (HR) images generally incorporate more
details of a scene or phenomenon than low-resolution images;
hence, HR images are used in many applications, such as
satellite imaging, medical imaging, and intelligent surveil-
lance [1]–[5]. HR images are preferred for medical diag-
nosis due to their higher information content, which may
be critical in many situations. The performance of pattern
recognition systems can be enhanced through HR images [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Tie Qiu.

Remote sensing and LANDSAT applications [7]–[9] capture
images of geographical areas, whereby object recognition
is easier in HR satellite images [10]. Due to the increasing
demand for HR images, there is a need to develop efficient
coders for HR images on low-cost visual sensors.

Most existing image coding algorithms are either based on
the Discrete Cosine Transform (DCT) or the DiscreteWavelet
Transform (DWT). Due to its excellent decorrelation, energy
compaction, and symmetry properties, the DCT has been
widely adopted in image and video coding standards, such
as JPEG, MPEG-2, H.264, and HEVC [11]. The DCT is
generally applied on image blocks, thereby reducing the
required memory, but coding block-based DCT coefficients
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at very low bit-rates leads to blocking artifacts. Furthermore,
the block-based DCT only exploits the correlations within the
blocks, limiting the coding efficiency. In contrast, the DWT
is applied on the entire image; thus, DWT based coders can
achieve higher coding efficiency than DCT based coders [12].
Recently, the DWT has become very popular in image coding
applications, including the JPEG 2000 coder, real-time pro-
cessing, and biomedical signal processing [11].

The conventional DWT computation method requires the
complete image to be kept in memory which is challenging
for memory-constrained devices, such as digital cameras,
personal digital assistants (PDAs) [13] and wireless video-
phones [14]. These low-cost mass-market consumer devices
have only limited memory [12]. Moreover, there are many
imaging oriented applications, such as visual sensors (sensor
nodes with a small camera), with very limited on-board mem-
ory. A network of visual sensors, called visual sensor network
(VSN) or wireless multimedia sensor network (WMSN), has
several applications, such as visual surveillance of wild ani-
mals, automatic road traffic monitoring, and mobile multi-
media [15]. The sensor nodes can capture both multimedia
and non-multimedia data [16]. These nodes can also be used
in IoT applications, such as smart home monitoring, smart
cities, and smart health care systems [17]–[19]. However,
the sensor nodes have limited RAM memory and power.
For example, the available memory on many low-cost sensor
nodes is only of the order of 10 kB [20]. The conventional
DWT computation method requires 524 kB of RAM for
a gray-scale image of size 256 × 256 pixels [21] and the
memory requirement increases linearly with the image size.
Hence, the conventional DWT computation method cannot
be implemented in memory-constrained environments. Var-
ious low-memory methods to compute the DWT have been
developed, such as the line-based DWT [12], the block-based
DWT [22], the stripe-based DWT [23], and the Fractional
Wavelet Filter (FrWF) [21]. The FrWF is the most memory
efficient, requiring only 2.304 kB, 4.608 kB, and 9.216 kB
memory for images of size 256 × 256, 512 × 512, and
1024× 1024 pixels, respectively [20].

Although the FrWF has a low memory requirement, its
memory requirement increases with the image size and there-
fore for HR images (images of size larger than 1024×1024),
the FrWF memory requirement may exceed the memory
available on typical sensor nodes (which is of the order
of 10 kB). Furthermore, the FrWF achieves the low memory
requirement at the expense of increased time and computa-
tional complexity, as it requires 3.25 times more multiplica-
tion operations and 2.89 times more addition operations than
the conventional DWT [21]. Low-cost hand-held multimedia
devices and visual sensors are constrained in terms of mem-
ory and computational capabilities as well as battery power.
Therefore, from the complexity point of view, the FrWF
may not be suitable for these devices. Hence, there is a
need to develop a technique that can compute the DWT with
low memory as well as lower computational complexity than
the existing techniques.

For image transmission over bandwidth-limited commu-
nication channels, e.g., in wireless networks, the transform
coefficients computed by the DWT need to be com-
pressed (coded) using an efficient image coding algorithm.
Assuming that the two operational stages (transform and
coding) are performed serially, the overall memory require-
ment of the image coder is the maximum of the memory
requirements of the two stages and the overall time com-
plexity of the coder is the sum of the complexities of the
individual stages. Among the various wavelet-based image
coding algorithms, the Zero Memory Set Partitioned Embed-
ded Block Coder (ZM-SPECK) [24], the LowMemory Block
Tree Coder (LMBTC) [25], and the Wavelet Image two
line coder (Wi2l) [26] satisfy the memory constraint of low-
cost visual sensor nodes. Among these, ZM-SPECK [24]
requires the least memory and is theoretically a memory-less
coder. ZM-SPECK does not require any memory for its
implementation (except for a few buffers and storage for
variables), yet it needs to be combined with a suitable trans-
form to design an image coder. Thus, the transform memory
determines the overall codec memory; therefore, the trans-
form memory needs to be reduced to design a low-cost image
coder.

B. RELATED WORK
The first effort to reduce the memory for the one-dimensional
(1-D) DWT was made in [27]. The various popular
low-memory 2-D DWT techniques fall into three cate-
gories: line-based approaches [12], [13], [28], block-based
approaches [22], [29]–[31], and stripe-based approaches [23],
[32]–[36]. For the line-based DWT, only the rows necessary
for computing the DWT are kept in RAM. The line-based
approach implemented using the lifting scheme in [13] is
faster than the conventional DWT approach but requires
12 image lines to be stored in RAM [21].

Architectures based on line based scanning techniques
have been proposed in [37]–[41]. The architectures reported
in [37], [38] require memory greater than 5.5N , for an N ×
N dimension image, whereas the design of [39] uses 9 N
storage cells. The architecture proposed in [40] needs a con-
stant transposition memory of 4 words only, but requires a
temporal memory of 5.5N . The architecture proposed in [41]
has reduced the temporal memory to 3 N and needs fewer
hardware resources; however, it still requires a transposition
memory of size N . Further reduction in hardware resources
can be achieved at the cost of a higher number of computation
cycles.

Block-based approaches apply the wavelet transform on
image blocks, rather than on the complete image. Gen-
erally, the line-based and block-based DWT computation
approaches require the same amount of memory [20]. DWT
architectures for block-based scanning have been proposed
in [42]–[44]. The architecture presented in [42] has high
throughput at the expense of large temporal and transpo-
sition memories and extensive arithmetic resources. The
design proposed in [43] requires large memory (of the order
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of N 2
+ 4N words as reported in [45]). Moreover, the

design of [43] mainly emphasizes speed (fast computation)
and does not appropriately consider the energy and area con-
straints [46]. The architecture proposed in [44] reduces the
internal memory size, but increases the external bandwidth
and computation time.

The stripe-based DWT is equivalent to the line-based DWT
applied on wider ‘‘line’’ of blocks. The memory requirement
of all these stripe-based approaches for a typical 512 × 512
gray-scale image is about 26 kB [20], which is more than
the available RAM of many low-cost visual sensor nodes.
Architectures for computing the DWT based on stripe-based
scanningmethods have been proposed in [47]–[49]. Although
the architecture proposed in [47] needs no temporal memory,
it requires a large line buffer and a complex control scheme.
The architecture proposed in [49] has been developed for
computing 1-D transform coefficients only. The modified
stripe-based architecture presented in [50] has a long compu-
tation time. Furthermore, the memory requirements of other
state-of-the-art DWT architectures, such as [51], [52] are
more than the RAM available on most of the low-cost sensor
nodes.

The lifting scheme [53] is another popular method for
computing the DWT. The lifting scheme uses in-place com-
putations, which interleave low frequency and high frequency
transform coefficients to reduce the required memory. For
the line-based DWT computation, the lifting scheme needs to
store only 12 image lines; whereas, without lifting, 18 image
lines need to be stored [21]. In order to compensate for this
interleaving, the coefficients need to be reordered, which
increases the complexity [13]. The execution time required
by the lifting scheme is almost the same as that of the con-
ventional DWT [13].

Overall, the lowest transform memory to date has been
achieved by the line-based FrWF [20], [21]. However, even
the FrWF is not suitable for transforming high-resolution
(HR) images on low-cost memory-constrained plat-
forms [54], as the available memory is less than that required
for HR images. In order to further reduce the FrWF memory
requirement, a Segmented FrWF (SFrWF) has been pro-
posed [54]. The SFrWF partitions an image line into different
segments and then applies the FrWF to these segments. The
SFrWF needs less memory than the FrWF, but has high
complexity. Therefore from the complexity point of view,
the SFrWF is not suitable for low-cost visual sensor nodes.

C. CONTRIBUTION OF THIS PAPER
In this paper, we propose a novel technique to compute the
DWT of images with much lower time complexity than the
SFrWF. The proposed technique enables the implementa-
tion of HR image coding on low-cost resource-constrained
devices, such as VSNs and IoT platforms.

