IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 2, 2019, accepted June 18, 2019, date of publication June 24, 2019, date of current version July 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2924550

Temporal Data Representation and
Querying Based on RDF

FU ZHANG -, KE WANG, ZHIYIN LI, AND JINGWEI CHENG

School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China

Corresponding author: Fu Zhang (zhangfu@cse.neu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61672139.

ABSTRACT With the explosive growth of temporal data, how to query and manage temporal data has
become an important research issue. Resource description framework (RDF), as the standard data and
knowledge description language of the semantic web, has been widely used to represent various domain
data. Aiming at the representation and querying of temporal data, this paper proposes a temporal data
representation model based on RDF and its corresponding querying method. First, a representation model
called RDFt is proposed, which can represent temporal data with both the time information and the update
count information, and the syntax and semantics of the RDFt model are given. Then, we propose a query
language called SPARQL[t] for RDFt, and we give the query syntax and operations of SPARQL[t] in detail.
In addition, a querying transformation algorithm from SPARQLI[t] to SPARQL is proposed, in order to
achieve compatibility with the existing RDF query engines. Finally, we implemented a prototype system
that can support RDFt temporal data representation and querying, and the case studies and experimental

results verify the feasibility of the proposed approach.

INDEX TERMS Temporal data, RDF, SPARQL, representation, querying.

I. INTRODUCTION

In recent years, with the development of the Semantic Web
and knowledge engineering, Resource Description Frame-
work (RDF) [1], which has formed a more systematic and
comprehensive technical architecture in data and knowledge
representation and processing, has become one of the main
forms for representing knowledge. Based on the advan-
tages of RDF in data and knowledge representation, many
researchers have proposed to use RDF for temporal data
representation and management in recent years. Using RDF
data model to represent temporal data can ensure that the
semantics of temporal data can be described accurately and
flexibly, and also may help to realize the sharing of the tem-
poral data in various applications. In addition, the efficient
query mechanism of RDF can achieve effective querying on
the temporal data.

In order to represent and manage temporal data in many
practical fields (e.g., Geographic Information System GIS,
sensor stream data, temporal database, dynamic social net-
work, environmental meteorological monitoring system, and

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

85000

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

online financial data [2]), some temporal data representation
models based on RDF have been proposed to describe the
different granularity temporal data such as the time point
and time interval. In general, there are three main types of
temporal data models in the existing work, the first one is
temporal data models based on the version control which is
used to annotate the state of an RDF triple with the change
of time; the second one is temporal data model based on the
different extension forms of RDF triple (e.g., RDF quad-tuple
syntax); the third one is temporal data model based on the
original form of RDF triple by adding timestamp information
after the predicate or the whole triple. Please refer to the
related work in Section VI of this paper for more details.
However, the existing representation models and query lan-
guages are not enough to represent and manage all types
of temporal information in practical applications (as clearly
listed in Table 1).

Furthermore, on the basis of the representation and query-
ing requirements in Table 1, users may constantly put forward
new requirements for queries. For example, a user may want
to query the time of an event within a certain time inter-
val, or the historical record of an event, or the state of the event
at a time point. However, the existing models for representing

VOLUME 7, 2019

https://orcid.org/0000-0002-3880-8086

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

IEEE Access

TABLE 1. Some common requirements of temporal data representation
and querying.

Representation and querying requirements

R, Representing and querying time information
about how many times an athlete has played for a
team during a certain period of time

R, Represer}tmg and querying someone'§ career
information over a certain period of time

R; Represent'ing gnd querying a triple has several
relevant historical records

temporal data cannot satisfy the requirements. The existing
version-based snapshot model in [3] only can record the
status information of each time period, and do not know how
many records are related to this item. Also, the proposed
multidimensional RDF model [4] is only suitable for the
time flow information processing. The temporal RDF model
[5], [6] can represent the temporal data, but cannot represent
the update count information. Moreover, the temporal models
in [7], [8], [9], [10] can represent only the state informa-
tion that contains triples in a certain period of time. The
model in [11] can represent only the N-dimensional time
information. In addition, uncertain temporal model [12] and
weighted-based temporal model [13] are proposed mainly
for solving the problem of inconsistency in RDF knowledge
bases with confidence annotations. Similarly, based on the
fuzzy set theory, the temporal data model with annotation
information in [14] can represent the fuzzy temporal infor-
mation. The more detailed introduction and comparison can
be found at the related work in Section VI of this paper.

Based on the observations above, in order to manage more
variety of temporal information, in this paper we propose a
new temporal data representation model called RDFt and its
corresponding query language SPARQL[t]. The new model
can represent temporal data with both the time information
and the update count information that widely exist in the
real-world applications. In general, the paper makes the
following main contributions:

o We propose a new temporal data representation model
RDFt in Section III, including: (i) we extend the RDF
data model by adding time information and update count
information to the predicate part of a triple, and we
define the syntax and semantics of RDFt temporal data
model; (if) we provide several examples to well explain
the model.

o« We propose a query language called SPARQLI[t] for
RDFt in Section IV, including: (i) we define the basic
query form and various query operations of SPARQL[t]
in detail; (if) we propose a complete querying transfor-
mation algorithm from SPARQL[t] to SPARQL in order
to be compatible with the existing RDF query engines.

o We implemented a prototype system in Section V that
can support RDFt temporal data representation and
querying, including: (i) we introduce the architecture

VOLUME 7, 2019

and some details of the prototype system; (i7) we test the
prototype system based on two datasets of NBA basket-
ball players and YAGO. The case studies and experimen-
tal results verify the feasibility of the proposed approach.

The remainder of this paper is organized as follows:
Section II introduces some preliminaries. Section III pro-
poses a new temporal data representation model RDFt, and
gives the syntax and semantics. Section IV proposes a
query language SPARQL[t] for RDFt, and proposes a com-
plete querying transformation algorithm from SPARQL[t] to
SPARQL. Section V implemented a prototype system and
carried out some case studies based on two datasets of NBA
basketball players and YAGO. Section VI introduces the
related work. Section VII gives the conclusions and future
work.

Il. PRELIMINARIES
In this section we introduce some preliminaries on RDF,
SPARQL, temporal data and Neo4J graph database.

A. RDF
Resource Description Framework (RDF [1]) and RDF Vocab-
ulary Description Language (RDF Schema [15]) are the
standard languages proposed by W3C (World Wide Web
Consortium) to describe information resources on the Web.
The basic structure of RDF is graph including nodes and
edges. Two nodes and one edge consist of a triple, i.e., a
triple includes “‘subject-predicate-object” three parts. Usu-
ally (s, p, o) is used to represent a basic triple, also known as
an RDF statement. Each part in a triple is called resource and
identified by a URI (Uniform Resource Identifier). Moreover,
RDF allows blank nodes. The RDF Schema uses the notion
of “class” to specify categories that can be used to classify
resources. The relation between an instance and its class
is stated through the ‘““type” property. With RDF Schema
one can create the hierarchies of classes by ‘“‘sub-classes”
and the hierarchies of properties by ‘‘sub-properties”. Type
restrictions on the subjects and objects of particular triples
can be defined through “domain” and ‘“‘range” restrictions.
RDF has several syntaxes, such as: N-Triple, Turtle, JSON-
based RDF Syntax, RDF/ XML (XML Syntax for RDF),
RDFa (for HTML and XML Embedding) [1], etc. Further,
the semantics of an RDF model can be interpreted as shown
in Definition 1 [1].

Definition 1 (Interpretation of an RDF Model): A sim-
ple interpretation / of an RDF model can be formally
expressed as:

« A non-empty set IR of a resource, called the
domain or universe of I

o A subset of IP of IR, called the set of properties of /;

o A mapping [EXT from IP into the powerset of IR x IR,
i.e. the set of sets of pairs < x, y > with x and y in IR;

o A mapping IS from URI references in V into the union
of IR and IP;

o A mapping IL is from typed literals in V into IR;

85001

IEEE Access

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

o A distinguished subset LV of IR, called the set of literal
values, which contains all the plain literals in V.

The detailed introductions about RDF and RDF Schema
can be found in [1] and [15].

