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ABSTRACT This paper investigates the tracking control problem of high-speed trains in the presence
of the input constraints caused by the distribution and output capacity of power systems. By virtue of
the repetitive operation pattern of trains and the backstepping technique, an adaptive iterative learning
control (ILC) strategy based on the multi-particle model is proposed to drive the train to track the given
reference displacement and velocity, where the unknown time-varying parameters are learned and adjusted
between successive operations, and an input-dependent auxiliary system is introduced to compensate the
influence of input constraints. During the design of the controller, the Lyapunov function and composite
energy function (CEF) are constructed to ensure the stability of the closed-loop system and the convergence
of tracking errors for high-speed trains. Furthermore, numerical simulation is performed to confirm the
effectiveness of the proposed scheme. The three main contributions of this work lie in: 1) Integrating the
multi-particle model and ILC framework, which can more accurately reveal the dynamics of the train, and
take full advantage of the repetitive operation pattern; 2) Following the backstepping procedure to devise the
learning controller, where the parameter uncertainties and modeling inaccuracies are deliberately handled,
and; 3) Solving the issues of distributed input constraints for the control system of high-speed trains.

INDEX TERMS High-speed train, tracking control, distributed input constraints, iterative learning control,
backstepping technique.

I. INTRODUCTION
As a momentous transportation tool, high-speed trains, char-
acterized by the great technical difficulty and the complicated
engineering etc., are the concentrate embodiment of modern
science and technology. Among all the pivotal components,
the automatic train operation (ATO) system, which can drive
the trains to run automatically and stop accurately, is one
of the core parts of automatic train control (ATC) system.
Concretely, the main task of the ATO system is to regu-
late online the running states of high-speed trains according
to the reference trajectories given in the scheduling plans,
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which are developed by the railway department aiming to
compromise optimally between trip time and energy con-
sumption of trains on the premise of ensuring the safety of
trains [1]–[3]. Nevertheless, due to the limitations of distri-
bution and output capacity of the power systems, the train
control system is inevitably subject to the input constraints,
which will easily cause the instability of control system, and
even lead to the unsafety of the train operation in serious
cases. To settle the tough issues, this paper will focus on the
design of the tracking controller for high-speed trains in the
presence of distributed input constraints.

By virtue of the intelligent control technology, the tracking
control of high-speed train has been intensively studied so
far. To name a few, [4] developed a tracking controller for
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high-speed trains with unknown parameters and nonlinear
lumps to achieve the asymptotic convergence and disturbance
rejection based on the robust adaptive control. In [5], a robust
H∞ controller is proposed for high-speed trains based on the
multi-particle model, where unknown nonlinearities, param-
eters uncertainties and time-varying delays are considered
together. Later, a robust adaptive nonsingular terminal sliding
mode control strategy is integrated to handle the tracking
control problem of position and velocity for the high-speed
trains subjected to unknown parameters, model uncertainties,
and external disturbances in [6]. Specially, a passivity-based
control scheme, which is different from the Lyapunov-based
method, is presented to realize the cruise control of train
in [7]. Besides, more achievements with respect to the track-
ing control problems of high-speed trains can be found
in [8]–[10]. Although these efforts have delivered some
results, the stability of train control system with input con-
straints has not been investigated in the works mentioned
above.

High-speed train is generally composed of two or more
cars (motor cars) with power system and several cars (trail-
ers) that do not own the traction force, where the motor
car could provide the traction/braking force with the finite
scope on account of the limitation of power systems, and the
trailer can only supply the restricted braking force. Hence,
it is of great practical significance to study the train control
system with distributed input constraints, and the related
researches have drawn some attention. Reference [11] pro-
posed an adaptive state feedback controller for the high-speed
trains with unknown parameters and nonlinearities to address
the issues of unknown actuator failures and control input
saturation. By integrating the sliding mode control and adap-
tive neural network technique, [12] solved the problem of
the asymmetric nonlinear input saturation and thus achieve
the tracking control of velocity and position of high-speed
train. In [13], a hybrid model predictive controller is devised
for high-speed trains to settle the automatic cruising control
problem integrating the aim of tracking the reference speed
and minimizing the energy consumption, where the nonlinear
constraints of traction/braking forces are well considered.
Furthermore, under the condition that the input suffers the sat-
uration constraints, [14], [15] discussed the automatic control
problem of trains based on the single particle model, and [16]
investigated the coordinated control of multiple high-speed
trains.

According to the scheduling plans, the high-speed train
runs on the same railway periodically, e.g., the same tunnels,
slopes and bridges, etc. Considering the repetitive pattern
and the identical tracking target, the tracking control per-
formance of train could be enhanced via iterative learning
method, which can fully utilize the tracking error and con-
trol input information in the previous operation (iteration)
to design the controller of current operation [17]–[27]. For
instance, in [28], iterative learning control (ILC) algorithm
is introduced into the automatic train supervision system
to keep the running state of train consistent with the given

reference trajectory. [29] further considered the cases
of speed constraints and iteration-varying parameters.
Reference [30] applied the terminal ILCmethod to the station
stop control of train for the first time, and [31] tackled the
overspeed protection of train via the coordinate ILC. All
efforts are a good demonstration for the application of ILC
in ATO system.