The proposed Modified FrWF (MFrWF) uses the conven-
tional DWT for computing the horizontal 1-D DWT. How-
ever, for subsequent column-wise filtering, a novel approach
is proposed in which a line is read only once, and the line

is filtered partially and values are stored and subsequently
updated. The novelty of the proposed MFrWF is that the
column-wise filtering is performed in such a way that a
line needs to be accessed only once and required multiplica-
tions with corresponding filter coefficients are performed and
results are stored in buffers. The difference between the FrWF
and the proposed MFrWF is that the FrWF reads an image
line multiple times because an image line is part of multiple
vertical filter areas as explained in Sections II-B and III-A.
The MFrWF avoids the multiple readings of an image line
by using three different processes with intermediate buffers,
as explained in detail in Section III-B. Experimental results
demonstrate that the proposed MFrWF significantly reduces
the time complexity (typically to a half or a third) compared
to the FrWF.

Due to the additional storage of intermediate values,
the MFrWF memory requirement is slightly increased com-
pared to the FrWF. The MFrWF memory requirement can be
reduced by the proposed SMFrWF, which partitions an image
line into multiple segments. Only one segment is read at a
time into RAM and the subband coefficients of the segment
are computed using the MFrWF procedure. The SMFrWF
requires somewhat larger memory than the corresponding
SFrWF, but the SMFrWF does enable the transformation of
HR images of size 4096 × 4096 pixels on nodes with 10 kB
of RAM. The SMFrWF time complexity for such HR image
transformations is less than half of the corresponding SFrWF
time complexity. To the best of our knowledge, the proposed
SMFrWF is the first attempt to develop an alternative to
the FrWF that reduces the computation complexity for HR
image wavelet transforms on low-memory portable multime-
dia devices.

The rest of the paper is organized as follows. Section II
gives brief overviews of the conventional DWT and FrWF.
Section III introduces the proposed MFrWF and SMFrWF
along with the pseudo-code as well as memory and com-
plexity analyses. Section IV presents evaluation results for
memory, time complexity, and quality of the reconstructed
image, as well as a hardware implementation. Section V
concludes the paper and outlines future research directions.

II. BACKGROUND
In this section, we briefly review the conventional DWT and
FrWF schemes for computing the wavelet transform coeffi-
cients of an image. Throughout, we assume, as is common
in low-memory image transform and coding studies, that the
original image and its transformed coefficients are stored in
an external secure digital (SD) card. Data is read from the
SD card into the system’s limited RAMmemory as and when
needed.

A. OVERVIEW OF CONVENTIONAL 2-D DWT
The conventional 2-D DWT approach first filters (convolves)
all the rows of an image by a low pass filter (LPF) and a high
pass filter (HPF), followed by downsampling by a factor of
two, resulting in two subbands, namely the approximation
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TABLE 1. Summary of main notations.

subband L, and the detail subband H . The process is then
repeated on all the columns of subbands L and H , resulting
in the LL, LH , HL, and HH subbands. The downsampling
combined with the convolution operations with the LPF and
HPF (for symmetric filters) can be expressed as [20]:

L(i) =
j=b nl2 c∑
j=−b nl2 c

x2i+jlj i = 0, 1, . . . ,
N
2
− 1 (1)

H (i) =
j=b nh2 c∑
j=−b nh2 c

x2i+j+1hj i = 0, 1, . . . ,
N
2
− 1, (2)

where lj and hj denote coefficient j of the LPF and HPF,
respectively, x2i+j denotes the (2i+ j)th sample of the signal,
and nl and nh are the lengths of the LPF andHPF, respectively.
Table 1 summarizes the main notations used in this article.
The symbol bxc denotes the largest integer less than or equal
to x. L(i) and H (i) are the ith coefficient of subbands L and
H , respectively. The LPF center is aligned with the odd signal
values, i.e., x0, x2, . . . , xN

2 −2
, and the HPF center is aligned

with the even signal values, i.e., x1, x3, · · · ·, xN
2 −1

. Border
discontinuities are avoided by symmetrically extending b nl2 c
samples on both sides. If the original image is of dimension
N × N , the resulting subbands LL, LH , HL, and HH are of
dimension N

2 ×
N
2 each. For a gray-scale image (8 bits per

pixel) of dimension N × N , the conventional DWT compu-
tation method requires the entire image to be kept in RAM.
Thememory requirement is 4N 2 bytes for floating point filter
values, see Appendix A.

B. FrWF OVERVIEW
The FrWF uses three different buffers, namely s, LL_HL,
and LH_HH , each of dimension 1 × N , where N is the
number of pixels in a row (line). Only one pixel row of the
image is read into buffer s at a time. The 1-D DWT of this
line is calculated with the row-wise conventional 1-D DWT
approach, while the column-wise DWT coefficients are com-
puted through consecutive updates. In the FrWF, a particular
image area, called vertical filter area (VFA), is selected at a
time. The number of rows in the VFA is equal to the LPF
length. The VFA is slided vertically by two lines to achieve
vertical downsampling. The filtered and downsampled rows

in a VFA are multiplied by filter coefficients and then added
together to obtain the final subbands [20], see Appendix B
for the FrWF computational complexity analysis. The FrWF
memory requirement (in bytes) for gray-scale-images using
floating point arithmetic for lev wavelet transform levels is

MemFrWF_float =

 9N , lev = 1
12N
2lev−1

, lev ≥ 2.
(3)

FIGURE 1. Illustration of an image line being part of multiple vertical
filter areas (VFAs).

One of the problems in the FrWF is that a line is typically
part of multiple VFAs (since the VFA is shifted vertically by
2 lines) as depicted in Fig. 1. In the figure, dashed rectangles
labeled as VFA-I, VFA-II, and VFA-III depict three consec-
utive VFAs. Clearly, to implement vertical filtering in the
FrWF, an image line needs to be read multiple times, which
increases the computation time. As the filter length increases,
the number of lines in the VFA increases and thus the number
of repetitive readings of a line from the SD card increases,
further increasing the FrWF computation time. Although the
FrWF is memory efficient, it is very time-consuming and
hence requires fast processors. Therefore, the challenge is to
modify the FrWF such that it may be implemented on low-
cost microcontrollers (which are widely used in VSNs and
the IoT) to compute the DWT of HR images.

III. PROPOSED MODIFIED FRACTIONAL WAVELET FILTER
The proposed Modified Fractional Wavelet Filter (MFrWF)
algorithm is based on the FrWF, but modified to reduce
the computational complexity. Block-diagrams highlighting
the key difference between the FrWF and the modified
FrWF (MFrWF) are shown in Fig. 2. As depicted in Fig. 2,

FIGURE 2. Block diagram of steps in (a) FrWF and (b) proposed MFrWF.
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FIGURE 3. Position of filter coefficients for computing LL and HH subbands in different VFAs for 5/3 filter
bank.

the difference lies in the way the column-wise filtering is per-
formed. The proposed MFrWF avoids multiple readings of a
line belonging to different VFAs while computing the vertical
filtering, thereby reducing the computation time. This process
requires some additional memory, which can be compensated
for by applying the algorithm on segmented lines, rather than
on the whole line. This section presents the details of the
MFrWF method as well as its memory requirements and
complexity characteristics.

A. PROBLEM FORMULATION
In order to facilitate the understanding of the proposed
MFrWF method, it is helpful to analyze the problems in the
column-wise filtering in the FrWF in detail. Let us assume
that an image (of size N × N ) has already undergone the
row-wise (horizontal) low-pass and high-pass filtering using
5/3 filter banks, resulting in the L and H subbands (each
of size N

2 × N ), respectively, as depicted in Fig. 3. (Other
filters can be accommodated in analogous fashion.) In Fig. 3,
Li and Hi represent row i of the L and H subbands, respec-
tively. The rows with index i < 0 or i > N are the
symmetrically extended rows beyond the image boundaries.
To apply column-wise (vertical) low-pass and high-pass fil-
tering, the columns of subbands L and H (within a VFA)
need to be convolved with the impulse responses of the
corresponding filters. The black dots in Fig. 3 represent the
positions of the central LPF and HPF coefficient (l0 and h0),
respectively. In the FrWF, only one line is read at a time and
all its elements are multiplied by the filter coefficients shown
(for subbands LL andHH only) adjacent to the corresponding
rows in Fig. 3 and the results are stored in buffers. The process
is repeated for each rowwithin a VFA and the previous results
are subsequently updated. The completion of this process for
a VFA results in one row of each of the LL, LH , HL, and HH
subbands. The VFA is then shifted by two lines, to achieve
vertical downsampling by a factor of two.