B. SPARQL

SPARQL [16] (SPARQL Protocol and RDF Query Language)
is a standard query language proposed by W3C for RDF
data. It is a kind of SQL-like language and can help users
query and modify data in datasets. Its basic query form is:
select 7x [from dataset] where {spo.}. The main purpose
is to find the variable information that you want to query
according to the pattern matching method and return it to the
query user as a result. In SPARQL, any element of a triple
(s, p, 0) can be represented as a variable, and the first character
of the variable is a question mark (?) or a dollar sign ($),
which is commonly used as a question mark (?). Each RDF
triple can be represented by an RDF graph. Multiple RDF
graphs form an RDF group graph, i.e., a huge network graph
structure. Therefore, the SPARQL language implements the
query operation according to the pattern matching on the
network graph structure.

o ASK: query whether there is a graph schema to be
queried in RDF graph schema.

o SELECT: select the query result and return the binding
of the query variable to the result.

o CONSTRUCT: create a new RDF graph.

o DESCRIBE: return a graph that contains all the infor-
mation about the graph pattern matching nodes.

Moreover, SPARQL also supports filtering operations.
According to the setting of filtering conditions, it can quickly
find the data queried by users and filter out the expected result
sets. In addition, SPARQL provides modifier keywords such
as LIMIT, OFFSET, ORDER BY, and so on to facilitate users
to find operation result sets. The detailed introductions about
SPARQL can be found in [16].

C. TEMPORAL DATA

Temporal data is a data column recorded by the same index
in chronological order. In general, temporal data is mainly
divided into two types [7], [17]: one is transaction time, which
indicates the time when a user accesses a database to perform
data operations such as insertion, deletion and modification,
that is, it is the time when a fact enters and stores in the
database; the another one is valid time, which indicates that
the current time information of the fact. On the basis of RDF,
time information is added into the RDF model to represent
temporal data, which can be divided into three main extension
forms: the first one is temporal data model based on the
version control which is used to annotate the state of an RDF
triple with the change of time; the second one is temporal
data model based on the different extension forms of RDF
triple (e.g., RDF quad-tuple syntax), and the third form is
temporal data model based on the original form of RDF triple
by adding timestamp information. The current RDF model

85002

and its extensions are not good enough for representing all
kinds of temporal data. Please refer to Section VI for more
details.

D. Neo4J GRAPH DATABASE

In our prototype system we choose Neo4] graph database
to store the temporal data. Neo4J [18], which is a high-
performance NoSQL database, has been widely used to store
the RDF data. Neo4J is easy to expand to hundreds of mil-
lions of levels of nodes and relationships, and it also pro-
vides traversal operation to retrieve data at high speed. The
traversal operation is equivalent to the connection operation
in relational database. Moreover, being similar to SQL and
SPARQL, Cypher is a special declarative query language
for querying Neo4J graph database. Cypher uses the expres-
sion method of graph pattern matching which is based on
SPARQL. Please refer to [18] for more details about Neo4J
graph database.

lIl. TEMPORAL DATA REPRESENTATION MODEL RDFt

In order to represent temporal data with both the time infor-
mation and the update count information, in this section
we propose a new temporal data representation model
RDFt. We define the syntax (see part A) and the semantics
(see part B) of the RDFt model in detail, and we also provide
some running examples to well explain the model.

A. RDFt SYNTAX

For representing temporal data with both the time information
and the update count information, our basis idea is to retain
the RDF triple form and then extend the triple by adding
the time information and update count information into the
predicate p of the triple (s, p, 0).

Formally, the sequential information ¢ in RDFt data model
refers to valid time, which can be either a time point or a time
interval. The boundary value of the time interval is expressed
by the start time point (¢s) and the end time point (fe). In addi-
tion, in order to further describe the update count information,
an attribute tag n is added. Figure 1 shows the representation
syntax of the RDFt model:

Time point: (s, p[t]-n,0),t€ T,ne N
Time interval: (s, p[ts, te]-n, o), ts,tec Tand ts <te,n € N.

FIGURE 1. The syntax of the RDFt data model.

In the RDFt model:

e (s, p, o) is a standard RDF triple form ‘‘subject-
predicate-object" as mentioned in Section II.

e plt]-n or p[ts, te]-n, which is the predicate part of a
triple, represents the relationship between the subject s
and the object o. In detail, [] denotes an optional item,
the datatypes of ¢, £s and te are xsd: date,and T = {[ts, te]
| xsd: date} is the time domain. Note that, the time point
information is represented as ¢, and the time interval

VOLUME 7, 2019

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

IEEE Access

information is represented as [7s, te]. Furthermore, when
ts = te, the time interval (s, p[ts, te]-n, 0) is equivalent
to the time point (s, p[t]-n, 0), where t = ts = te.

e nin p[t]-n or p[ts, te]-n denotes the update count infor-
mation, i.e., the triple records are updated n times. The
default value of n is 1. The change of n is based on the
change of transaction time, and the largest n represents
the most recent historical record of the triple. Based on
the update count n, we can quickly find out the change
records of the triple by ranking the query result set.
Particularly, when any number min 1-n (i.e., 1 <m < n)
is not included in the query result set, it denotes that the
triple with the update count m is deleted.

To well explain the model, Figure 2 shows an example of
the RDFt data model.

Example 1: representing the personal information of NBA
player LeBron James with the RDFt data model.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix rdft: <http://www.neu.edu/2018/rdft-syntax-ns#> .
@prefix info: <http://'www.neu.edu/2018/NBA_Sportinfo#t> .

<LeBron_James> <Name> "LeBron_James" .
<LeBron_James> hasBirthCity[1984-12-30]-1 "Akron_OH" .
<LeBron_James> <Stature> "2.03""xsd:decimal .
<LeBron_James> <Plays For[2003-06-06,2004-05-07]-1>
"Cleveland_Cavaliers" .

<LeBron_James> <Plays For[2004-09-14,2005-04-26]-2>
"Cleveland_Cavaliers" .

<LeBron_James> <Plays For[2005-04-18,2006-08-08]-3>
"Cleveland Cavaliers" .

<LeBron_James> <Plays_For[2006-05-27,2007-11-09]-4>
"Cleveland_Cavaliers" .

<LeBron_James> <Plays For[2010-01-03,2011-09-06]-1>
"Miami_Heat" .

<LeBron_James> <Plays_For[2011-01-11,2012-08-20]-2>
"Miami_Heat" .

<LeBron_James> <Scorel [2003-06-06,2004-05-07]-1>
"1654"xsd:integer .

<LeBron_James> <Scorel [2004-09-14,2005-04-26]-2>
"2175"xsd:integer .

<LeBron_James> <Scorel [2005-04-18,2006-08-08]-3>
"2478"xsd:integer .

<LeBron_James> <Scorel [2006-05-27,2007-11-09]-4>
"2132"Mxsd:integer .

<LeBron_James> <Scorel [2007-04-26,2008-07-25]-5>
"2250"xsd:integer .

<LeBron James> <Scorel [2008-03-10,2009-04-10]-6>

FIGURE 2. An example of RDF t data model.

The example of RDFt data model in Figure 2 shows the
personal information of NBA stars, including the information
about James’ regular season team, game time and score (time
in the smallest unit of day). From Figure 2, the model can not
only represent the temporal information, but also the update
count information with the change of time.

VOLUME 7, 2019

Furthermore, we need to define the RDFt vocabulary based
on the RDF vocabulary [1], [15] by adding a new RDFt
namespace (@prefix rdft:<http://www.neu.edu/2018/rdft-
syntax-ns>) and several RDFt properties rdft: hasTime, rdft:
hasStartTime, rdft: hasEndTime, rdft: hasNumUpdate. As we
have known, reification of an RDF statement is a mean of
providing metadata for that statement, and it is the action that
enables the statement to be used as the subject or object in
another RDF statement [1]. On the basis, we first give the
new RDFt vocabulary in Table 2.

TABLE 2. RDFt Specification vocabulary.

RDFt Reification

Vocabulary Type Explanation
rdf:Statement class Representing a statement of a
triple.
rdf:subject property Representing the subject of a
statement.
rdf:predicate property Representing the predicate of
a statement.
rdf:object property Representing the object of a
statement.
rdft:hasTime property Representing a property with
a time point.
rdft:hasStartTime property Representing a property that
has a start time.
rdft:hasEndTime property Representing a property that
has an end time.
rdft:hasNumUpdate property Representing the property of

the update count of a triple
record.

The reification of RDFt (s, p[f]-n, o) is as follows:
?statement rdf:type rdf:Statement .
?statement rdf:subject s .

?statement rdf-predicate ?p .
?statement rdf-object o .