Attributing to the ubiquity in physical systems, the control
systems with input constraints have long caught the attention
of ILC community. Reference [32] coped with the input sat-
urations for a class of nonlinear uncertain system under the
ILC framework, where the controller included only a basic
P-type feedback term. Reference [33] discussed the adaptive
iterative learning reliable control for first-order nonlinear
systemwith state delays and input saturation together. In [34],
the design of adaptive ILC controller is investigated for the
high-order systems with both state and input constraints, but
the definition of error must resort to the Hurwitz polyno-
mial. Recently, the command filtered adaptive backstepping
technique is employed to devise the learning controller for
high-order system in [35], where an auxiliary system is estab-
lished to overcome the issues of input constraints. In terms
of application, ILC is utilized to perform the speed track-
ing control for high-speed trains under the configurations
of actuator failures, time-varying speed delays, and control
input saturations in [36]. Later, an adaptive ILC scheme is
proposed in [37] to realize the speed tracking for high-speed
trains in the presence of unknown speed delays and input
saturations. Unfortunately, similar to [28]–[31], [36] and [37]
are also based on the single particle model, which treats the
train as a single mass point and might not be applicable for
practical train operation control.

In this paper, the tracking controller is devised for
high-speed trains to follow the given displacement and veloc-
ity profiles via the iterative learningmethod and backstepping
technique, where the multi-particle model with distributed
input constraints is employed to describe the dynamics of
train. The proposed controller is mainly composed of two
parts: parameter adaptation and iterative learning, in which
the adaptive term is used to estimate the unknown parameters,
and the iterative learning term will take fully advantage of
the repetitive pattern of train operation. During the design of
controller, an auxiliary system with respect to the difference
between the actual control input and the unsaturated input
is introduced to ensure that all signals of control system
are bounded, and the composite energy function (CEF) is
constructed to analyze the stability of control system. Com-
pared with the existing works, the main contributions of our
paper include: 1) There is a little work to integrate the ILC
method with the multi-particle model, which can character-
ize the dynamics of train more accurately, to achieve the
tracking control of displacement and velocity for high-speed
trains at present. 2) Since the model of train is formal-
ized into a class of second-order system, the backstepping
technique is adopted to facilitate the design of learning
controller, where the unknown time-varying parameters and
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modeling inaccuracies are deliberately handled. 3) Taking
fully into account the distribution and output capacity of
power systems, the influence of input constraints on the sta-
bility of closed-loop control system is compensated through
constructing an input-dependent auxiliary system.

This paper is organized as follows. In Section II,
the dynamic model of high-speed train with input constraints
is reviewed, and the control object is defined under the
ILC framework. In Section III, an adaptive ILC controller is
designed to track the given reference profiles for high-speed
trains, and the stability of system is analyzed by construct-
ing the CEF. Section IV confirms the effectiveness of the
proposed scheme via numerical simulations. Section V con-
cludes this work.
Notations: Rn and Rn×m denote the sets of n-dimensional

real vectors and n × m real matrixes respectively. ‖·‖ rep-
resents Euclidean norm of vectors, i.e., given a vector x =
[x1, x2, . . . , xn]T ∈ Rn, ‖x‖2 = xT x =

∑n
j=1 x

2
j . tr(·)

denotes the sum of the elements on the main diagonal of
square matrix. sat(·) is the saturation operator, which will
be defined later. Specially, in our paper, when the argu-
ments of sat(·) are vectors or matrixes, the operations are
performed component-wisely on each element. Moreover, let
D(·) denote the diag(·) function which returns a square diag-
onal matrix with the elements of vector, for the convenience
of writing.

II. PRELIMINARIES
In this section, the preparatory works are introduced in
detail, including the multi-particle model of high-speed trains
with distributed input constraints, as well as the prob-
lem formulation for the displacement and velocity track-
ing control of high-speed trains under the ILC framework.
Meanwhile, some necessary basic knowledge and assump-
tions are reviewed.

A. DYNAMIC MODEL
The high-speed train is formalized by the multi-particle
model, in which each car is regarded as a mass point and
the entire train is composed of multiple mass points con-
nected through the couplers. By Newton’s law, a widely used
dynamic motion model from [11] with respect to each car is
presented as follows,

ṡj(t) = vj(t),
mj(t)v̇j(t) = uj(t)+ f bj (t, vj(t))

+f cj (t, s(t), v(t))+ f
a
j (t),

(1)

where j ∈ {1, 2, . . . , n} is the index of cars, t ∈ [0,T ]
represents the operation period of train, sj(t) and vj(t) denote
the displacement and velocity of the jth car respectively,mj(t)
is the mass of the jth car, uj(t) denotes the traction force or
braking force according to the sign of uj(t), f bj (·), f

c
j (·) and

f aj (·) represent respectively the basic resistance, coupler force
and additional resistance suffered by the jth car. Concretely,
the expressions of basic resistance and coupler force can be

established,

f bj (t, vj(t))

=


−mj(t)

[
c0(t)+ cv(t)vj(t)

]
−

n∑
k=1

mk (t)ca(t)v21(t), j = 1,

−mj(t)
[
c0(t)+ cv(t)vj(t)

]
, j = 2, . . . , n.

(2)

f cj (t, s(t), v(t))

=



−ck (t)[s1(t)− s2(t)]− cd (t)[v1(t)− v2(t)],
j = 1,

ck (t)[sj−1(t)− sj(t)]+ cd (t)[vj−1(t)− vj(t)]
−ck (t)[sj(t)− sj+1(t)]− cd (t)[vj(t)
−vj+1(t)], j = 2, . . . , n− 1,

ck (t)[sn−1(t)− sn(t)]+ cd (t)[vn−1(t)
−vn(t)], j = n.