As is evident from Fig. 3, for computing the LL subband
coefficients, all elements of odd indexed rows of the L sub-
band (except L1) are multiplied by l−2, l0, and l2; whereas,
all elements of even indexed rows of the L subband are mul-
tiplied by l1 and l−1. Likewise, the HH subband coefficients
are obtained by multiplying the elements of the H subband
either with h0 (for even indexed rows) or with h1 and h−1
(for odd indexed rows), as shown in Fig. 3. Similarly, the LH
and HL subband coefficients are computed by multiplying
the rows of subbands L and H with the HPF and LPF coef-
ficients, respectively. The mathematical justifications of this
FrWF process is given in Appendix B. In order to implement
the vertical filtering in FrWF, a row is read as many times
as the number of different filter coefficients it has to be
multiplied with. Furthermore, since each VFA is processed
independently, a line (row) is read at least once in each VFA.
However, since a row may be part of more than one VFA,
the FrWF requires multiple readings of lines. Thus, the FrWF
consumes a lot of computation time due to multiple readings
of lines (which increase the memory read/access time) while
implementing vertical filtering. Reducing the computation
time due to multiple readings of lines during vertical filtering
is the main contribution of this paper.

B. MODIFIED FrWF (MFrWF)
1) MFrWF OVERVIEW
In order to reduce the FrWF complexity, we modify the
process of column-wise filtering in the FrWF so as to obtain
the proposed MFrWF. Fig. 4 shows the schematic diagram of
the proposed MFrWF. The MFrWF implementation requires
eight buffers (for a 5/3 filter): an input buffer s of dimension
1×N (to store a line of an image of sizeN×N ); a buffer bL/H
of dimension 1 × N

2 (to store the coefficients of subbands L
or H ), and six intermediate buffers, namely b1_ll , b2_ll , blh,
b1_hl , b2_hl and bhh; each of dimension 1× N

2 (to store newly
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FIGURE 4. Schematic diagram illustrating the modified FrWF (MFrWF) technique for a 5/3 filter.

TABLE 2. Filter coefficients and buffers to be used in different processes to compute DWT using 5/3 filter. The ∗ symbol indicates that after the
corresponding subband coefficients have been computed and saved in the external SD card, the buffer is reset.

generated or updated intermediate coefficients of subbands
LL, LH , HL, and HH ).

The MFrWF algorithm works as follows. It reads one row
(say row i) of the image at a time into buffer s. Depending
on the row index i, it calls one of three processes, namely
Process 1 (P1), Process 2 (P2), or Process 3 (P3), to perform
the 2-D filtering. For even indexed rows, Process 1 (P1) is
called; whereas, for odd-indexed rows, the process is selected
as follows: If the value of j = i mod 4 (result of modulo-4
operation on line index i) is 1, then Process 2 (P2) is selected;
on the other hand, if the value of j = i mod 4 is 3, then
Process 3 (P3) is selected. Processes 2 and 3 compute the
even and odd rows of the subbands, respectively, as shown
in Fig. 4.

2) MFrWF P1, P2, AND P3 PROCESSES
Each of the three processes consists of two stages. In the first
stage (equivalent to horizontal filtering), the row stored in
buffer s is low/high-pass filtered (conventional convolution)

and the values, after down-sampling by 2, are stored in buffer
bL/H . In the second stage (equivalent to the vertical filtering),
the contents of buffer bL/H are multiplied with low/high-pass
filter coefficients and stored (after update, if required) in the
corresponding intermediate buffers, as shown in Fig. 5(a) for
Process 1 and Fig. 5(b) for Processes 2 and 3. In this figure,
f1, f2, f3, f4, and f5 are filter coefficients, while b1, b2, b3, b4,
and b5 are buffers. The filter coefficients and the buffers to be
used in the different processes are listed in Table 2.
We note that in the first stage, input lines are first low-

pass filtered and sent to the second stage through buffer
bL/H . After completing the second stage, the input line from
buffer s is high-pass filtered in the first stage and processed
in the second stage. In this way, a single buffer bL/H is
used to store the output of both low and high-pass filters
in the first stage. Furthermore, the filter coefficients used
for the multiplications in the second stage in a process remain
the same, irrespective of the type of filtering in the first
stage; however, the intermediate buffers used are different as
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FIGURE 5. Schematic process representation showing filter coefficients to be multiplied with and buffers to be saved in for (a) Process 1, and
(b) Processes 2 and 3.

evident from Table 2. This is because the low-pass and high-
pass filtering outputs in the first stage contribute to different
subbands in the second stage. Since two different data (one
at a time) are being processed in the second stage, each of
the processes can be divided into two subprocesses, namely
{Pq(L) and Pq(H ), q = 1, 2, 3}, corresponding to low-pass
and high-pass filtering in the first stage, respectively.

The three processes operate similarly and differ only in
the second stage filter coefficients and buffers, as depicted
in Table 2. We describe the operation of the processes as
follows. Consider process P1 for an even-indexed line i that
is currently in buffer s: The line is first processed through
P1(L), which convolves the image line with an LPF using
Eqn. (1) (which incorporates downsampling) and stores the
result in buffer bL/H . The coefficients in buffer bL/H are
then multiplied by the filter coefficients l−1, l1, and h0 and
stored (after adding to the previous values) in buffers b1_ll ,
b2_ll , and blh, respectively. The two stages are repeated for
process P1(H ), except that in the first stage the elements of
buffer s are now convolved with an HPF, and the results of
the multiplications with the same set of filter coefficients in
the second stage are added to the previous values of buffers
b1_hl , b2_hl , and bhh, respectively. This completes the process-
ing of one even-indexed image line. We note that the values
in these buffers will be used and updated in Processes 2 and 3,
to compute the final subband values.

The next (odd-indexed) image line is read into buffer s,
and either process P2 or P3 is applied depending on the
line index. Suppose, the algorithm selects process P2 for
this line: the line in buffer s is first convolved by a LPF
(corresponding to process P2(L)) in the first stage and the
result is stored in buffer bL/H . In the second stage of the
process, the elements of buffer bL/H are multiplied by l0, l2,
and h1 and added/stored to the previous values in buffers b1_ll ,
b2_ll , and blh, respectively. Whenever a line is multiplied by
l2 and h1 in the second stage, it means that the processing
of all rows in a VFA is complete and the contents of buffers

b2_ll and blh, which correspond to even lines of subbands LL
and LH , respectively, are flushed to the SD card and are reset.
In the proposed algorithm, in order to reduce the additional
memory, these two buffers b2_ll and blh can be reused to
store the intermediate results of multiplication of the contents
of buffer bL/H with other filter coefficients within the same
process.

After resetting the contents of the two flushed buffers
b2_ll and blh, the elements of buffer bL/H are multiplied by
the remaining coefficients, i.e., l−2 and h−1, and the results
are stored in buffers b2_ll and blh, respectively, as depicted
in Table 2,P2(L) process rows. This completes processP2(L).
We emphasize that in Table 2, buffers b2 and b3 are reused as
buffers b4 and b5 after flushing their contents to the SD card.
The dashed boxes and lines in Fig. 5(b) show how buffers
b2 and b3 can be reused (after flushing their previous con-
tents to the SD card and resetting). After completing process
P2(L), process P2(H ) is applied on the same line stored in
buffer s. Process P2(H ) is similar to process P2(L), except
that in the first stage, the image line is convolved with the
HPF and after multiplication in the second stage, the results
are stored/updated in a different set of buffers, as shown in
Table 2. Process P2(H ) computes the even lines of subbands
HL and HH .

Process 3 (P3) operates similarly to process 2 (P2), with
only a minor difference in the second stage, in that the roles
of b1_ll and b1_hl are interchangedwith b2_ll and b2_hl , respec-
tively, as shown in Table 2. Sub-process P3(L) of process P3
computes the odd rows of subbands LL and LH ; whereas,
sub-process P3(H ) computes the odd rows of subbands HL
andHH . In this way, processesP2 andP3 alternately compute
the even and odd rows of four wavelet subbands, and allow the
2-D DWT of an image to be computed by transferring only
one image row to the processor RAM at a time and reading
every line only once.