?p a rdf:Property .

?p rdft:hasTime t.

?p rdft: hasNumUpdate n .

FIGURE 3. The form of RDFt reification.

On the basis of Table 2, in the following we further give
the form of RDFt reification as shown in Figures 3 and 4:

o if ¢ is the time point, € T, n € N.

o if ¢ is the time interval, ¢ = [ts, te], ts, te € T and

ts<te, neN.

Based on the RDFt vocabulary and reification form as
mentioned above, we choose a part of James’ personal infor-
mation in Figure 2, and further give their reification forms as
shown in Figure 5. In detail, among the triples in Figure 2,
we choose two triples as shown in Figure 5, the first triple
represents that LeBron_James was born in “Akron_OH”
on “1984-12-30, and the second triple indicates that his

85003

IEEE Access

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

The reification of RDFt (s, p[ts, te]-n, o) is as follows:
?statement rdf:type rdf:Statement .
?statement rdf:subject s .

?statement rdf-predicate ?p .
?statement rdf:object o .

?p rdf:type rdf:Property .
?p rdft:hasStartTime ts .

?p rdft:hasEndTime te .

?p rdft: hasNumUpdate n .

FIGURE 4. The form of RDFt reification.

third team is “Cleveland_Cavaliers” between “2005-04-18”
and “2006-08-08”. In Figure 5, _:xxx and _:yyy are anony-
mous empty nodes representing the aggregation forms of two
triples.

For the following two triples about the James' personal and his career
information in Figure 2.

<LeBron_James> <hasBirthCity[1984-12-30]-1> "Akron_OH" .
<LeBron_James> <Plays For[2005-04-18,2006-08-08]-3>
"Cleveland Cavaliers" .

The reification forms of two triples are as follows:
_xxx rdfitype rdf:Statement .
_xxx rdf:subject <LeBron James> .
_xxx rdf:predicate ?hasBirthCity .
xxx rdf:object "Akron OH" .
?hasBirthCity rdf:type rdf: Property.
?hasBirthCity rdft:hasTime "1984-12-30""xsd:date .
?hasBirthCity rdft:hasNumUpdate "1""xsd:integer .
_yyy rdftype rdf:Statement .
_yyy rdfisubject <LeBron James> .
_yyy rdf:predicate ?Plays For .
_yyy rdfiobject " Cleveland Cavaliers " .
?Plays For rdf:type rdf: Property .
?Plays For rdft:hasStartTime "2005-04-18"xsd:date .
?Plays For rdft-hasEndTime "2006-08-08""xsd:date .
?Plays For rdft:hasNumUpdate "3"xsd:integer .

FIGURE 5. RDFt reification examples.

O——0O

FIGURE 6. An RDFt graph.

Being similar to RDF, each RDFt triple can be represented
as an RDFt graph as shown in Figure 6, and multiple RDFt
triples form an RDFt graph. Here, S and O represent subject
and object respectively, and p[t]-n is a predicate with the time
and update count information.

Further, according to the time point and time interval
information, the Figure 6 can be further represented by the
following Figures 7 and 8.

85004

rdf:subject

rdf:statement

rdfistatement

rdft:hasNumUpdate
rdf:object

FIGURE 8. An RDFt graph with the time interval information.

o When ¢ is a time point, an empty node can be introduced
and the predicate part P can be further represented by
the RDFt vocabulary in Figure 7.

o Whentis atime interval, i.e., t = [7s, fe], an empty node
can be introduced and the predicate part P can be further
represented by the RDFt vocabulary in Figure 8.

From the Figures 7 and 8, an RDFt graph can be equiv-
alently transformed into an RDF graph by introducing the
RDFt vocabulary and the blank nodes.

B. RDFt SEMANTICS

The semantics of RDFt mainly includes three aspects: inter-
pretation, satisfaction, and entailment. Interpretation means
to use expressions or logical relational operators to give an
explanation of the semantics of the data model; Satisfaction is
the representation of the basic semantic relationship between
an explanation and an expression; and Entailment expresses
the logical relationship between two things, mainly used for
knowledge reasoning and logical derivation.

On the basis of the RDF semantics in Definition 1 and the
work in [5], [6], [17], [19], in the following we further give
the semantics of the RDFt model.

Definition 2 (Temporal Interpretation): A temporal inter-
pretation I of the temporal RDFt data model can be fur-
ther defined by adding the following constraints into the
Definition 1:

o A subset T of the resource set IR, representing the time
point or interval information.

o A value NT means there is no time label information in
a triple.

o The property set IP adds several temporal properties
such as rdft: hasTime, rdft: hasNumUpdate, rdft. has-
StartTime, and rdft: hasEndTime.

VOLUME 7, 2019

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

IEEE Access

o A subset BP of IR, called basic properties, which are the

predicate properties without time information.

o A mappingPT from BP x (TU {NT}) x (TU {NT})

to IP.

Further, giving a tuple tp = PT(bp, ts, te, n), where tp rep-
resents a property with time information and bp represents a
basic property, the temporal interpretation / and the mapping
function PT can be further illustrated as follows:

o [EXT(rdf:property) contains properties <tp, bp>.

o If ts is not NT, then IEXT(rdft:hasStratTime) contains
<tp, ts>, otherwise, IEXT(rdft:hasStartTime) does not
contain any value pair <tp, t > at the time ¢.

o Similarly, if fe is not N7, then IEXT(rdft:hasEndTime)
contains <tp, te>, otherwise, IEXT(rdft:hasEndTime)
does not contain any value pair <fp, ¢t > at the time ¢.

o When ts = te, i.e., t = ts = te, then IEXT(rdft:hasTime)
contains <tp, t >.

Satisfaction refers to the basic semantic relationship
between the interpretation / and RDFt triples. When the inter-
pretation [satisfies the RDFt triples, which means that the
RDFt triples meet all the conditions described in 7, then the
RDFt triples must be true. Since that not all of interpretations
are reasonable or make sense in some given RDFt databases,
and it is possible that they do not match the data that actually
exists in the databases. Therefore, in the following we give
the definitions of RDFt satisfaction and entailment.

Definition 3 (RDFt Satisfaction): Given an interpretation
1, I satisfies a triple e in the RDFt model (written as I |= e)
with the following constraints:

o I =(s,plt]l-n,0)iff Vit € T, (s,p,0) € I(t),n € N.

o I =(s,plts, tel-n,0)iffVise T, te € T, (s, p, 0) € (I(ts)

N (te)),n € N.

o I = (sp, rdfs:subPropertyOf, p) iff ¥Vt € T, (s, sp, 0) €
I1(1), (s, p,0) € I(t).

Further, if Ve € D and I |= e, then [satisfies the RDFt data
model D (written as [= D).

Definition 4 (RDFt Entailment): Given an interpretation /
of an RDFt model, if I = (s, p[t]-n, 0), then I = (s, sp[t]-n,
0), where sp is a subproperty of p.

IV. TEMPORAL DATA QUERY LANGUAGE SPARQL[t]
Based on the proposed RDFt data model, in this section we
further propose a temporal data query language SPARQL[t]
by extending RDF standard query language SPARQL [16].
We first define the query syntax and operations of SPARQL[t]
(see part A). Then, we propose a complete querying transfor-
mation algorithm from SPARQL[t] to SPARQL in order to
achieve compatibility with the existing RDF query engines
(see part B).

A. SPARQL[t] QUERY SYNTAX AND OPERATIONS

Being similar to the SPARQL query, the query form of
SPARQL[t] includes the following parts: declaration, result
set, dataset, graph pattern, and result modifier as shown
in Figure 9.

VOLUME 7, 2019

Declaration: PREFLX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#> ...
Result set: SELECT variable name
Dataset: FROM <Dataset>
Graph pattern: WHERE { RDFt Graph patterns .
FILTER (condition expressions) .}
Result modifier: ORDER BY, LIMIT, ...