(3)

It can be seen from (2) that the basic resistance f bj (·)
consists of two parts, namely the mechanical resistance
mj(t)[c0(t) + cv(t)vj(t)] and the aerodynamic resistance∑n

k=1 mk (t)ca(t)v
2
1(t). (3) demonstrates that the coupler resis-

tance f cj (·) mainly comes from the front car (ck (t)[sj−1(t) −
sj(t)] + cd (t)[vj−1(t) − vj(t)]) and rear car (ck (t)[sj(t) −
sj+1(t)] + cd (t)[vj(t) − vj+1(t)]), due to the deviation of
displacement or velocity between the adjacent cars. c0(t),
cv(t), ca(t), ck (t) and cd (t) are the related resistance coeffi-
cients, which are defined as unknown state-independent time-
varying parameters. Moreover, since the additional resis-
tance f aj (·) is generally caused by the infrastructures, e.g.,
slopes, tunnels, bridges, etc., it is considered as the unknown
state-independent continuous function.

To facilitate the presentation, some arguments of functions
and time-varying parameters are droppedwithout arising con-
fusion, e.g., f bj (vj), f

a
j , c0, etc.

Normally, to reduce the physical loss of actuator, the con-
trol inputs are artificially restrained by a soft limiter. Let
µj denote the unsaturated control input calculated directly
by controller, and uj represent the actual input of control
system shown in (1). For motor cars and trailers respectively,
the saturation operators of input are defined as follows.

When the jth car belongs to the motor cars,

uj = sat(µj, u
−

j , u
+

j ) =


u+j , µj > u+j ,

µj, u−j ≤ µj ≤ u
+

j ,

u−j , µj < u−j .

(4)

When the jth car belongs to the trailers,

uj = sat(µj, u
−

j , 0) =


0, µj > 0,
µj, u−j ≤ µj ≤ 0,

u−j , µj < u−j .

(5)

u+j denotes the maximal traction force of the jth motor car,
u−j is the maximal braking force of the jth car, both of which
are known constants.
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For the saturation operators, there exists the following
property.
Property 1 ( [38]): For g, g, g ∈ R satisfying g ≤ g ≤ g,

then the following inequality holds,

[(γ + 1)g− (γ h+ sat(g, g, g))][h− sat(h, g, g)] ≤ 0, (6)

where h = sat(g, g, g) and γ ≥ 0.
Furthermore, an assumption on the mass of cars mj(t) is

specified as follows.
Assumption 1: The unknown time-varying parameter

mj(t) has the known lower bound mj and upper bound mj,
i.e.,mj ≤ mj(t) ≤ mj, wheremj,mj are constants, andmj > 0.
Remark 1: Assumption 1 is reasonable whenmj represents

the self-weight of jth car, and mj denotes the mass of jth car
with full load.

B. PROBLEM FORMULATION
The idea of ILC is to utilize the tracking error and control
input information in the previous operation to enhance the
tracking control performance of current operation, when the
control task of trains is repeatable and periodic. Hence, let si,j,
vi,j and ui,j denote the displacement, velocity and input of the
jth car at the ith operation respectively, whose vector forms
are defined as si, vi,ui ∈ Rn×1 with respect to the entire train.
From (1), (2) and (3), the dynamic model of train is rewritten
as{
ṡi = vi,
M v̇i = ui +2vvi + θaφ(vi)+ θkAsi + θdAvi + η,

(7)

where

M (t) = D(m1,m2, . . . ,mn) ∈ Rn×n,

2v(t) = D(−cvm1,−cvm2, . . . ,−cvmn) ∈ Rn×n,

θa(t) = −ca
n∑

k=1

mk ∈ R,

φ(vi) =
[
v2i,1, 0, . . . , 0

]T
n
∈ Rn×1,

θk (t) = −ck ∈ R, θd (t) = −cd ∈ R,

A =


1 −1 0 0 · · ·

−1 2 −1 0 · · ·

...
...

. . .
...

...

0 · · · −1 2 −1
0 · · · 0 −1 1

 ∈ Rn×n,

η(t) =
[
f a1 − c0m1, f a2 − c0m2, . . . , f an − c0mn

]T
∈ Rn×1.

The unknown time-varying parametric terms M , 2v, θa,
θk , θd and η will be estimated in our controller. Moreover,
the lower and upper bounds of M are defined as M =

D(m1,m2, . . . ,mn) and M = D(m1,m2, . . . ,mn) according
to Assumption 1.
Similarly, the distributed input constraints (4) and (5) could

also be unified as the following vector form,

ui = sat(µi,u,u), (8)

where u = [u−1 , u
−

2 , . . . , u
−
n ]

T
∈ Rn×1, the elements of u ∈

Rn×1 will be u+j or 0 depending on the distribution of power
systems.