We note that the proposedMFrWF computes the 2-DDWT
(with a 5/3 filter bank) of an image by reading each image line
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Algorithm 1 SMFrWF Steps

1: Initialize buffers: s, bL/H , b1_ll , b2_ll , blh, b1_hl , b2_hl ,
and bhh

2: for q = 1, 2, . . . ,Q
3: for i = 1, 2, . . . ,N Read segment q of line i to buffer s
4: j = i mod 4 (modulo-4operation)
5: if j = 0 or 2: call Process1 (P1);
6: if j = 1: call Process2 (P2);
7: if j = 3: call Process3 (P3);
8: end for
9: end for

10: Function Process1 (P1):
{bL/H = conv(s, l)
(b1_ll, b2_ll, blh) = update(l−1, l1, h0; bL/H )
bL/H = conv(s, h)
(b1_hl, b2_hl, bhh) = update(l−1, l1, h0; bL/H )}

11: Function Process2 (P2) :
{bL/H = conv(s, l)
(b1_ll, b2_ll, blh) = update(l0, l2, h1; bL/H )
(LL( i−12 ),LH ( i−12 )) = store(b2_ll, blh)
(b2_ll, blh) = update(l−2, h−1; bL/H )
bL/H = conv(s, h)
(b1_hl, b2_hl, bhh) = update(l0, l2, h1; bL/H )

(HL( i−12 ),HH ( i−12 )) = store(b2_hl, bhh)
(b2_hl, bhh) = update(l−2, h−1; bL/H )}

12: Function Process3 (P3):
{bL/H = conv(s, l)
(b1_ll, b2_ll, blh) = update(l2, l0, h1; bL/H )
(LL( i−12 ),LH ( i−12 )) = store(b1_ll, blh)
(b1_ll, blh) = update(l−2, h−1; bL/H )
bL/H = conv(s, h)
(b1_hl, b2_hl, bhh) = update(l2, l0, h1; bL/H )
(HL( i−12 ),HH ( i−12 )) = store(b1_hl, bhh)
(b1_hl, bhh) = update(l−2, h−1; bL/H )}

13: Function update:
(b1, b2, b3) = update (f1, f2, f3; bL/H );

{b1+= f1*bL/H
b2+= f2*bL/H
b3+= f3*bL/H }

14: Function store:
(SB1(i), SB2(i)) = store (b1, b2);

{ SB1(i) = b1; Store values in buffer b1 as row i of subband
SB1 in SD card and reset buffer b1.
SB2(i) = b2; Store values in buffer b2 as row i of subband
SB2 in SD card and reset buffer b2.}

only once and performs all required operations using eight
buffers (one with N elements, and the remaining seven with
N/2 elements each). On the other hand, the FrWF computes
the 2-D DWT by reading every odd image row three times
and every even row twice and uses three buffers (each of
size N elements). The memory access time and hence the
total computation time of the proposed MFrWF is expected
to be substantially reduced compared to the FrWF; however,
the MFrWF has a slightly higher memory requirement.

3) SEGMENTED MFrWF (SMFrWF)
In case only lower memory is available, we propose to apply
the MFrWF algorithm on line segments, rather than on the
entire line: an image line is first partitioned into multiple seg-
ments and then the MFrWF is independently applied on these
segments in the order depicted in Fig. 6. The results obtained
for each line segment are concatenated to obtain the rows of
the subbands. We refer to the MFrWF combined with line
segmentation as Segmented Modified FrWF (SMFrWF). The
memory requirement of the SMFrWF decreases as the num-
ber of line segments increases, at the expense of increased
computation time. Therefore, the number of segments can be
selected to trade off memory requirement and computational
complexity, according to the available resources and intended
application, as analyzed in detail in Appendix C.

For clarity of exposition, we have explained the proposed
MFrWF for computing one-level of the 2-DDWTwith 5/3 fil-
ter banks; however, the proposed MFrWF is generic and can
be applied for any filter bank (including 9/7 filter banks) and

FIGURE 6. Diagram showing the order in which different segments are
read.

for any level of the wavelet decomposition. The number of
intermediate buffers will depend on the length of the longest
filter in the filter bank.

C. SMFrWF PSEUDO-CODE
This section presents the pseudo-code of the proposed
SMFrWF algorithm for 5/3 filters. The algorithm for com-
puting the first level of the 2-D wavelet decomposition of
an image is summarized in the pseudo-code in Algorithm 1.
Note that Q = 1 corresponds to the MFrWF without line
segmentation. The same pseudo-code can be extended to
compute higher decomposition levels by considering subband
LL as input. The functions conv(s, l) and conv(s, h) denote
the convolution of elements of buffer s with the LPF (l) and
HPF (h), respectively. The algorithm processes segment q of
each image line before processing segment q+1, as shown in
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Fig. 6. The vertical scanning of segments reduces the size of
each buffer by a factor of Q (the number of segments in each
line).

D. MFrWF COMPUTATIONAL COMPLEXITY
This section summarizes the evaluation (for details see
Appendix D) of the time required to compute the 2-D DWT
with the proposed MFrWF (with and without line segmenta-
tion) and compares with the conventional DWT, FrWF, and
segmented FrWF (SFrWF). The total time consumed (CTotal)
for computing the 2-D DWT is the sum of the time consumed
for accessing (read/write) the SD card data (CSD_Access) and
the time required to perform arithmetic operations (CArithm).
The SD card access timeCSD_Access depends on the number

of read and write operations, whereas the computation time
CArithm depends on the number of additions, multiplications,
and comparisons. The time required for memory access in the
MFrWF is:

CSD_Access_MFrWF = N 2r + N 2w, (4)

where r and w denote the time required to read and write one
pixel, respectively. The numbers of read and write operations
required for computing the 2-DDWT of images using various
methods are listed in Table 3. We note from Table 3 that
the number of write operations of the conventional DWT
is 2N 2 (as explained in Appendix A), whereas the other
methods need only N 2 write operations. The numbers of read
operations in the proposed MFrWF and SMFrWF are less
than in the conventional DWT, FrWF, and SFrWF. In fact,
the numbers of read operations in the FrWF and SFrWF
are the highest among the considered DWT computation
approaches. The numbers of read operations in the MFrWF
and SMFrWF are less than in the conventional DWT, despite
the fact that the number of read operations in the SMFrWF
increases with increasing Q (see Appendix E).

As detailed in Appendix D, the MFrWF computation
time is

CArithm_MFrWF = N 2 [2(nl − 2)a+ nlm]+ Nc, (5)

where a, m, and c denote the time required to perform one
addition, one multiplication, and one comparison (including
the modulo-4), respectively, and nl is the LPF length. The
N comparisons (one for each image line) are required to
decide which process is to be performed on the current line.
From Eqns. (4) and (5) for the MFrWF in comparison to the
time complexities in Table 3 for the conventional DWT and
FrWF, we observe that the MFrWF substantially reduces the
number of read operations (by a factor of nl/2 compared to
the FrWF). However, the MFrWF slightly increases the com-
putation time by increasing the number of operations (one
comparison operation per line). However, we note that saving
read operations (which depend on the number of pixels N ) is
more economical than increasing the number of arithmetic
operations (comparison operation performed only once for
each line). Therefore, due to the greatly reduced number
of read operations, the MFrWF has lower computational

complexity compared to the conventional DWT and FrWF,
as numerically verified in Section IV-B.
In summary, we observe from Table 3 that the conventional

DWT requires 2N 2 write operations and the other DWT com-
putation methods require N 2 write operations. The numbers
of read operations of the various DWT computation methods
differ, with the FrWF and SFrWF requiring by far the most
read operations. The MFrWF and SMFrWF require the same
numbers of additions and multiplications as the conventional
DWT, but less than the FrWF. The SMFrWF has relatively
higher complexity than the MFrWF due to the increased
number of read operations.

E. MEMORY REQUIREMENT
The memory requirement of the proposed MFrWF can be
evaluated by considering an image of size N × N and the
sizes of the various buffers used in the algorithm. TheMFrWF
uses buffer s of dimension 1 × N for temporary storage
of one image line consisting of N pixels, each of size one
byte (unsigned integer). After the first stage of the row-wise
convolution and downsampling, the real-valued filtered coef-
ficients are stored in buffer bL/H , with size 1×N/2. Finally,
in the second stage, computing the coefficients of each of
the LL and HL subbands requires nl−1

2 intermediate buffers,
while computing the coefficients of each of the LH and HH
subbands requires nh−1

2 intermediate buffers. These buffers
are of size 1×N/2 elements and each element has four bytes
to store floating-point coefficients. For computing higher
DWT levels, the filtering and downsampling operations are
performed on the LL subband, and the coefficients in the input
buffer s are also of floating type. For each higher DWT level,
the sizes of the buffers are reduced by a factor of two. There-
fore, the total MFrWF memory requirement for computing
one and multiple DWT levels is given in terms of the LPF
filter length nl (whereby nh = nl − 2 for most bi-orthogonal
filters) and the number lev of wavelet decomposition levels as

MemMFrWF =

N (4nl − 5) bytes, lev = 1
2N (2nl − 1)

2lev−1
bytes, lev ≥ 2.

(6)

For the segmentedMFrWF (SMFrWF), an input image line
is partitioned into Q segments, with N

Q + 2b nl2 c coefficients
each, see Appendix C. Thus, the size of the input buffer s
is 1 × (NQ + 2b nl2 c) (each coefficient has one byte for the
first transform level). The dimensions of the other buffers are
1 × N

2Q coefficients of four bytes each. Thus, the SMFrWF
memory requirements are

MemSMFrWF =


N (4nl − 5)

Q
+ 2

⌊nl
2

⌋
bytes, lev = 1

2N (2nl − 1)
Q2lev−1

+ 2
⌊nl
2

⌋
bytes, lev ≥ 2.