FIGURE 9. SPARQL[t] query syntax.

where:

o Declaration: It is a unified statement of namespaces.

e Result set: SPARQL[t] uses the SELECT, ASK,
DESCRIBE, and CONSTRUCT keywords to query. The
result of pattern matching query is a result set or multiple
RDFt graphs. Among them, SELECT is a standard query
form and return all or part of the list variable through
the pattern matching binding value; ASK returns the
result yes/no, i.e., querying whether the data set contains
the RDFt query graph or not; DESCRIBE returns all
RDFt data related to a certain resource; CONSTRUCT
generates an RDFt graph according to the result of the
query graph, and returns the result as a graph.

o Dataset: It is the dataset to be queried and is identified by
URL enclosed in angle brackets. The dataset can include
named data sets, or a default graph with no names.

o Graph pattern: It includes basic graph pattern and com-
plex graph pattern. The basic graph pattern is a collection
of triple patterns, e.g., (?p rdft:hasTime t""xsd:date) is
a triple pattern, where the symbol ? is the prefix of the
variable. In a basic graph pattern, the relationship of the
triple patterns is intersection. The complex graph pattern
includes group graph pattern, optional graph pattern, and
multi-graph union pattern as will be introduced in detail
in the part B of this section.

« Filter conditions: We can use the FILTER keywords to
filter out the required information.

o Result modifier: It inherits the result modifier in
SPARQL, and the following common modifiers are
included: DISTINCT can ensure that the result of the
query is unique in the result sequence; ORDER BY can
sort the results; OFFSET can control the start position
of the result returned in the result sequence; LIMIT can
limit the number of results in the query result sequence.

In particular, in order to query the temporal information in
our proposed RDFt model in section III, on the basis of the
SPARQL query language, we need to further add several new
syntax constructors as shown in Table 3.

Figure 10 provide an example of SPARQL[t] query, which
is used to query the time and total scores when James played
for the Cleveland Cavaliers at his sixth career as mentioned
in Figure 2.

Moreover, the SPARQL[t] basic query operations can fur-
ther manage RDFt datasets and include operations INSERT,
DELETE, and UPDATE. The INSERT operation allows to
insert triples into an RDFt dataset, the DELETE operation

85005

IEEE Access

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

TABLE 3. Several new SPARQL[t] query syntax constructors.

QueryUnit = Query
[1] GroupGraph := GraphPattern Union GraphPattern|
Pattern GraphPattern GraphPattern|
GraphPattern OPTIONAL
GraphPattern
[2] Graph = Subject Predicate[ts, te]-n Object .
Patterns

|Subject Predicate[/]-n Object .
|Subject Predicate Object .

[3]1 ¢ = xsd:Date
[4] s = xsd:Date
[5] te = xsd:Date
[6] =n = xsd:Integer

Example 2: querying time and total scores when James played for
the Cleveland Cavaliers at his sixth career as mentioned in Figure 2:
@base <http://vago-knowledge.org/resource/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix rdft:<http://www.neu.edu/2018/rdft-syntax-ns#> .
@prefix info:<http: // www.neu.edu /2018/NBA_Sportinfo# > .
SELECT ?ts ?te ?score
WHERE {
?SportName info:Plays_For[?ts,?te]-?n "Cleveland _Cavaliers" .
?SportName info:Scorel [?ts, ?te]-?m ?score .
FILTER ?SportName= “LeBron_James” and ?n=6 }

FIGURE 10. An example of SPARQL][t] query.

allows to delete triples from a dataset, and the UPDATE
operation supports the INSERT and DELETE operations.

B. QUERY TRANSFORMATION FROM SPARQL[t]

to SPARQL AND CYPHER

In order to achieve compatibility with the existing SPARQL
query engines, in this section we further give the query trans-
formation algorithm from SPARQL[t] to RDF standard query
language SPARQL. Moreover, Neo4J [18] is a very popular
graph database to store RDF datasets [20], and thus our imple-
mented prototype as will be introduced in the subsequent
section V also uses the Neo4J graph database to store the tem-
poral data. Cypher is a special declarative query language for
querying Neo4J graph database. Therefore, we also give the
query transformation algorithm from SPARQL[t] to Cypher.
In this section:

o we first give the transformation rules and algorithms
from each part of SPARQL[t] query forms to the
corresponding query forms of SPARQL and Cypher
(see part B.1).

o Then, we give the transformation rules and algorithms of
SPARQL([t] basic graph pattern to SPARQL and Cypher
(see part B.2).

85006

o Final, we further give the transformation rules and
algorithms of SPARQL([t] complex graph pattern to
SPARQL and Cypher (see part B.3).

1) TRANSFORMATION OF QUERY FORMS
From the previous part A, the SPARQL[t] query forms can be
divided into the following several main parts:

(1) Transformation of declaration in SPARQL[t]

The declaration in SPARQL[t] is the same as the declara-
tion in SPARQL. The namespace is declared at the beginning
of a query, and the newly added namespace in SPARQL[t] is
the prefix rdft. Further, when transforming from SAPRQL to
Cypher query language, the namespace can be stored in the
Neo4]J database as a property of a resource.

(2) Transformation of result set in SPARQL[t]
o Transformation of SELECT

The SELECT in the result set of the query can be
directly transformed from SPARQL[t] to SPARQL. Noted
that, the result set of the query in Cypher is placed after
the RETURN keyword, and the SELECT in SPARQL[t] and
SPARQL can be directly transformed into the RETURN in
Cypher.

o Transformation of ASK

The ASK in the result set of the query has the same function
in both SPARQL|[t] and SPARQL. But the Cypher query
language does not support such query keyword, and thus
we need to use MATCH function in Cypher to replace the
function of ASK.

o Transformation of DESCRIBE

The DESCRIBE is to query all attributes related to a
resource or a variable. The function is supported in both
SPARQL[t] and SPARQL, and thus the transformation is
direct. In Cypher, the search path can link all associated
information to find all the attributes related to the resource.

o Transformation of CONSTRUCT

The CONSTRUCT in the result set of the query can be
directly transformed from SPARQL[t] to SPARQL. But such
function is not supported directly in Cypher, in order to
replace the function, we need to use the CREATE keyword
in Cypher to re-create the result graph.

(3) Transformation of FROM in SPARQL][t]

The FROM is to specify the dataset to be queried and is
identified by the URL enclosed in angle brackets in both
SPARQL[t] and SPARQL. Also, in Cypher the queried
dataset is directly stored in the Neo4J database. Therefore,
the transformation of FROM is direct in the three query
languages.

(4) Transformation of WHERE in SPARQL/[t]

In SPARQL[t], WHERE is followed by RDFt graph pat-
terns. Therefore, we need to define some rules as will be
shown in the following Table 4 to transform the RDFt graph
patterns into RDF graph patterns in SPARQL and Cypher.

VOLUME 7, 2019

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

IEEE Access

TABLE 4. The Transformation rules from SPAEQL][t] to SPARQL and Cypher.

VOLUME 7, 2019

SPARQL[t] SPARQL Cypher
(1). Using the SELECT Select ? object Select ? object MATCH
keyword to query when Where { Where { (subject)-[?p {type:property,
the time t is an instant. subject predicate[t]-n object . subject ?p object . hasTime:t""xsd:date,
That is, when t =ts = te } ?p rdf:type rdf:property . hasNumUpdate:n}]

(2). Using the SELECT
keyword to query when
the time t is an interval.
That is, t = [ts, te], and
ts<te

(3). When there is no time
information on the
property, i.e., the pattern is
an ordinary triple

(4). The query statements
with the UNION
OPTIONALVFILTER in
SPARQL[t]

(5). The ASK query in
SPARQL([t]

(6). The DESCRIBE query
in SPARQLI[t]

(7). The CONSTRUCT
query in SPARQLI[t]

(8). The result modifiers in
SPARQL[t]: ORDER BY,
LIMIT, OFFSET

(9). The SPARQL[t]
update operations,
including INSERT and
DELETE. When you want
to modify a certain part of
a triple, you can first
DELETE the triple, then
INSERT a new triple

Select ? object
Where {
subject predicate[ts,te]-n object

}

Select ? object
Where {
subject predicate object .

}

Select ? x 7y

Where {

{ RDFt Graph Pattern.

} (OPTIONALJ|UNION) {
RDFt Graph Pattern.
FILTER (conditionl) }
FILTER (condition2) }

ASK
{ subject predicate[t]-n object .

DESCRIBE ?s
Where {?s ?p[t]-n ?0 .}

CONSTRUCT

{?sl ?pl[tl]-nl 20l .}
Where

{?s1 ?2p2[t2]-n2 ?02 .

201 ?p3[t3]-n3 203 .}

Select ? object
Where {
subject predicate[t]-n object .