The objective of this paper is to devise the tracking con-
troller to drive the trains to follow the given reference dis-
placement sr (t) = [sr (t), sr (t), . . . , sr (t)]Tn ∈ Rn×1 and
velocity vr (t) = [vr (t), vr (t), . . . , vr (t)]Tn ∈ Rn×1, that
ṡr (t) = vr (t) obviously.
To attain the objective of control, some reasonable assump-

tions on the control system (7) and reference trajectories are
required.
Assumption 2: There is always an appropriate control

input ur (t) to drive the high-speed train to track the reference
trajectories sr and vr over the finite time interval [0,T ].
Remark 2: Assumption 2 guarantees that the train system

should be controllable, especially in the presence of the input
constraints.
Assumption 3: The initial states of all cars are identical

with the initial values of reference trajectories at every itera-
tion, i.e., si(0) = sr (0) and vi(0) = vr (0).
Remark 3: The identical initialization condition (i.i.c) or

its modifications are essential for the stability analysis of
control system, which can be easily satisfied in the repetitive
operation environment of high-speed trains.
Remark 4: At present, although some ILC schemes have

been presented to deal with the tracking control of high-speed
train, there are still many issues that need to be solved. Con-
cretely, the existing learning controllers in [28]–[31], [36],
and [37] are designed based on the single-particle model
which belongs to a class of first-order single input single
output system. Since the single-particle model cannot distin-
guish the control input of each car, it is impossible to explore
the influence of distributed input constraints on the entire
train as the multi-particle model does. Therefore, it is highly
significant to integrate the ILC method and the second-order
multi-particle model of train. Recently, [35] proposed an ILC
scheme for high-order system by using the backstepping tech-
nique, where the input saturation is handled through introduc-
ing an auxiliary system. Motivated by these works, an adap-
tive ILC strategy is constructed in this paper to achieve the
tracking control of displacement and velocity for high-speed
train in the presence of distributed input constraints.

III. CONTROLLER DESIGN AND ANALYSIS
In this section, the ILC controller is devised to achieve the
tracking of reference trajectories for high-speed trains with
the help of the backstepping design procedure. To ensure the
control performance, an input-dependent auxiliary system is
established to compensate the influence of input constraints.
Finally, the stability of control system and the convergence of
tracking errors are confirmed by constructing CEF.

The auxiliary system for input constraints is defined as
follows, {

λ̇1,i = −c1λ1,i + λ2,i,
λ̇2,i = −c2λ2,i + c31ui,

(9)
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where c1, c2 and c3 are all the designed positive constants,
1ui = ui − µi represents the difference between the actual
input of control system and the unsaturated input calculated
by controller. It could be found that λ1,i ∈ Rn×1 and
λ2,i ∈ Rn×1 remain zero when there is no saturation to occur,
i.e., 1ui = 0, otherwise nonzero.

Following the procedure of backstepping technique,
the coordinate transformation of closed-loop system involv-
ing (7) and (9) is established,

z1,i = si − sr − λ1,i,

z2,i = vi − vr − αi − λ2,i, (10)

where αi is the virtual controller.
The design of ILC controller is performed in two steps,

where the virtual controller is devised at the first step, and
the real controller is constructed at the second step.
Step 1: Taking the derivative of z1,i and combining (9) and

(10), it has

ż1,i = vi − vr − λ2,i + c1λ1,i
= z2,i + αi + c1λ1,i. (11)

One selects the following virtual controller,

αi = −c1(si − sr ). (12)

Defining the Lyapunov function V1,i = 1
2

∥∥z1,i∥∥2,
the derivative of which considering (11) and (12) is given as
follows,

V̇1,i = −c1
∥∥z1,i∥∥2 + zT1,iz2,i. (13)

Step 2: By taking the derivative of z2,i and combining (7)
and (9), it can be obtained

ż2,i = c3 (ui +23vi + θaφ(vi)+ θkAsi + θdAvi
+ η)− c3M v̇i + v̇i − v̇r − α̇i + c2λ2,i
− c31ui

= c3µi + c3 (2vvi + θaφ(vi)+ θkAsi
+ θdAvi + η −M v̇i)+ v̇i − v̇r − α̇i
+ c2λ2,i. (14)

Defining the Lyapunov function V2,i = 1
2

∥∥z2,i∥∥2, one gets
its derivative in terms of (14) as follows,

V̇2,i = zT2,i
[
c3µi + c3 (2vvi + θaφ(vi)+ θkAsi

+ θdAvi + η −M v̇i)+ v̇i − v̇r − α̇i
+ c2λ2,i

]
= zT2,i

[
c3µi + c3

(
2̂v,ivi + θ̂a,iφ(vi)

+θ̂k,iAsi + θ̂d,iAvi + η̂i − M̂iv̇i
)
+ v̇i

−v̇r − α̇i + c2λ2,i
]
− c3zT2,i2̃v,ivi

−c3zT2,iθ̃a,iφ(vi)− c3z
T
2,iθ̃k,iAsi

−c3zT2,iθ̃d,iAvi − c3z
T
2,iη̃i + c3z

T
2,iM̃iv̇i, (15)

where 2̂v,i is the estimation of 2v at the ith iteration, 2̃v,i =

2̂v,i−2v is the estimation error, θ̂a,i, θ̃a,i, θ̂k,i, θ̃k,i, θ̂d,i, θ̃d,i,
η̂i, η̃i, M̂i and M̃i are defined similarly.