(7)

We note that the overall memory requirement for computing
the DWT coefficients for more than one level is equivalent
to the memory requirement of the first level, since the same
buffers may be reused.
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TABLE 3. Comparison of computational complexity (in terms of number of read, write, add, multiplication, and comparison operations) and memory
requirements (in bytes) of different 2-D DWT computation methods, as derived in Appendices A–E. Parameters: Image dimension N × N pixels; length of
LPF nl (HPF length nh = nl − 2 for typical bi-orthogonal filters); Q line segments.

TABLE 4. Memory required in kBytes for computing wavelet transform using various DWT computation methods for 5/3 filter for images of different
resolutions (sizes); the number in brackets is the number Q of line segments.

IV. RESULTS AND DISCUSSION
This section evaluates and compares thememory requirement
and computational complexity of the proposed MFrWF (with
and without line-segmentation) with the conventional DWT
and FrWF (with and without line-segmentation). We consider
70 standard gray-scale test images of dimensions ranging
from N × N = 256 × 256 to 8192 × 8192 (eight differ-
ent dimensions); specifically ten images each of the dimen-
sions 256 × 256, 512 × 512, 768 × 768, 1024 × 1024,
2048 × 2048, and 2304 × 2304, as well as five images
each of dimensions 4096 × 4096 and 8192 × 8192. The
results presented are the averages of 25 independent observa-
tions for each image. We also demonstrate the compatibility
of the proposed MFrWF and SMFrWF with state-of-the-
art wavelet based image coding algorithms and evaluate the
coding efficiency in terms of the peak-signal-to-noise-ratio
(PSNR). We implemented all the transforms and the coding
algorithms using MATLAB2018 on a Pentium I3 computer
system equipped with a 2.4 GHz processor and 4 GB RAM.
Furthermore, we implemented the architecture of the pro-
posedMFrWF and the state-of-the-art FrWF architecture [55]
on a field-programmable gate array (FPGA), namely the
Xilinx Artix-7 board, and compared their hardware perfor-
mance metrics.

A. MEMORY REQUIREMENT
Thememory required for computing five levels of the wavelet
transform (with 5/3 filter banks) using the conventional DWT,

FrWF, SFrWF, MFrWF, and SMFrWF for gray-scale images
of various sizes are shown in Table 4. We observe from
Table 4 that the memory requirement for computing the DWT
coefficients increases in general with the image size. Table 4
also shows that the memory requirement of the conventional
DWT is the highest among all considered methods as it
requires the whole image to be stored in the system mem-
ory. The other techniques require only one image line or
its segments to be stored in the system memory. However,
the memory requirements of the FrWF and MFrWF differ
due to the numbers and sizes of the buffers used to implement
these algorithms. We observe from Table 4 that the MFrWF
requires slightly higher memory sizes than the FrWF. The
slightly higher MFrWF memory requirement is due to the
increased number of buffers in its implementation. However,
applying the MFrWF on segments of an image line (as in
SMFrWF), reduces thememory requirement as the number of
segments increases. This is because of the reduced SMFrWF
buffer sizes. Nevertheless, we observe from Table 4 that the
segmented FrWF (SFrWF) requires less memory than the
segmentedMFrWF (SMFrWF) for the same number of image
line partitions.

Table 4 reveals that the segmented FrWF or MFrWF can
be implemented on low-cost sensor nodes with up to 10 kB
of on-board memory [20] and can transform even HR images.
For example, for an image of size 2048 × 2048, the SFrWF
with Q = 4 and Q = 8 requires 4.656 kB and 2.352 kB
of memory; whereas, the SMFrWF requires 7.684 kB and
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TABLE 5. Time required in seconds for computing five levels of wavelet transform for different image sizes using different methods to compute the DWT
using 5/3 filter; the numbers in brackets is the number Q of line segments.

3.844 kB of on-board RAM memory. On the other hand for
the same resolution image, the conventional DWT, MFrWF,
and FrWF require 18.87 MB (megabyte), 30.72 kB, and
18.432 kB of RAM, respectively. Thus, from a memory point
of view the SFrWF and proposed SMFrWF satisfy the mem-
ory constraint of low-cost visual sensors even for HR-images.

B. COMPLEXITY ANALYSIS
In this section, the MFrWF computational complexity
in terms of time (seconds) consumed in computing the
2-D DWT coefficients is measured and compared with the
conventional DWT, FrWF, and SFrWF. The measured com-
putation times (in seconds) for computing five levels of the
2-D DWT with the 5/3 filter bank for different size images
are given in Table 5. The table gives the total times required
to compute the DWT coefficients, including read/write access
time, arithmetic (addition and multiplication) computation
time, and comparison time (including modulo-4 operation in
MFrWF). We observe the following from Table 5:
1) The computation time of each method increases with

the image resolution and with the number of segments
(for SFrWF and SMFrWF).

2) The complexity of the proposed MFrWF is the low-
est among all the considered methods of computing
the 2-D DWT for all considered image resolutions.
The conventional DWT has a complexity of almost
the same order as the MFrWF, but the conventional
DWT requires very large memory, particularly for HR
images. The MFrWF achieves substantial complexity
reductions compared to the FrWF, mainly due to the
reduced line read operations in the MFrWF.

3) The segmented MFrWF (SMFrWF) is less complex
than the segmented FrWF (SFrWF) for a given number
of line segments. The complexity of the SMFrWF (4) is
higher than that of the conventional DWT for images of
size up to 512 × 512; however, for higher resolution
images, the conventional DWT and FrWF (with and
without segmentation) have higher time complexity
than the SMFrWF (4).

Importantly, the proposed SMFrWF achieves significant
complexity reductions while having sufficiently low memory

requirements to make the processing of large HR images fea-
sible on low-memory nodes. For instance, for HR images of
dimension 4096×4096 pixels, the SMFrWFwithQ = 8 seg-
ments needs only 7.684 kB of RAM (compared to 4.656 kB
for the corresponding SFrWF, see Table 4) thus being readily
feasible on nodes with 10 kB RAM. As specified in Table 5,
the corresponding SMFrWF time complexity of 3.134 s is less
than half of the SFrWF time complexity of 7.528 s, thus the
SMFrWF has less than half the complexity of the SFrWF.

Although the MFrWF requires some comparisons to
decide the particular operation to be performed on an image
line, its time complexity is substantially reduced due to the
nearly halved memory access time. The MFrWF has even
lower time complexity than the conventional DWT. There-
fore, we conclude that the proposed MFrWF (with and with-
out segmentation) provides a good trade-off betweenmemory
and computational complexity and is thus suitable for trans-
forming/coding of HR images on low-cost visual sensors.

C. CODING EFFICIENCY
Similar to other methods of computing the 2-D DWT,
the MFrWF (with and without segmentation) results in the
same set of transform coefficients, which may be quan-
tized and encoded using any state-of-the-art wavelet image
coding algorithm. Since the different DWT computation
methods generate the same subband coefficients, they give
the same peak-signal-to-noise-ratio (PSNR) at a particular
bit-rate when they are combined with a wavelet-based image
coding algorithm. When DWT, FrWF (with and without
line segmentation), and MFrWF (with and without line seg-
mentation) are combined with ZM-SPECK, to encode the
Bike, 2048 × 2048 image, the PSNR values obtained at bit
rates 0.2, 0.3, and 0.5 bit per pixel (bpp) are 23.7551 dB,
24.4655 dB, and 29.7488, respectively. The original image
‘‘Bike’’ with 2048×2048 pixels and the reconstructed images
for the different bitrates when the transform is computed
using the SMFrWFwithQ = 8 segments are shown in Fig. 7.
We observe from Fig. 7 that there are no blocking artifacts
in the reconstructed image at any of the bitrates. The seg-
mentations in SFrWF and SMFrWF employ overlaps (see
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FIGURE 7. (a) Original image ‘Bike’ (2048× 2048) and reconstructed
images after SMFrWF transform (five levels, 5/3 filter) with Q = 8
segments and ZM-SPECK encoding at (b) 0.1 bpp, (c) 0.3 bpp, and
(d) 0.5 bpp.

Appendices C. and E.) to avoid border continuities, which
could lead to artifacts.

In order to further demonstrate the compatibility of the
proposed MFrWF with the coding algorithms, we combined
the MFrWF (five levels, 5/3 filter) with several coding algo-
rithms, namely SPIHT [56], SPECK [57], WBTC [58], and
their low-memory versions namely NLS [59], LSK [60],
ZM-SPECK [24], and LMBTC [25]. Since the transformed
coefficients are independent of the DWT computation
method, the bitstream of a specific coding algorithm and the
quality of the decoded images at a particular bit rate are the
same, irrespective of the DWT computation method. Con-
sidering the memory requirement of the coding algorithms,
we note that LMBTC [25] and ZM-SPECK [24] satisfy the
memory constraint of low-cost sensor nodes. ZM-SPECK
is almost memoryless (requires only a few registers) and
requires negligibly small memory. Therefore, keeping the
memory constraint of low-cost sensor nodes, it is advisable to
combine the proposed MFrWF with the ZM-SPECK coding
algorithm.