ORDER BY n
LIMIT 5
OFFSET 3

DELETE DATA {sp[t]-no.}
INSERT DATA {sp[t]-no.}
DELETE { {sp[t]no.} }
INSERT { {sp[t]-no.} }

?p rdft:hasTime t"xsd:date .
?p rdft:hasNumUpdate n . }

Select ? object

Where {

subject ?p object .

?p rdfitype rdf:property .

?p rdft:hasStartTime ts"xsd:date .
?p rdfthasEndTime te"xsd:date .
?p rdft:hasNumUpdate n . }

Select ? object
Where {
subject predicate object . }

Select ? x 7y

Where {

{ RDF Graph Pattern.

} (OPTIONAL|UNION)
{ RDF Graph Pattern.
FILTER (conditionl) }
FILTER (condition2) }

ASK{ subject ?p object .
?p rdfitype rdf:property .
?p rdfthasTime t"xsd:date .
?p rdft:hasNumUpdate n . }

DESCRIBE ?s

Where. {?s?po.

?p rdf:type rdf:property .

?p rdft:hasTime t* xsd:date .
?p rdft:hasNumUpdate n . }

CONSTRUCT

{?s1 ?pl ol .

?pl rdf:itype rdf:property .

?pl rdft:hasTime t1""xsd:date .
?pl rdft:hasNumUpdate nl .}
Where {?s1 ?p2 02 .

?p2 rdf:type rdf:property .

?p2 rdft:hasTime t2""xsd:date .
?p2 rdft:hasNumUpdate n2 .
201 7p3 03.

?p3 rdf:type rdf:property .

?p3 rdft:hasTime t3""xsd:date .
?p3 rdft:hasNumUpdate n3 . }

Select ? object
Where {
subject ?p object .
?p rdf:type rdf:property .
?p rdft:hasTime t* xsd:date .
?p rdft:hasNumUpdate n .}
ORDER BY n
LIMIT 5
OFFSET 3

DELETE DATA { {s?po.
?p rdft:hasTime t .

?p rdft:hasNumUpdate n . }}
INSERT DATA { {s?po.
?p rdfthasTime t .

?p rdft:hasNumUpdate n . }}
DELETE { {s?po.

?p rdft:hasTime t .

?p rdft:hasNumUpdate n . }}
INSERT { {s?o.

?p rdft:hasTime t .

?p rdft:hasNumUpdate n . }}

—(object)
RETURN object

MATCH

(subject)-[?p {type:property,
hasStartTime:ts"xsd:date,
hasEndTime:te"xsd:date,
hasNumUpdate:n}]
—(object)

RETURN object

MATCH
(subject)-[predicate]
—(object)
RETURN object

MATCH
(s)-[p{...}1-(0)
(OPTIONAL[UNION)
(s)-[p{...}1-(0)
WHERE

condition] condition2
RETURN s,0

If the result of the match is
the same as the result in
MATCH, then YES is
returned, otherwise NO.
MATCH

(subject)- [?p{type:property,
hasTime:t"xsd:date,
hasNumUpdate:n}]—(object)
RETURN subject,?p,object

MATCH
(s)-[?p{type:property,
hasTime:t""xsd:date,
hasNumUpdate:n}]—(o)
RETURN s

MATCH

(o1)- [?p3 {type:property,
hasTime:t3"xsd:date,
hasNumUpdate:n3}]—(03),
(s1)- [?p2 {type:property,
hasTime:t2""xsd:date,
hasNumUpdate:n2}]—(02)
WITH (sl),(o1)

CREATE

(s1)- [?p1 {type:property,
hasTime:t1"xsd:date,
hasNumUpdate:nl}]—(ol)

MATCH

(subject)- [?p{type:property,
hasTime:t""xsd:date,
hasNumUpdate:n}]—(object)
RETURN object

ORDER BY 7?p.
hasNumUpdate

LIMIT 5

SKIP 3

MATCH (s)-[p]-(0)
WHERE
p.-hasNumUpdate=3
REMOVE p.hasNumUpdate
MATCH (s)-[p]-(0)
WHERE id(s)=2 and id(0)=6
Set p.hasNumUpdate = 5
RETURN p

85007

IEEE Access

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

Also, we need to transform RDFt FILTER condition expres-
sions into the RDF FILTER condition expressions. Moreover,
the FILTER keyword is converted to the WHERE keyword
in the Cypher language to indicate the constraints.

(5) Transformation of result modifier in SPARQL[t]

The main function of result modifiers is to sort or constrain
the forms of the returned results, and thus the result modi-
fiers in SPARQL][t] are the same as the result modifiers in
SPARQL. Moreover, there are several minor differences of
the result modifiers between SPARQLY[t] and Cypher, and we
need to establish the correspondences between them as will
be shown in the following Table 4.

Based on the observations above, the following Table 4
gives the detailed transformation rules from SPARQL[t] to
SPARQL and Cypher.

Based on the transformation rules in Table 4, in the fol-
lowing we further give the transformation algorithms from
SPARQLI[t] to SPARQL (i.e., the algorithm 1 in Table 5) and
from SPARQL to Cypher (i.e., the algorithm 2 in Table 6).

TABLE 5. The transformation algorithm from SPARQL[t] to SPARQL.

Algorithm 1. Transformation algorithm SPARQLT2SPARQL

INPUT: SPARQL[t] query

OUTPUT: SPARQL query

(1) StringBuilder SPARQLString = new StringBuilder();

(2) // save the transformed query language;

(3) String whereFilterString = whereString.substring(new
SparqlT2SparqlMatcher().Sparql T2SparqlMatcher(whereString,"
FILTER"), whereString.length());

(4) // use the following arraylist to store the transformed data in the
RDFt graph;

(5) ArrayList<ArrayList<String>> Isls = new
ArrayList<ArrayList<String>>();

(6) String [] statementRDFt = whereRDFtString.trim().split("\\.");

(7) if(statementRDFt[i].contains("[")&&statementRDFt[i].contains("

1")) then
(8) Isls.add(transPredicate(statementR DFt[i].trim()));
// transform triples with time information according to Table 4;
(9) Endif

(10) if(!(statementRDFt[i].contains("[")&&statementRDFt[i].contains(
"1"))&&statementRDFt[i].contains("-"))
(11) Isls.add(transPredicateOnlyn(statementR DFt[i].trim()));
// transform triples without time information but with the
update count n according to Table 4;
(12) Endif
(13) if(!(statementRDFt[i].contains("[")&&statementRDFt[i].contains
("1")|!(statementRDF1[i].contains("-")))
(14) Isls.add(transPredicateRDF (statementRDF1[i]));
// transform the ordinary triples according to Table 4;
(15) Endif
(16) SPARQLString.append(prefixString).append(" {"+whereStringS
parql+"}").append(conditionSting);
(17) Return SPARQL query

As shown in Table 5, the algorithm first receives a string
of an input SPARQL[t] query. Then the WHERE clause
is separated and the different query forms are transformed
according to the rules in Table 4. The transformed results
are stored in a list, and a string of SPARQL query is finally
returned.

85008

TABLE 6. The transformation algorithm FROM SPARQL to Cypher.

Algorithm 2. Transformation algorithm SPARQL2Cypher

INPUT: SPARQL query

OUTPUT: Cypher query

(1) Query query = QueryFactory.create(string);

(2) Op op = Algebra.compile(query); / parse with JenaARQ;
(3) String afterParse = new String(op.toString());

(4) String[] brk = afterParse.split("triple");

(5) For eachi=1 to i=it+k in brk // process each string of brk;
(6) if(i>1) then

(7) matchStringp.append(",");

®) End if

) matchStringp.append("("+ arr[0]+")-[");

(10) For eachj=1ito j<i+5inj

(11) if(brk[i].contains(arr[1])) then // separate each string in

brk[i] with a space into the new array;

(12) if(pb[0].equals(arr[1])) then // select transformation
rules according to pb[1] and write to
matchStringpro;

(13) matchStringpro.append(pb[1].substring(pb[1].lastI

ndexOf("#")+1,pb[1].length())+":"+pb[2].substring
(pb[2].lastIndexOf("#")+1,pb[2].length()));

(14) K+

(15) else k=1;

(16) matchStringpro.delete(0,matchStringpro.length());

17 matchStringpro.append(":"+arr[1]+"{");

(18) End if

(19) else k=1; break;

(20 End if

(21) matchStringp.append(matchStringpro).append("}]-
>("rarr[2]+")");

(22) getReturnString(returnS); // process the result set

(23) String[] returnS = brk[0].split("filter");