The following control law of ILC scheme at ith iteration is
constructed,

µi = −
1
c3

[
c2 (vi − vr − αi)+ v̇i − v̇r − α̇i + z1,i

]
−

(
2̂v,ivi + θ̂a,iφ(vi)+ θ̂k,iAsi + θ̂d,iAvi

+η̂i − M̂iv̇i
)
,

ui = sat
(
µi,u,u

)
. (16)

Accordingly, the parameters learning rules at ith iteration is
proposed as follows,

2̂v,i = 2̂v,i−1 + γv · c3 ·D(z2,i) ·D(vi), 2̂v,0 = 0, (17)

θ̂a,i = θ̂a,i−1 + γa · c3 · zT2,iφ(vi), θ̂a,0 = 0, (18)

θ̂k,i = θ̂k,i−1 + γk · c3 · zT2,iAsi, θ̂k,0 = 0, (19)

θ̂d,i = θ̂d,i−1 + γd · c3 · zT2,iAvi, θ̂d,0 = 0, (20)

η̂i = η̂i−1 + γη · c3 · z2,i, η̂0 = 0, (21)

M̂i = sat
(
M̂i−1 − γM · c3 ·D(z2,i) ·D(v̇i),M ,M

)
,

M̂0 = M , (22)

where γv, γa, γk , γd , γη and γM are the parametric learning
gain, which are all positive constants. On account of Assump-
tion 1, the saturation operator is applied to the learning pro-
cess ofM to retain its estimation within the required bounds.

Consider z1,i and z2,i together, the Lyapunov function for
the closed-loop control system at ith iteration is written as

Vi = V1,i + V2,i. (23)

According to (13), (15) and (16), the derivative of Vi is

V̇i = −c1
∥∥z1,i∥∥2 − c2 ∥∥z2,i∥∥2 − c3zT2,i2̃v,ivi

− c3zT2,iθ̃a,iφ(vi)− c3z
T
2,iθ̃k,iAsi

− c3zT2,iθ̃d,iAvi − c3z
T
2,iη̃i + c3z

T
2,iM̃iv̇i. (24)

Theorem 1: For the control system (7) of high-speed trains
with distributed input constraints (8) satisfying Assump-
tion 2, 3 and 1, the control law (16) and the parameter learning
rules (17)-(22) can guarantee that,

1) All variables are bounded.
2) z1,i and z2,i converge to 0 along the iteration axis.
3) The tracking errors si−sr and vi−vr will remain within

the compact bounds, namely,
∫ T
0 ‖si − sr‖

2 dτ ≤
2
cz
Ei−1 +

c3
cλ

∫ T
0 ‖1ui‖

2 dτ ,∫ T
0 ‖vi − vr‖

2 dτ ≤
2
cz
Ei−1 +

c3
cλ

∫ T
0 ‖1ui‖

2 dτ ,

where the parameters cz and cλ will be defined later.
Proof: To prove the stability of control system and the

convergence of tracking errors, one established the following
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CEF at the ith iteration,

Ei = Vi +
1
2γv

∫ t

0
tr(2̃2

v,i)dτ +
1
2γa

∫ t

0
θ̃2a,idτ

+
1
2γk

∫ t

0
θ̃2k,idτ +

1
2γd

∫ t

0
θ̃2d,idτ

+
1
2γη

∫ t

0

∥∥η̃i∥∥2 dτ + 1
2γM

∫ t

0
tr(M̃2

i )dτ . (25)

The whole proof is composed of three parts.
Step 1 (Non-Increasing of CEF):
To analyze the changes of CEF along the iteration axis,

the difference of CEF is defined as follows,

1Ei = Ei − Ei−1

= Vi − Vi−1 +
1
2γv

∫ t

0
tr
(
2̃2
v,i − 2̃

2
v,i−1

)
dτ

+
1
2γa

∫ t

0

(
θ̃2a,i − θ̃

2
a,i−1

)
dτ +

1
2γk

∫ t

0

(
θ̃2k,i

− θ̃2k,i−1

)
dτ +

1
2γd

∫ t

0

(
θ̃2d,i − θ̃

2
d,i−1

)
dτ

+
1
2γη

∫ t

0

(∥∥η̃i∥∥2 − ∥∥η̃i−1∥∥2) dτ + 1
2γM∫ t

0
tr
(
M̃2
i − M̃

2
i−1

)
dτ. (26)

The third term on the right side of (26) through invoking
the parameter learning rule (17) can be derived as,

1
2γv

∫ t

0
tr
(
2̃2
v,i − 2̃

2
v,i−1

)
dτ

=
1
2γv

∫ t

0
tr
(
(2̂v,i−1 − 2̂v,i)(22v − 2̂v,i − 2̂v,i−1)

)
dτ

=
1
γv

∫ t

0
tr
(
(2̂v,i − 2̂v,i−1)2̃v,i

)
dτ

−
1
2γv

∫ t

0
tr
(
(2̂v,i−1 − 2̂v,i)2

)
dτ

≤ c3

∫ t

0
zT2,i2̃v,ividτ . (27)

Similarly, according to (18)-(21), it has the following results,

1
2γa

∫ t

0

(
θ̃2a,i − θ̃

2
a,i−1

)
dτ ≤ c3

∫ t

0
zT2,iφ(vi)θ̃a,idτ , (28)

1
2γk

∫ t

0

(
θ̃2k,i−θ̃

2
k,i−1

)
dτ ≤c3

∫ t

0
zT2,iAsiθ̃k,idτ , (29)

1
2γd

∫ t

0

(
θ̃2d,i − θ̃

2
d,i−1

)
dτ ≤ c3

∫ t

0
zT2,iAviθ̃d,idτ , (30)