TABLE 6. BD-PSNR gains in dB in the range of 0.01–0.1 bits per pixel of
ZM-SPECK for 2048× 2048 Bike image.

We present the Bjontegaard delta PSNR (BD-PSNR) [61]
gain of ZM-SPECK with respect to other coding algorithms
for the Bike image of dimension 2048 × 2048 in Table 6.
We observe from Table 6 that ZM-SPECK outperforms the
other coders at very low bit rates. This is mainly due to
the one-pass coefficient encoding in ZM-SPECK (instead of
two passes, namely sorting and refinement passes in SPIHT,
SPECK, WBTC, NLS, and LSK) which mixes the sorting,
sign, and refinement bits. Although ZM-SPECK encodes
fewer new significant coefficients than SPIHT, SPECK,
WBTC, NLS, and LSK, it encodes more refinement bits, and

the overall PSNR gain due to refinement bits is typically
slightly higher than the PSNR degradation due to fewer new
significant coefficients at very low bit rates [24]. The coding
efficiency of ZM-SPECK is higher than that of LMBTC due
to the block-based nature of ZM-SPECK [24].

Since the overall memory requirement is the maximum of
the memory required for MFrWF and ZM-SPECK, the over-
all memory required is still governed by that of MFrWF,
as ZM-SPECK consumes negligible memory. Thus, the pro-
posed MFrWF combined with ZM-SPECK is attractive for
image codingwithin the constraints of low-cost visual sensors
even for higher resolution images.

D. HARDWARE IMPLEMENTATION
1) DESIGN
Fig. 8 shows the top-level block diagram of the proposed
MFrWF hardware architecture. The input data, i.e., image
pixels, are read serially into the bufferB. From this buffer, five
pixels (say x0, x1, x2, x3, and x4) are fed in sliding window
fashion into the 1-D DWT computation block to perform
horizontal filtering. The 1-DDWTcomputation block (shown
in Fig. 9) performs the 1-D DWT on these pixels to generate
one coefficient each of the L and H subbands. The window
is then slided by two pixels in a step, until the end of the

FIGURE 8. Block diagram of top-level FPGA architecture of MFrWF.

FIGURE 9. Schematic diagram of 1-D DWT computation block.
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line. The same process is repeated on each line to generate
the L and H subband coefficients according to Eqns. (1)
and (2), respectively. For the symmetric 5/3 filter bank, l−2 =
l2, l−1 = l1, and h−1 = h1, thus Eqns. (1) and (2) can be
simplified for the computation of a single L and H subband
coefficient for a given line i = 1 to

L(1) = (x0 + x4)l2 + (x1 + x3)l1 + x2l0 (8)

H (1) = (x2 + x4)h1 + x3h0, (9)

FIGURE 10. Schematic diagram of 2-D DWT computation blocks.

as implemented in Fig. 9. The computed L and H subband
coefficients are saved in registers L_reg and H_reg, respec-
tively. The L subband coefficient of L_reg is used as input
for the 2-D DWT computation block-I (see Fig. 10(a)) to
compute the LL and LH subband coefficients. Similarly, the
coefficient of H_reg is used as input for the 2-D DWT com-
putation block-II (see Fig. 10(b)) to compute the HL and HH
subband coefficients. In Fig. 10(a), even and odd lines of the
LL subband are computed through Processes 2 and 3, respec-
tively (see Section III-B.2). Similarly, the even and odd lines
of the HL subband are computed through Processes 2 and 3
(see Fig. 10(b)). By inserting pipeline registers after the
multipliers and adders shown in Figs. 9–10, the critical path
delay (CPD) of the proposed MFrWF architecture equals the
multiplier delay Tm. The FrWF architecture [55] also uses
pipeline registers to achieve a CPD of Tm.
The described MFrWF hardware architecture is indepen-

dent of the segment size, i.e., accommodates the SMFrWF
in a straightforward fashion. The segmentation does not
require any extra pipeline registers. However, the segmenta-
tion reduces the required input pixel buffer size.

2) EVALUATION
We compare the proposedMFrWF architecture with the exist-
ing FrWF architecture [55]. We implemented both architec-
tures on the same Xilinx FPGA platform (Family: Artix-7,
Device: xc7a100t, Package: csg324, Speed: −3) using iden-
tical multipliers, adders, and other components provided by
the Xilinx Artix-7 FPGA family. Both architectures use an
input pixel width of 8 bits and a data-path width of 16 bits.

Comparing the hardware utilizations of both architectures
for the 5/3 filter, we found that both architectures require four
digital signal processors (DSPs), and do not require any look
up table RAM (LUTRAM). The MFrWF architecture needs
only one global buffer (BUFG), whereas the FrWF architec-
ture needs two BUFGs. Moreover, the MFrWF architecture
has 12 adders and 11multipliers, while the FrWF architecture
has 8 adders and 10 multipliers. As both architectures have
the same CPD of Tm, they can both operate at the maxi-
mum frequency of 400 MHz. Additional hardware utilization
characteristics are summarized in Table 7, indicating similar
numbers of look up tables, flip flops, and input/output pins.

TABLE 7. Comparison of post-implementation hardware utilization for
MFrWF for image dimension 2048× 2048 with 5/3 filter bank.

TABLE 8. Compute cycles as well as power and energy consumption of
SMFrWF for different segment numbers Q for image dimension
2048× 2048 with 5/3 filter bank.

We evaluated the total number of cycles and the average
power consumption for the 2048 × 2048 image size and
the 5/3 filter with the Xilinx Vivado software suite, version
2018.2. We evaluated the consumed energy by multiplying
the number of cycles with the average power consumption
and the clock duration of 2.6 ns. We observe from Table 7
that theMFrWF architecture reduces the energy consumption
almost down to a third of the FrWF energy consumption,
which is mainly due to the reduction of the cycles to less than
half with the MFrWF. We observe from Table 8 that for an
increasing number of segments Q, the SMFrWF has slightly
increasing cycle counts and energy consumption. This is
mainly because theMFrWF reads a line in one cycle, whereas
the SMFrWF reads a line in Q segments over Q cycles. The
number of computation cycles remains essentially unaffected
by the line segmentation.

E. MEMORY-COMPLEXITY TRADE-OFF
The memory and time complexity to compute five levels of
the wavelet decomposition using the MFrWF and the FrWF
(without segmentation (Q = 1) and with Q = 2, 4, and
8 segments) as well as the conventional DWT for image
dimension 2048 × 2048 are shown in Fig. 11. We observe
from Fig. 11 that for an increasing number of segments Q,
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FIGURE 11. Memory-computational complexity (time) trade-off of
SMFrWF and SFrWF for image size 2048× 2048: Segmentation enables
flexible memory size vs. computation complexity trade-offs. For Q = 1,
SFrWF corresponds to FrWF and SMFrWF corresponds to MFrWF.

the FrWF andMFrWFmemory requirements decrease, while
the time complexities increase. Thus, there exists a trade-off
between memory and complexity. This is a valuable fea-
ture since WMSNs/IoT devices are heterogeneous with vary-
ing memory and computational capabilities. The proposed
MFrWF provides the flexibility to select the number of line
segments Q according to the available on-board memory and
computational power of the WMSNs/IoT devices.

V. CONCLUSION
We have developed and evaluated a novel approach for low-
memory computation of the two-dimensional (2-D) discrete
wavelet transform (DWT) with low computational (time)
complexity. The proposed Modified Fractional Wavelet Fil-
ter (MFrWF) reduces the computational complexity of the
underlying FrWF by avoiding multiple readings of image
lines, thus reducing the memory access time. Once a line is
read from the external SD card, all necessary operations (for
convolution) that are required for computing the 2-D DWT
are performed and the results are stored in multiple buffers.
Thus, the reduction in memory access time is achieved at
the cost of slightly increased buffer memory. To compensate
for the increased memory, we incorporated line segmenta-
tion into the MFrWF, resulting in the Segmented MFrWF
(SMFrWF).

We have verified through extensive simulations and hard-
ware implementations that the proposed MFrWF has sub-
stantially lower complexity than the conventional DWT and
FrWF, while generating exactly the same wavelet transform
coefficients. Moreover, the complexities of the SMFrWF
for large HR images are less than for the FrWF and the
corresponding SFrWF. We observed a trade-off between the
memory requirement and computational complexity that is
controlled by the number of line segments, which is a useful
feature of the SMFrWF. We examined a MFrWF hardware
architecture and observed reduced energy consumption com-

pared to an equivalent FrWF architecture. Although, this
paper focused on reducing the computational complexity of
the forward DWT, the proposed methods are equally applica-
ble to the inverse DWT.