(24) returnString.append(getReturnString(returnS));

(25) getWhereString(returnS[1]); //process where condition;

(26) whereString.append(get WhereString(returnS[1]));

27 modifyString=modifyPart(string); //process modifier;

(28) matchString.append(matchStringp);

(29) cypherString.append(startString).append("MATCH
"+matchString);

(30) if(whereString.length()>0) then

31) cypherString.append("\nWHERE "+whereString);

(32) End if

(33) cypherString.append("\nRETURN "+returnString);

(34) if(modifyString!=null) then

(395) cypherString.append("\n"+modifyString.toString().trim
0)

36) End if

(37) End for
(38) End for
(39) Return Cypher query

After transforming SPARQL[t] into SPARQL, the follow-
ing algorithm 2 in Table 6 further transforms the SPARQL
to Cypher language. In Table 6, the algorithm first receives
the string of the SPARQL query, uses Jena ARQ to parse
the SPARQL, and handles each query part separately. Then,
regarding to each triple, the algorithm gets the subject-
predicate-object, makes the subject and object as nodes and
predicate as relation, and adds the time and update count
information into the relation. Also, each of FILTER condi-
tions is transformed separately and connected by WHERE.
The result modifiers in SPARQL are equivalently trans-
formed into the modifiers in Cypher, e.g., the OFFSET in
SPARQL is equivalent to the SKIP in Cypher. Final, the

VOLUME 7, 2019

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

IEEE Access

variables in SPARQL are chosen as the return variables in
Cypher, and multiple variables are separated by commas.

2) TRANSFORMATION OF BASIC GRAPH PATTERN

The basic graph pattern, which is used to represent constraints
on RDFt query WHERE clauses, is the main component of
the SAPRQL[t] query. In this section we further investigate
and give the transformation algorithms from the SAPRQLI[t]
basic graph pattern to the SPARQL basic graph pattern and
Cypher language. Regarding that whether each part in a
triple of basic graph pattern is a constant value or a variable,
the Appendix 1 gives the transformation rules of each case
in the basic graph pattern.

TABLE 7. The transformation algorithm of Basic Graph Pattern from
SAPRQL[t] to SPARQL.

Algorithm 3 Transformation algorithm BaseRDFt2RDFPattern

INPUT: SAPRQL[t] basic graph pattern

OUTPUT: SAPRQL basic graph pattern

(1) //Input a string of SAPRQL[t] basic graph pattern;

(2) String rdftGraphPatternString = RDFtGraphPattern;

(3) // Decompose rdftGraphPatternString to get each RDFt triple;

(4) String [] statementRDFt = RDFtString.trim().split(" \\.");

(5) // Process each triple separately; Retain the original ? or & and
other variable symbols;

(6) // Transform according to the rules in Appendix 1;

(7) ArrayList<ArrayList<String>> Isls = new
SparqlT2SparqlQuery(). RDFt2RDF Triple(statementRDFt);

(8) //Input the result of Isls into a string and output it;

(9) Foreachi=0 toit+ in Isls.size()

(10) ArrayList<String> 1s = new ArrayList<String>();

(11) For eachj =0 to j++ in Isls.get(i).size()

(12) sparqlPatternSTR.append(ls.get(i).get(j));

(13) End for

(14) End for

TABLE 8. The transformation algorithm of Basic Graph Pattern from
SAPRQL to Cypher.

Algorithm 4 Transformation algorithm BaseRDFPattern2Cypher

INPUT: SAPRQL basic graph patter

OUTPUT: Cypher graph

(1) //Input a string of SAPRQL basic graph pattern;

(2) // Store each triple in an array and process it separately;

(3) String[] s = RDFGraphPattern.split(" \\.");

(4) StringBuffer Cl1=new StringBuffer();

(5) StringBuffer C2=new StringBuffer();

(6) // Transform according to the rules in Appendix 1;

(7) // Use the methods in the algorithm 2 to process the RDF triple
pattern into a Cypher matching path form;

(8) StringBuffer CypherStr = new
Sparql2CypherQuery().MatchStringConstruct(C1,C2,s);
(9) return CypherStr.toString()

Based on the transformation rules in the Appendix 1, the
following Table 7 and Table 8 further give the correspond-
ing transformation algorithms from SAPRQL[t] basic graph
pattern to SPARQL basic graph pattern and Cypher graph
supported in Neo4J graph database.

VOLUME 7, 2019

3) TRANSFORMATION of COMPLEX GRAPH PATTERNS
Based on the proposed basic graph pattern transformation
rules and algorithms, this section decomposes the complex
graph patterns of SAPRQL[t] and further transforms them
into SPARQL complex graph patterns, and simultaneously
transforms to Cypher graph patterns. The complex graph
patterns include group graph pattern, optional graph pattern,
and multi-graph union pattern. In the following we give the
transformation rules and algorithms of each complex graph
pattern.

« Group graph pattern
The group graph pattern in SPARQL[t] is the same as the
group graph pattern in SPARQL, where two or more RDFt
basic graph patterns are directly connected. For a SPARQL[t]
query, all of the basic graph patterns in the group graph
pattern must be matched. The transformation rules of the
group graph pattern can be found in Table 9.

TABLE 9. Transformation of group graph pattern.

g;ﬁg;g}]l SPARQL group graph Cypher group graph
pattern pattern pattern

{S1, {S1?p?01. (S1)-[Relationship:p
Pl[tsl,tel]- ?p rdfitype rdft:property . {type:'property’,
nl,?01} ?p rdft:hasStartTime rdft_hasStartTime:'tsl
{S2, ts1”xsd:date . "Mxsd:date',
P2[ts2,te2]- ?p rdft:hasEndTime rdft_hasEndTime:'te1”
n2,702} te1”xsd:date . ~xsd:date',

?p rdft:hasNumUpdate nl .

}

{S1?p?01l.

?p rdfitype rdft:property .
?p rdft:hasStartTime
ts2~"xsd:date .

?p rdft:hasEndTime
te2"\xsd:date .

?p rdft:hasNumUpdate n2 .

}

rdft_hasNumUpdate:nl
11->(01)
(S2)-[Relationship:p
{type:'property’,
rdft_hasStartTime:'ts2
Mxsd:date',

rdft hasEndTime:'te2"
~xsd:date',
rdft_hasNumUpdate:n2
11-(02)

« Optional graph pattern
The optional graph pattern in SPARQL[t] is to constrain an
optional match to RDFt graph patterns by using the keyword
OPTIONAL. Similarly, the keyword OPTIONAL is also sup-
ported in SPARQL and Cypher. The transformation rules of
the optional graph pattern can be found in Table 10.

« Multiple graph pattern

The multiple graph pattern in SPARQL[t] uses the UNION
keyword to connect multiple RDFt graph patterns, and the
UNION keyword is also applied in SPARQL. In Cypher,
the UNION or UNION ALL keyword performs a union
operation on two result sets. The transformation rules of the
multiple graph pattern can be found in Table 11.

Based on the transformation rules above, in the following
we further give the corresponding transformation algorithms

85009

IEEE Access

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

TABLE 10. Transformation of optional graph pattern.

SPARQL[t] SPARQL optional graph Cypher optional graph
optional graph pattern pattern
pattern
{S1, {S1?7p?01. (S1)-[Relationship:p
Pl[tsl,tel]- ?p rdfitype rdft:property . {type:'property’,
nl,?01} ?p rdft:hasStartTime rdft_hasStartTime:'ts1
OPTIONAL ts1”"xsd:date . ~xsd:date’,
{S2, ?p rdft:hasEndTime rdft_hasEndTime:'te1”
P2[ts2,te2]- tel~xsd:date . ~xsd:date',
n2,702} ?p rdft:hasNumUpdate nl rdft_ hasNumUpdate:nl
3 11->(01)
OPTIONAL OPTIONAL MATCH
{S2?7p?02. (S2)-[Relationship:p
?p rdfitype rdft:property . {type:'property’,
?p rdft:hasStartTime rdft_hasStartTime:'ts2
ts2"\xsd:date . Mxsd:date',
?p rdft:hasEndTime rdft_hasEndTime:'te2"

te2"xsd:date .

?p rdft:hasNumUpdate n2

3

~xsd:date',

112(02)

rdft_hasNumUpdate:n2

TABLE 11. Transformation of multiple graph pattern.