1
2γη

∫ t

0

(∥∥η̃i∥∥2 − ∥∥η̃i−1∥∥2) dτ ≤ c3∫ t

0
zT2,iη̃idτ . (31)

Noticing the parameter learning rule (22), one handles the
sixth term on the right side of (26) as follows,

1
2γM

∫ t

0
tr
(
M̃2
i − M̃

2
i−1

)
dτ

≤
1
γM

∫ t

0
tr
(
(M̂i−1 − M̂i)(M − M̂i)

)
dτ

=
1
γM

∫ t

0
tr
(
(M̂i−1 − γM · c3 ·D(z2,i) ·D(v̇i)− M̂i)

(M − sat(M̂i−1 − γM · c3 ·D(z2,i) ·D(v̇i),M ,M ))
)
dτ

− c3

∫ t

0
tr
(
D(z2,i) ·D(v̇i) · M̃i

)
dτ . (32)

Using Property 1 and letting γ = 0, one can obtain

tr
(
(M̂i−1 − γM · c3 ·D(z2,i) ·D(v̇i)− M̂i)

(M−sat(M̂i−1 − γM · c3 ·D(z2,i)·D(v̇i),M ,M ))
)
≤0. (33)

Substituting (33) into (32), it yields

1
2γM

∫ t

0
tr
(
M̃2
i − M̃

2
i−1

)
dτ ≤ −c3

∫ t

0
zT2,iM̃iv̇idτ . (34)

According to the facts of Vi−1(t) ≥ 0 and Vi(t) =∫ t
0 V̇i(τ )dτ indicated byAssumption 3, substituting (24), (27)-
(31) and (34) into (26) yields

1Ei ≤ −c1

∫ t

0

∥∥z1,i∥∥2 dτ − c2 ∫ t

0

∥∥z2,i∥∥2 dτ ≤ 0. (35)

Now, the non-increasing of CEF along the iteration axis is
verified.
Step 2: (Convergence of Tracking Error)
Before proving the convergence of tracking error,

the boundedness of CEF should be confirmed. On account
of the non-increasing of CEF, it is only required to prove that
E1(t) is bounded.

In terms of (24) and (25) with i = 1, the derivative of E1
can be obtained

Ė1 = −c3zT2,i2̃v,1v1 +
1
2γv

tr
(
2̃2
v,1

)
− c3zT2,1θ̃a,1φ(v1)+

1
γa
θ̃2a,1 − c3z

T
2,1θ̃k,1As1

+
1
2γk

θ̃2k,1 − c3z
T
2,1θ̃d,1Av1 +

1
2γd

θ̃2d,1

− c3zT2,1η̃1 +
1
2γη

∥∥η̃1∥∥2 + c3z2,1M̃1v̇1

+
1

2γM
tr
(
M̃2

1

)
. (36)

Owning to (17) with i = 0, i.e., 2̂v,0 = 0, rewriting the
first term term and second term on the right side of (36) leads
to that

− c3zT2,12̃v,1v1 +
1
2γv

tr
(
2̃2
v,1

)
= −c3zT2,12̃v,1v1 +

1
2γv

tr
(
2̃2
v,1 − 2̃

2
v,0

)
+

1
2γv

tr
(
22
v

)
. (37)

Recalling (27), it is obvious that

1
2γv

tr
(
2̃2
v,1 − 2̃

2
v,0

)
≤ c3zT2,12̃v,1v1. (38)
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Using (38), (37) becomes

−c3zT2,12̃v,1v1 +
1
2γv

tr
(
2̃2
v,1

)
≤

1
2γv

tr
(
22
v

)
. (39)

Similarly, it has

− c3zT2,1θ̃a,1φ(v1)+
1
2γa

θ̃2a,1 ≤
1
2γa

θ2a , (40)

− c3zT2,1θ̃k,1As1 +
1
2γk

θ̃2k,1 ≤
1
2γk

θ2k , (41)

− c3zT2,1θ̃d,1Av1 +
1

2γd
θ̃2d,1 ≤

1
2γd

θ2d , (42)

− c3zT2,1η̃1 +
1
2γη

∥∥η̃1∥∥2 ≤ 1
2γη
‖η‖2 , (43)

c3zT2,1M̃1v̇1 +
1

2γM
tr
(
M̃2

1

)
≤

1
2γM

tr
(
(M −M )2

)
. (44)

Substituting (39)-(44) into (36) yields

Ė1 ≤
1
2
tr
(
22
v

)
+

1
2γa

θ2a +
1
2γk

θ2k +
1

2γd
θ2d

+
1
2γη
‖η‖2 +

1
2γM

tr
(
(M −M )2

)
. (45)

It can draw conclusion from (45) that E1 is bounded in the
finite interval [0,T ] since the right side of (45) is a continuous
iteration-independent function.