There are several interesting future research directions
related to DWT computation methods that require only low
memory and incur low time complexity. One interesting
future research direction is to examine image transforma-
tion and coding in the context of emerging network func-
tion virtualization [62]. With network function virtualization,
a given physical IoT node or WMSN can support multiple
virtual sensing services in parallel. Our low-memory and low
complexity image transform could enable multiple parallel
image sensing functions to be performed on a physical sensor
node with limited hardware resources. Moreover, the sens-
ing and computing in sensor nodes can become a ‘‘sensing
layer’’ in emerging layered architectures that integrate the
communication and computing functions in wireless net-
works [63], [64]. Future research should examine whether
the computing resources that have been freed up with the
proposed low-complexity DWT method could be utilized for
more advanced processing, such as object detection [65],
in the sensing layer.

This study has focused on the image wavelet transform,
which is a preliminary step towards image compression
(source coding). Often, the encoded images need to be trans-
mitted over error-prone wireless networks, which require
some coding for error resilience. For complex wireless net-
works with limited coordination, such as wireless sensor net-
works, network coding has recently emerged as an attractive
coding approach [66]–[69]. An interesting future research
direction is to jointly examine image wavelet transform,
image coding, and network coding on resource-constrained
sensor nodes.

APPENDIX A
ANALYSIS OF CONVENTIONAL DWT
A. FILTERING AN IMAGE LINE
In this and the subsequent appendices we derive the com-
putational complexities in terms of the number of arithmetic
(addition and multiplication) operations as well as the num-
ber of read and write operations listed in Table 3 for the
different computational methods (conventional DWT, FrWF,
SFrWF, MFrWF, and SMFrWF) for the 2-D DWT of images.
We note that all methods perform the horizontal filtering
of image lines in the same way. Therefore, the number of
additions and multiplications required for computing one line
of the L and H subbands is the same for all considered
DWT computation methods. A coefficient of the L subband is
obtained by convolving nl coefficients of an image line with
the LPF according to Eqn. (1), which requires nl−1 additions
and nl+1

2 multiplications (for symmetrical filters). Similarly,
the computation of one H subband coefficient (obtained by
convolution with a symmetrical HPF of length nh) requires
nh − 1 additions and nh+1

2 multiplications. Each line of the L
and H subbands contains N/2 coefficients. The complexity
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of the horizontal filtering of one image line is the sum of the
numbers of the respective arithmetic operations required for
the LPF and HPF filtering operations. Thus, the total com-
putation time required for one line of the L and H subbands
(assuming nh = nl − 2) is

CLine =
N
2
[2(nl − 2)a+ nlm] , (10)

where a and m denote the time required for one addition and
one multiplication, respectively.

B. CONVENTIONAL DWT OF AN IMAGE
In the conventional DWT, each of the N image lines is first
horizontally filtered, which requires NCLine computations.
The subsequent column-wise vertical filtering requires also
NCLine computations, for a total computation time of 2NCLine
for the 2-D DWT.

During the horizontal filtering in the conventional DWT,
each image line of N coefficients needs to be read once; thus,
N 2 read operations are required to compute the L and H sub-
bands. For the low-memory version of the conventional DWT,
the L and H subbands (each subband with N/2 columns, and
each column with N coefficients) resulting from the horizon-
tal filtering are written to the SD card (N 2 write operations).
For the vertical filtering, each column (consisting ofN coeffi-
cients) of the L andH subbands (total ofN columns) needs to
be read from the SD card (N 2 read operations) to compute the
LL, LH ,HL, andHH subbands via vertical filtering. The final
2-D DWT transform coefficients are written to the SD card.
Thus, a total of 2N 2 read operations and 2N 2 write operations
are required for the low-memory version of the conventional
2-D DWT computation method, which requires N 2 memory
elements for transform coefficients, equivalent to 4N 2 bytes
of memory (for floating point computations). An alternative
version of the conventional DWT computation avoids the
writing of the L and H subbands to the SD card, by stor-
ing them in N 2 additional memory elements for transform
coefficients (4N 2 bytes), for a total of 8 N 2 bytes of memory.
Since this study focuses on low-memory settings, we consider
the low-memory version of the conventional DWT with 4N 2

bytes of memory for comparisons.
We note that in the other DWT computation methods,

the lines after horizontal filtering are multiplied by filter coef-
ficients and saved in RAM buffers. The buffers are updated
through successive operations to compute the LL, LH , HL,
and HH subbands, and the final results are written to the SD
card. Thus, these other DWT computation methods avoid the
writing of the L or H subbands to the SD card and require
therefore only N 2 write operations.

APPENDIX B
FrWF ANALYSIS
A. ANALYSIS OF FrWF ARITHMETIC OPERATIONS
The FrWF works on the basis of a VFA consisting of nl lines;
the VFA is shifted by two image lines at a time. We first
evaluate the time required for the arithmetic operations in

a VFA. The horizontal filtering of a VFA requires nlCLine
operations, with CLine given by Eqn. (10). From a VFA, one
line each of the LL, LH , HL, and HH subbands will be com-
puted. For computing a line of the LL and HL subbands, nl
rows (after 1-D horizontal filtering) need to be multiplied by
the LPF coefficients (depending on the line index in the VFA,
each rowwill bemultiplied by a specific filter coefficient) and
then added together. Thus, computing one line of the LL and
HL subbands requires

CLL_HL = N [(nl − 1)a+ nlm] . (11)

Similarly, for computing one line of the LH and HH sub-
bands, nh rows (after 1-D horizontal filtering) need to be
multiplied by the HPF filter coefficients (depending on the
line index in VFA, each row will be multiplied by a specific
filter coefficient) and then added together. The computation
time required for computing one line of LH andHH subbands
(considering nh = nl − 2) is

CLH_HH = N [(nl − 3)a+ (nl − 2)m]. (12)

The total computation time (for arithmetic operations)
required for a VFA is the sum of nlCLine as well as Eqns. (11)
and (12). The VFA is shifted N/2 times in order to cover
the entire image, resulting in the total arithmetic computation
time

CArithm_FrWF =
N 2

2
(n2l −4)a+

N 2

4
(n2l +4nl−4)m. (13)

B. ANALYSIS OF FrWF READ OPERATIONS
During vertical filtering in the 2-D DWT, row g of the LL
subband is computed according to

LL(g) =
j=b nl2 c∑
j=−b nl2 c

ljL(2g+ j− 1); g = 1, 2, . . . ,
N
2

, (14)

whereby we denote row 2g+j−1 of the L subband by L(2g+
j−1) and denote LPF coefficient j by lj. In the FrWF, nl lines
of the L subband are required to compute one line of the LL
subband. In order to verify that even these lines are to be read
multiple times, consider the computation of three consecutive
rows, say rows g, g + 1, and g + 2 of the LL subband using
a 5/3 filter (nl = 5). For these three lines, Eqn. (14) may be
written in expanded form as

LL(g) = l−2L(2g− 3)+ l−1L(2g− 2)

+l0L(2g− 1)+ l1L(2g)+ l2L(2g+ 1) (15)

LL(g+ 1) = l−2L(2g− 1)+ l−1L(2g)+ l0L(2g+ 1)

+l1L(2g+ 2)+ l2L(2g+ 3) (16)

LL(g+ 2) = l−2L(2g+ 1)+ l−1L(2g+ 2)+ l0L(2g+ 3)

+l1L(2g+ 4)+ l2L(2g+ 5). (17)

From these expanded Eqns. (15)–(17), it is clear that the (odd-
indexed) row 2g + 1 of the L subband is read thrice, once
for the computation of each equation, and its elements are
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multiplied by l2, l0, and l−2, respectively. Similarly, the (even-
indexed) row 2g + 2 of the L subband is read twice, to be
multiplied by l1 and l−1. The HL subband is computed in
a similar way and Eqns. (14)–(17) can be re-used, except
for replacing the L subband coefficients by the H subband
coefficients.

Similarly, it can be demonstrated that the LH and HH
subband coefficients are computed by convolving the L and
H subbands with the HPF of length nh (nh = 3 for 5/3 filter
bank), for which odd-indexed lines are read twice (once to be
multiplied by h−1 and once by h1) and even indexed lines are
read once and multiplied by the h0 filter coefficient.
Thus, we conclude that the FrWF requires multiple read-

ings of image lines for the computation of the vertical con-
volution. The number of times a line is read varies between
(nh − 1)/2 and (nl + 1)/2, according to the filter lengths.

A VFA encompasses nl horizontal image lines. The VFA is
shifted down by two lines to achieve vertical downsampling
by a factor of two. Overall, the VFA is shifted down N/2
times to cover all N image lines [20]. Thus, the FrWF needs
to read nlN

2 lines, each with N coefficients for computing

the 2-D DWT of an image, resulting in a total of nlN 2

2 read
operations.