SPARQL[t] SPARQL multiple Cypher multiple graph
multiple graph pattern pattern
graph pattern
{S1, {S1?7p?01. (S1)-[Relationship:p
Pl[tsl,tel]- ?prdfitype rdft:property {type:'property’,
nl,?01} . rdft_hasStartTime:'ts1**
UNION ?p rdft:hasStartTime xsd:date’,
{S2, ts1xsd:date . rdft_hasEndTime:'te1""
P2[ts2,te2]- ?p rdft:hasEndTime xsd:date',
2,702} tel™xsd:date . rdft_hasNumUpdate:nl }]
?p rdft:hasNumUpdate —(01)
nl .} UNION/UNION ALL
UNION MATCH (S2)-
{S2?2p?02. [Relationship:p
?p rdfitype rdft:property {type:'property’,
. rdft_hasStartTime:'ts2"*
?p rdft:hasStartTime xsd:date’,
ts2"xsd:date . rdft_hasEndTime:'te2"""
?p rdft:hasEndTime xsd:date’,
te2"\xsd:date . rdft hasNumUpdate:n2}]
?p rdft:hasNumUpdate —(02)
n2 .}

of complex graph patterns from SPARQL[t] to SPARQL and
Cypher in Table 12 and Table 13.

Based on the previous sections, the new temporal data
representation model RDFt and its corresponding query lan-
guage SPARQL[t] can represent and query the temporal data
with both the time information and the update count informa-

tion that widely exist in the real-world applications.

85010

TABLE 12. Transformation algorithm of complex graph patterns from
SPARQL[t] to SPARQL.

Algorithm 5 Translation algorithm ComplexRDFt2RDFPattern

INPUT: SAPRQL[t] complex graph patterns

OUTPUT: SPARQL complex graph patterns

(1) //Input SAPRQL[t] complex graph patterns, and then decide

the type of complex graph patterns;

(2) Arraylist<String> list = new Arraylist<String> ();

(3) if(SPARQLTString.contains("OPTIONAL"))

4) //Separate the parts with OPTIONAL keyword;

%) //Transform according to the rules in Table 10, and further
transform each RDFt basic graph pattern in the OPTIONAL
clause to RDF basic graph pattern according to the
BaseRDFt2RDFPattern algorithm in Table 7;

(6) BaseRDFt2RDFPattern(String RDFtGraphPatternStr);

(7) else iffSPARQLTString.contains("UNION"))

(8) //Separate the parts with UNION keyword;

) //Transform according to the rules in Table 11, and further
transform each RDFt basic graph pattern as similarly
mentioned in the step (5) above;

(10) else if(isGroupGraph(SPARQLTString))

(11) //Transform according to the rules in Table 9, and further
transform each RDFt basic graph pattern as similarly
mentioned in the step (5) above;

(12) End

TABLE 13. Transformation Algorithm of complex graph patterns from
SPARQL to Cypher.

Algorithm 6 Translation algorithm ComplexRDFPattern2Cypher

INPUT: SPARQL complex graph patterns

OUTPUT: Cypher graph patterns

(1) //Input SAPRQL][t] complex graph patterns, and then decide the type

of complex graph patterns;

(2) iffSPARQLString.contains("OPTIONAL"))

3) //Separate the parts with OPTIONAL keyword;

4) //Transform according to the rules in Table 10, and further
transform each RDF basic graph pattern in the OPTIONAL
clause to Cypher according to the BaseRDFPattern2 Cypher
algorithm in Table 8;

5) BaseRDFPattern2Cypher(String RDFGraphPattern);

(6) else if(SPARQLString.contains("UNION"))

7 //Separate the parts with UNION keyword,

®) //Transform according to the rules in Table 11, and further
transform each RDF basic graph pattern as similarly mentioned
in the step (4) above;

(9) else if(isGroupGraph(SPARQLTString))

(10) /[Transform according to the rules in Table 9, and further
transform each RDF basic graph pattern as similarly mentioned
in the step (4) above;

(11) End

V. PROTOTYPE AND EXPERIMENTS

Based on our proposed approaches, we further designed and
implemented a prototype system, which includes two main
functions: one is to represent and store the temporal data with
both the time and update count information, and another one
is to realize the query of the temporal data.

VOLUME 7, 2019

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

IEEE Access

storage query

SPARQL[t] query

SPARQL

Transformati

RDFt on algorithm

data set results

e

Query

analysis

Jena ARQ

Cypher

Transformati

on algorithm

stor@

analysis

FIGURE 11. The overall architecture of the prototype.

In the following we first introduce the design and imple-
mentation of the prototype system (see Part A). Then, with
two datasets we show that the proposed approach is feasible
and the implemented system is efficient (see Part B).

A. THE ARCHITECTURE OF THE PROTOTYPE
The overall architecture of the prototype is shown in
Figure 11. It mainly includes three modules:

o The storage module uses the Neo4J database [18] to
store the RDFt data based on the storage algorithm as
will be introduced in the following.

o The querying transformation module is to mainly trans-
form the SPARQL|[t] query language into the SPARQL
and the Neo4] query language Cypher according to
the query transformation algorithms proposed in the
previous Part I'V.

o The querying display module provides the query
interface and displays the query results graphically.

The graphical user interface of the prototype system is
shown in Appendix 2.

Moreover, as mentioned in the previous parts, the RDFt
data proposed in this paper cannot be directly stored into
Neo4J. Therefore, in the following we propose some rules
and an algorithm for storing the RDFt data into the Neo4J
database.

Rule 1: The subject of each RDFt triple is mapped to an
Neo4] resource node with a label attribute as follows:

(S, P[ts, te]-n, O) = (:Resource{uri:S})

Rule 2: The predicate and object of each RDFt triple are
mapped to a Neo4J relationship and a resource node with
some label attributes as follows:

(S, Plts, te]-n, O) = (:Resource {uri:S })-[Relationship:
P{type: property’, rdft_hasStartTime:ts,
rdft_hasEndTime:te, rdft_hasNumUpdate:n }]-(:Resource
{uri:0})

VOLUME 7, 2019

TABLE 14. Algorithms for storing RDFt Data to Neo4J Database.

Algorithm 7 Storing algorithm RDFtToNeo4J

INPUT: RDFt data

OUTPUT: Data in Neo4J

(1) //First, read the RDFt dataset into the model;

(2) //The "subject-predicate-object" of each triple in the RDFt data

model and the attributes of the predicate are separated;

(3) while (iter.hasNext()) {

4) String subsubject = subject.substring(subject.lastindexOf("/")
+1, subject.length());

(5) String subPredicate = predicate.substring(predicate.lastindexOf
("/") +1, predicate.indexOf('["));

(6) String hasStartTime = hasTime.substring(hasTime.indexOf{('[")
+ 1, hasTime.indexOf(","));

(7) String hasEndTime = hasTime.substring(hasTime.indexOf(',")
+ 1, hasTime.indexOf(']"));

®) String hasNumUpdate = predicate.substring(predicate.indexOf
('] + 2, predicate.length());

(O] //Connect Neo4J database with JDBC

(10) //Determine whether the node of subsubject exists in database;
(11) if(isExistSubject(subsubject,statement)) {

(12) //Match to the node and add a new attribute relationship;
(13) else if(isExistObject(object.toString(),statement)) {

(14) //Determine whether the node of object exists in database,

and match to the node and add a new relationship as the node;
(15) else //Create new nodes and relationships;
(16) CypherString = getCypherStr(statement, subsubject, objectStr,
predicateStr);
17) ResultSet resultSet = statement.executeQuery(CypherString); }

TABLE 15. Some main relations in NBA athlete dataset.

relations number
hasBirthCity 3,519
Stature 4,579
Weight 4,573
High_School 3,855
Position 5,658
Plays For 24,761
Rebound 24,761
Assist 24,761
Score 24,761

According to the rules above, Table 14 further gives an
algorithm for storing RDFt data into Neo4J database.