Considering (35), the following inequality on the CEF can
be obtained immediately,

Ei≤E1 − c1
i∑

k=2

∫ t

0

∥∥z1,k∥∥2 dτ − c2 i∑
k=2

∫ t

0

∥∥z2,k∥∥2 dτ . (46)

Taking the limitation on the both sides of (46), it leads to that

lim
i→+∞

Ei = E1 − c1 · lim
i→+∞

i∑
k=2

∫ t

0

∥∥z1,k∥∥2 dτ
− c2 · lim

i→+∞

i∑
k=2

∫ t

0

∥∥z2,k∥∥2 dτ . (47)

Since Ei is nonnegative and bounded, according to the limit
theorem, it is easy to obtain that{

limi→∞
∫ t
0

∥∥z1,i∥∥2 dτ = 0,

limi→∞
∫ t
0

∥∥z2,i∥∥2 dτ = 0.
(48)

Defining the Lyapunov function Vλ,i = 1
2

∥∥λ1,i∥∥2 +
1
2

∥∥λ2,i∥∥2 for the auxiliary system, its derivative is derived by
using the Young’s inequality and (9) as follows,

V̇λ,i = −c1
∥∥λ1,i∥∥2 + λT1,iλ2,i − c2 ∥∥λ2,i∥∥2

+ c3λT2,i1ui

≤ −(c1 +
1
2
)
∥∥λ1,i∥∥2 − (c2 −

1
2
−
c3
2
)
∥∥λ2,i∥∥2

+
c3
2
‖1ui‖2

≤ −cλ(
∥∥λ1,i∥∥2 + ∥∥λ2,i∥∥2)+ c3

2
‖1ui‖2 , (49)

where cλ = min(c1 − 1
2 , c2 −

1
2 −

c3
2 ) is a positive constant.

Integrating both side of (49), it gets that

Vλ,i(T )− Vλ,i(0) ≤ −cλ

∫ T

0
(
∥∥λ1,i∥∥2 + ∥∥λ2,i∥∥2)dτ
+
c3
2

∫ T

0
‖1ui‖2 dτ . (50)

Considering the fact of Vλ,i(0) = 0 and Vλ,i(T ) ≥ 0, one has∫ T

0
(
∥∥λ1,i∥∥2 + ∥∥λ2,i∥∥2)dτ ≤ c3

2cλ

∫ T

0
‖1ui‖2 dτ . (51)

Recalling (35), it follows that∫ T

0
(
∥∥z1,i∥∥2 + ∥∥z2,i∥∥2)dτ ≤ 1

cz
(Ei−1 − Ei)≤

1
cz
Ei−1. (52)

where cz = min(c1, c2). Defining the tracking errors es,i =
si − sr , ev,i = vi − vr and considering (10), the following
inequality holds,∫ T

0

[
(1+ c1)

∥∥es,i∥∥2 + ∥∥ev,i∥∥2] dτ
≤ 2

∫ T

0
(
∥∥z1,i∥∥2+∥∥z2,i∥∥2)dτ+2 ∫ T

0
(
∥∥λ1,i∥∥2+∥∥λ2,i∥∥2)dτ .

(53)

From (51), (52) and (53), it easily leads to∫ T

0

∥∥es,i∥∥2 dτ ≤ 2
cz
Ei−1 +

c3
cλ

∫ T

0
‖1ui‖2 dτ , (54)

and∫ T

0

∥∥ev,i∥∥2 dτ ≤ 2
cz
Ei−1 +

c3
cλ

∫ T

0
‖1ui‖2 dτ . (55)

Hence, it can conclude that the tracking errors are bounded by
(54) and (55) with the designed parameters cλ and cz, as well
as z1,i and z2,i are convergent along the iteration axis point-
wisely.
Step 3 (Boundedness of Variables):
The boundedness of Ei, z1,i, z2,i and the tracking errors

have been proved in the last steps. According the definition of
Ei, it can draw the conclusion that 2v,i, θa,i, θk,i, θd,i, ηi and
Mi are all bounded. Moreover, since sr and vr are the known
bounded variables in the interval [0,T ], the displacement si
and velocity vi are also bounded in [0,T ] according to (54)
and (55).
Remark 5: Since the difference between actual input and

unsaturated input 1ui is integrated to zi via the auxiliary
system, the design of controller is allowed to be carried
out through following the standard backstepping procedure.
Nevertheless, it should be noted that the designed errors z1 is
different from the common tracking error si−sr in the general
backstepping control scheme. Therefore, when constructing
the controller, we usually choose the appropriate parameters
c1, c2, c3 to mitigate the influence of input constraints on
the tracking error. Furthermore, it should be emphasized that
λ1,i and λ2,i gradually decay to zero after the end of input
constraints, i.e., the auxiliary system will be non-activation.
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FIGURE 1. The tracking profiles of displacement and velocity at the first
iteration.

FIGURE 2. The tracking profiles of displacement and velocity at the 30th
iteration.

TABLE 1. The simulation parameters for CRH3 [13].

IV. SIMULATION AND DISCUSSION
Numerical simulation is performed to analyze the effective-
ness of proposed ILC scheme for high-speed trains with
distributed input constraints, including the tracking control
performance of velocity and displacement, as well as the
influence of the limitations of power systems on the control
input signals. The parameters for simulation are from the
CRH3 train, which are listed in TABLE 1.

FIGURE 3. The tracking error profiles of displacement and velocity at the
first iteration.

FIGURE 4. The tracking error profiles of displacement and velocity at the
30th iteration.