APPENDIX C
SFrWF ANALYSIS
The SFrWF implements the FrWF on segmented image
lines [54]. The number of multiplication operations in the
SFrWF is the same as in the FrWF [54]. However, apart
from the additions needed by the FrWF, the SFrWF needs
nlN (Q−1)(nl−2) extra additions due to the overlap and add
(OLA) method [70], [71] as analyzed next.

FIGURE 12. Illustration of the overlap-add method (OLA) for
convolution [54].

The segmented FrWF (SFrWF) [54] individually filters
each segment (with a filter of length nl). In order to over-
come the boundary discontinuities, the SFrWF uses the OLA
method, as illustrated in Fig. 12. We observe from Fig. 12

that when the filter outputs corresponding to the shaded
(additional nl − 1 terms of previous segment obtained after
the convolution) overlap with the first (nl − 1) terms of the
current (adjacent) segment are added together, we get the
same convolved output as would have been obtained if the
original image line had been convolved with the filter with
coefficients lj, j = −nl/2, . . . , nl/2. However, due to the
OLA method, the SFrWF performs some extra additions at
segment boundaries, while keeping the number of multiplica-
tions and read operations the same as required in the FrWF.
As evident from Fig. 12, an image line partitioned into Q
segments requires Q− 1 OLA operations.

Overall, the separate filtering by an LPF and by an HPF
requires (Q − 1)[(nl − 1) + (nh − 1)] extra additions for
processing the OLA in one VFA. Considering nh = nl−2 (for
most bi-orthogonal filters), a total of 2(Q − 1)(nl − 2) extra
additions are needed due to the OLA method for one VFA
line. Since each of the nl VFA lines is read and processed (one
segment at a time) in the same way, the processing of each
VFA requires 2nl(Q−1)(nl−2) extra additions. Considering
the vertical downsampling, an image is covered with N/2
VFAs. Therefore, the SFrWF performs a total of Nnl(Q −
1)(nl−2) extra additions due to the OLAmethod. The overall
arithmetic computation time required for the SFrWF is the
FrWF computation time Eqn. (13) plus Nnl(Q− 1)(nl − 2)a.

The SFrWF reduces the FrWF memory requirement by a
factor of Q due to the line segmentation (while only requir-
ing 12(nl − 1) additional bytes of memory for temporary
buffers [54]). The SFrWF requires more additions due to the
OLA method. Since the complexity of the FrWF is already
relatively high due to multiple line reads, the additional add
operations due to the OLA method in the SFrWF further
increase the complexity.

APPENDIX D
MFrWF ANALYSIS
The MFrWF filters the N image lines horizontally as per
the conventional approach, requiring NCLine arithmetic oper-
ations. After horizontal filtering, the lines are multiplied by
different filter coefficients and saved in buffers followed by
successive update operations to compute the LL, LH , HL,
and HH subbands, as described in Section III-B. For the
computation of these subbands, all the N coefficients of the
even and odd numbered lines require nl−1

2 and nl+1
2 multi-

plications, respectively. Thus, Nnl multiplications are needed
for computing one line of the four subbands. Since each of the
four subbands has N/2 lines, a total of N 2nl

2 multiplications
are needed to compute one level of the 2-D DWT.

In the three MFrWF processes, namely P1, P2, and P3,
the odd and even indexed lines are multiplied by different fil-
ter coefficients and the results are either saved in intermediate
buffers or added to the previous values in buffers to update
their content. The multiplication of a line by l2 or h1 (for
a 5/3 filter) indicates that the VFA processing is complete,
and the buffer values after the update will correspond to a
particular subband line depending on the process performed
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on the line. For every image line to be processed, the update
operations require nl − 2 additions for each line element.
For the N coefficients in an image line, N (nl − 2) add oper-
ations are needed to implement the update operation of an
image line. For an image with N lines, the update operations
require a total of N 2(nl − 2) additions.
The total number of additions and multiplications needed

for the MFrWF is the sum of NCLine and the computations
needed for computing the LL, LH , HL, and HH subbands,
resulting in Eqn. (5).

APPENDIX E
SMFrWF ANALYSIS
A. ANALYSIS OF SMFrWF ARITHMETIC OPERATIONS
Since the SMFrWF uses a slightly different line segmentation
approach than the OLA method of SFrWF (as analyzed in
detail in the next subsection), the numbers of arithmetic
operations needed for the SMFrWF are exactly the same as
for the MFrWF.

B. ANALYSIS OF SMFrWF READ OPERATIONS
In order to avoid the extra computations (specifically, addi-
tions) due to the OLA method in the SFrWF, we propose a
different segmentation strategy for the SMFrWF: Let X =
{x1, x2, . . . , xN } denote an N -pixel image line that is to be
convolved with a filter of length nl . For the purpose of mem-
ory reduction, we partition the line intoQ segments, such that
a given segment is overlapping for bnl/2c samples with the
adjacent segments at each boundary so as to avoid the border
discontinuities. Let X1, Xq, q = 2, 3, . . . ,Q − 1, and XQ
denote the first, qth, and Qth (the last) segments of the image
line, respectively. The elements of these segments are

X1 =

{
x1, . . . , x(N

Q+
⌊ nl

2

⌋)} , (18)

Xq =

{
x( (q−1)N

Q −
(⌊ nl

2

⌋
−1
)), . . . , x( qN

Q +
⌊ nl

2

⌋)} , (19)

XQ =

{
x( (Q−1)N

Q −
(⌊ nl

2

⌋
−1
)), . . . , xN

}
, (20)

FIGURE 13. Segmentation of an image line in SMFrWF.

as illustrated in Fig. 13. In Fig. 13, the shaded portions rep-
resent the overlapping segment regions. During the filtering
(convolution), the filter coefficients slide in such a way that
the center of a filter is allowed to align with that portion of a
segment that would have been obtained if the line had been
partitioned with non-overlapping segments, i.e., the center of
the filter slides only over N/Q samples bounded with solid

vertical lines in Fig. 13 (and not over the samples in the
shaded regions). Furthermore, the left side of the first segment
and the right side of last (Qth) segment are symmetrically
extended to avoid border discontinuities (these extensions are
not shown in Fig. 13). The extra bnl/2c samples, shown by
shaded regions on both sides of the intermediate segments
q = 2, 3, . . . ,Q − 1 in Fig. 13 are needed to perform
the convolution when the center of the filter moves towards
the segment boundaries and some filter coefficients extend
beyond the segment boundaries.

By the design of the SMFrWF line segmentation, no addi-
tional arithmetic (add or multiply) operations need to be
performed due to the line segmentation. However, due to the
overlapping nature of the segments, bnl/2c additional sam-
ples from adjacent segments need to be read. The number of
samples that need to be read to process each segment (except
the first and last segments) of an image line are N

Q + 2
⌊ nl
2

⌋
;

whereas, for the first and last segment, NQ +
⌊ nl
2

⌋
samples are

read (since the left side of the first segment and the right side
of last segment are symmetrically extended). Thus, in total
N+2(Q−1)

⌊ nl
2

⌋
read operations are required for processing

an image line in SMFrWF. For the N image lines in an N ×N
size image, a total of

N 2
+ 2N (Q− 1)

⌊nl
2

⌋
(21)

read operations are needed in SMFrWF.
We emphasize that the number of additions and multipli-

cations of the MFrWF and SMFrWF (and the conventional
DWT) are the same since the centers of the filters are not
shifted over the terms which are overlapping. However, there
is small increase in the number of read operations (equal
to 2N (Q − 1)

⌊ nl
2

⌋
) for the SMFrWF, as compared to the

MFrWF, due to the repetitive reading of some image pixels
at the segment boundaries.

C. READ OPERATIONS IN SMFrWF VS.
CONVENTIONAL DWT
Although the MFrWF (without line segmentation) requires
significantly fewer read operations than the FrWF or the
conventional DWT, the number of read operations for the
SMFrWF is proportional to Q, the number of line segments,
see Table 3. Since the number read operations in SMFrWF
increases with Q, one may wonder whether the number of
SMFrWF read operations increases above the number of
read operations for the conventional DWT for large segment
numbers Q. We prove in this appendix that the number of
SMFrWF read operations is always less than for the conven-
tional DWT.

We observe fromTable 3 that the number of read operations
required by the SMFrWF and conventional DWT, respec-
tively, for an N × N size image are N 2

+ 2N (Q − 1)
⌊ nl
2

⌋
and 2N 2, whereby nl denotes the length of the highest order
filter in the filter bank (which is generally the LPF). Thus,
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it is sufficient to prove that

(Q− 1)2
⌊nl
2

⌋
< N . (22)

Considering the largest possible number of segments Q =
N

nl+2b
nl
2 c

for a given image size (with N pixels per line),(
N

nl + 2b nl2 c
− 1

)
2
⌊nl
2

⌋
< N (23)

⇔ −2
⌊nl
2

⌋ (
nl + 2

⌊nl
2

⌋)
< Nnl, (24)

which holds true for all positive integers N and nl .
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