The given reference trajectory covers the three scenarios
of acceleration, cruise, and deceleration for the train oper-
ation, the details of which will be shown in the simulation
results later. In the accelerating phase, the power systems of
the motor cars provide the traction forces, to drag or push
the trailers via the coupler forces from the adjacent cars,
thus driving the train to speed up. In the decelerating phase,
the braking systems of motor cars and trailers works simulta-
neously to slow the train down until stop. The simulated train
is composed of six cars in our paper, where the distribution
of motor cars is 101010, that is, the 1st car, the 3th car and
the 5th car are motor cars, the others are trailers. Further,
the maximum traction force and maximum braking force are
assigned as 4×104 N, i.e., u = [−4,−4, . . . ,−4]T×104 and
u = [4, 0, 4, 0, 4, 0]T × 104. Moreover, 83.5 m/s (approxi-
mately 300 km/h) is considered as the final cruising velocity.
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FIGURE 5. The maximum tracking errors of displacement and velocity
versus the iteration number.

FIGURE 6. The profiles of control input subjected to constraints at the
first iteration (u1).

According to the requirements with respect to the stability
of control system and the learning efficiency of ILC, we set
the controller parameters as c1 = 0.01, c2 = 100, c3 = 0.04,
the learning gains as γv = 10, γa = 0.02, γk = γd =

γη = γM = 8000, where the selection of values takes fully
into account the convergence speed of tracking errors and the
possible magnitude of estimated parameters. Following the
procedure developed in Section III, and applying the designed
parameters, the control input at the ith operation of train is
constructed as follows,

ui = sat (−25× [100× (vi − vr + 0.01× si − 0.01× sr )

+v̇i − v̇r + 0.01× vi − 0.01× vr + si − sr − λ1,i]

−(2̂v,ivi + θ̂a,iφ(vi)+ θ̂k,iAsi + θ̂d,iAvi + η̂i
−M̂iv̇i),u,u ),

FIGURE 7. The profiles of control input subjected to constraints at the
30th iteration (u30).

FIGURE 8. The profiles of difference between the actual control input and
the unsaturated input at the first iteration (1u1 = u1 − µ1).

and the estimation of unknown parameters at the ith iteration
can be calculated as,

2̂v,i = 2̂v,i−1 + 0.4×D(z2,i) ·D(vi),

θ̂a,i = θ̂a,i−1 + 0.0008× zT2,iφ(vi),

θ̂k,i = θ̂k,i−1 + 320× zT2,iAsi,

θ̂d,i = θ̂d,i−1 + 320× zT2,iAvi,

η̂i = η̂i−1 + 320× z2,i,

M̂i = sat
(
M̂i−1 − 320×D(z2,i) ·D(v̇i),M ,M

)
.

30 iterations are executed to ensure the tracking of reference
trajectories for high-speed trains, as well as to discuss the
variation of the control input constraints. More details are
given as follows.
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FIGURE 9. The profiles of difference between the actual control input and
the unsaturated input at the 30th iteration (1u30 = u30 − µ30).

Figs. 1 and 2 demonstrate the tracking profiles of dis-
placement and velocity of all cars at the first iteration and
30th iteration, respectively. It can be seen from Fig. 1 that
there are significant deviations between the actual measured
displacements/velocities of cars and the given reference dis-
placements/velocities. Obviously, although there is also the
adaptive term in the controller during the first iteration, it is
intractable to achieve the better tracking results in the finite
time interval due to the irregular changes of reference trajec-
tories. Nevertheless, as shown in Fig. 2, the effect of tracking
control is significantly enhanced at the 30 iteration since
the estimations of unknown parameters are adjusted between
successive operations via iteration learning.

Concretely, the tracking errors of displacement and veloc-
ity are shown in Figs. 3 and 4 respectively, and the maximum
absolute errors at each iteration are given in Fig. 5, both of
which not only quantitatively verify the effect of parameters
learning, but also illustrate the asymptotic convergence of
tracking errors. Although the maximum tracking errors of
velocity at the 30th iteration in Fig. 5 have not been elimi-
nated completely, the errors are closely remained around zero
at the most period of entire operation as shown in Fig. 4,
and the tracking errors of displacement are similar. Moreover,
theoretically, the tracking errors could be further converged if
there are more iterations to be executed without the consid-
eration of simulation cost. Overall, Figs. 1 to 5 confirm the
tracking control performance of the proposed ILC scheme for
high-speed trains.

To indicate that the distributed input constraints are indeed
abode, the control forces of all cars at the first iteration and
30th iteration are exhibited in Figs. 6 and 7. It shows that,
during the entire process of each operation, the traction forces
are only provided by the motor cars, i.e., Car 1, 3, 5, and
the braking forces come from all the motor cars and trailers.
Further, to observe the influence of iteration learning on
the input signals, the differences between the actual control

forces of train and the unsaturated inputs at the first iteration
and 30th iteration are given in Figs. 8 and 9 respectively.
It could be found that the input signals calculated directly
by the controller at the 30th iteration are closer to the scope
specified by the input constraints than the first iteration.
That is, with the development of iterations, the proposed ILC
scheme is helpful to improve the input signals of controller
according to the requirements of the distribution and output
capacity of power systems.

V. CONCLUSION
In this paper, an adaptive ILC scheme is constructed to
achieve the tracking control of displacement and velocity
for high-speed trains in the presence of distributed input
constraints, where the multi-particle model is employed to
describe the dynamics of train. To devise the learning con-
troller, an auxiliary system is established to overcome the
input saturation, and the backstepping design procedure is
used to derive the control law (16) and parameters learning
rules (17)-(22). Moreover, the stability of control systems and
the convergence of tracking errors are proved via constructing
CEF, as well as the effectiveness of proposed scheme is
verified by numerical simulation.
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