B. EXPERIMENTS

We use the following two datasets to carry out some storage
and querying experiments (the figures in Appendix 3 show
the fragments of two datasets):

o One is the dataset of NBA athletes, which contains about
125,793 RDFt triples by crawling about 4,000 basic
information of NBA stars from the NBA data website
[21]. Table 15 shows the information of some main
relations.

o Another is the dataset extracted from the YAGO?2 [22],
which is a spatially and temporally enhanced knowl-
edge base from Wikipedia. In this paper, we mainly
extract some temporal information and construct a RDFt

85011

IEEE Access

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

TABLE 16. A part of relations in our YAGO RDFt dataset.

relations number
DiedIn 22,274
diedOnDate 315,528
happenedin 5,192
happenedOnDate 22,039
occursSince/Until? 9,840
isLocatedIn 95,327°
livesin 16,405
wasBornln 56,415
wasBornOnDate 685,746
wasCreatedOnDate 467,194
wasDestoryedOnDate 24,218
playsFor 525,374
isAffiliatedTo 579,397

temporal dataset. Table 16 shows the information of
parts of relations.

By means of our prototype, we store the two RDFt datasets
into the Neo4J database and then carry out some queries.
When a user input a SPARQL[t] query, which can be trans-
formed into a corresponding SPARQL and the Neo4J query
language Cypher, and then query results are returned. The
detailed querying transformations and querying results on the
two RDFt datasets are shown in the Appendixes:

o The Appendix 4 shows some SPARQLJ[t] querying
transformation examples and the corresponding query-
ing results on the NBA dataset.

« The Appendix 5 show some SPARQL[t] querying trans-
formation examples and the corresponding results on the
YAGO?2 dataset.

The experimental results show that the proposed RDFt
temporal data representation model, the query language
SPARQL[t], and the query transformation algorithms can
achieve the representation and querying requirements of the
temporal data.

VI. RELATED WORK

Currently a huge amount of temporal RDF data is being
proliferated and becoming available. As a result, efficient
management of temporal RDF data is of increasing impor-
tance. The basic idea is to expand the time information based
on RDF data model for different types of time information
(such as time points and time intervals) and propose grammat-
ical rules for extending the representation models and query
languages.

In general, the existing work about the temporal extensions

of RDF can be divided into three main extension forms:

o The first form is temporal data model based on the
version control which is used to annotate the state of an
RDF triple with the change of time [3].

o The second form is temporal data model based on the
different extension forms of RDF triple (e.g., RDF quad-
tuple syntax). This kind of models define some new

85012

RDF syntaxes by extending the RDF triple to represent
temporal information [23], [5], [19], [6], [14], [7], [13].

o The third form is temporal data model based on the
original form of RDF triple by adding timestamp infor-
mation. This kind of models re-define abstract semantics
of the triple [9], [10], [8], [11], [24], [25], [12].

Regarding to the first form, in [3], a snapshot version-
based RDF time series data model is proposed to track the
changes in RDF repositories. The model is based on the
assumption that an RDF statement is the smallest manage-
able piece of knowledge in an RDF repository. They argue
that an RDF statement can only be added and removed.
Each addition or removal turns the repository into a new
state. The history of changes in the repository could be
defined as sequence of states, as well, as a sequence of
updates.

Regarding to the second form, in [23], a formal extension
of RDF, called stRDF, for the representation and querying
of linked geospatial data that changes over time. In stRDF,
a temporal triple is a quad (s, p, o, t). In [5], [19], a temporal
extension of RDF is proposed based on the idea of assigning
timestamps to RDF triples. The model allows anonymous
unknown timestamps in temporal RDF graphs. They also
propose rules to translate temporal RDF into RDF graph.
In [6], the authors extend the work of [5] to the case of
indeterminate triples, and propose a temporal RDF model
tRDF. The work in [14] presents an RDF based annotation
framework for representing, reasoning and querying data on
the Semantic Web. In particular, the framework supports
statements annotated with fuzzy, temporal, and provenance,
where an annotated triple is an expression 7: A, where 7 is a
triple and A is an annotation value. The work in [7] presents
a logic-based approach to represent and query validity time
in RDF and OWL. Being similar to the idea in temporal RDF
graph model [5], [19], the work in [13] proposes a formalism
that is suitable to express temporal and non-temporal as well
as probabilistic and non-probabilistic facts and constraints.
Formally, a fact can be represented as: conf (s, p, o) [t], where
conf denotes the confidence value that the statement (s, p, 0)
is true, ¢ is a time point or interval.

Regarding to the third form, in [9], an annotated RDF
data model with annotation information is built on top of
annotated logic, and the work mainly provides the semantics
of extended partial ordered sets and supports the represen-
tation of uncertainty and time information in RDF triples.
In [10], the timely YAGO is introduced, where they extend
YAGO with temporal aspects by adding the concept of tem-
poral facts. A temporal fact is a relation with an associated
validity time. In [8], a temporal RDF graph pattern is pro-
posed, and a method for representing the effective time that
conforms to the existing RDF abstract model and semantics
is given. In [11], the authors define a multi-temporal RDF
triple (s, p, o|T), where (s, p, o) is a standard triple subject,
predicate, object and T is a timestamp assigning a temporal
pertinence. In [24], an extension of the RDF model named
TA-RDF model is presented in order to represent not only that

VOLUME 7, 2019

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

IEEE Access

TABLE 17. Transformation rules of the basic graph pattern from SAPRQL[t] to SPARQL and Cypher.

Cases Basic Graph Pattern
s p [t te] -n SPARQL[Y SPARQL Cypher
x AN J SELECT ?s SELECT ?s Match
WHERE { WHERE {?spo. (s)-[:p{ type:property,
?splts,te]-no . p rdf:type rdf:property . hasStartTime:ts"xsd:date,
} p rdft:hasStartTime ts""xsd:date . hasEndTime:te""xsd:date,
p rdft:hasEnd Time te"xsd:date . hasNumUpdate:n }]-(0)
p rdft:hasNumUpdate n .} return s
x A x J SELECT ?s ?ts ?te SELECT ?s ts ?te Match
WHERE { WHERE {?spo. (s)-[:p{ type:property,
?s p[?ts,?te]-no . p rdfitype rdf:property . hasStartTime:ts,
} p rdft:hasStartTime? ts . hasEndTime:te,
p rdft:hasEndTime ?te . hasNumUpdate:n }]-(0)
p rdft:hasNumUpdate n .} return s,ts,te
x N x SELECT ?s ?n SELECT ?s ?n Match
WHERE { WHERE {?spo. (s)-[:p{ type:property,
?sp[ts,te]-’no. p rdfitype rdf:property . hasStartTime:ts,
} p rdft:hasStartTime ts""xsd:date . hasEndTime:te,
p rdft:hasEnd Time te"xsd:date . hasNumUpdate:n }]-(0)
p rdft:hasNumUpdate ?n . } return s,n
x A X X SELECT ?s 7ts ?te 7n SELECT 7?s ?ts ?te ?n Match
WHERE { WHERE {?spo. (s)-[:p{ type:property,
28 p[?ts,?te]-?no . p rdfitype rdf:property . hasStartTime:ts,
} p rdft:hasStartTime ?ts . hasEndTime:te,
p rdft:hasEndTime ?te . hasNumUpdate:n }]-(0)
p rdft:hasNumUpdate ?n . } return s,ts,te,n
x A J J SELECT ?s % SELECT ?s % Match
WHERE { WHERE {?sp 0. (s)-[:p{ type:property,
?s p[ts,te]-n 20 . p rdfitype rdf:property . hasStartTime: ts"xsd:date,
} p rdft:hasStartTime ts™ xsd:date . hasEndTime: te"xsd:date,
p rdft:hasEnd Time te”xsd:date . hasNumUpdate:n }]-(0)
p rdft:hasNumUpdate n . } return s,0
v oox X X SELECT ?p ?ts ?te 7n SELECT ?p ?ts ?te 7n Match
WHERE { WHERE {s?po. (s)-[:p{ type:property,
s ?p[?ts,?te]-?no . ?p rdf:type rdf:property . hasStartTime: ts,
} ?p rdft:hasStartTime ?ts . hasEndTime: te,
?p rdft:hasEndTime ?te . hasNumUpdate:n }]-(0)
?p rdft:hasNumUpdate ?n . } return p
v o4 x x SELECT ts %te 7n %0 SELECT ?ts ?te ?n %0 Match
WHERE { WHERE {sp?o. (s)-[:p{ type:property,
s p[?ts,?te]-?n ?0 . p rdfitype rdf:property . hasStartTime: ts,
} p rdft:hasStartTime ?ts . hasEndTime: te,
p rdft:hasEnd Time ?te . hasNumUpdate:n }]-(0)
p rdft:hasNumUpdate ?n . } return ts,te,n,0
v o x v SELECT ts %te 70 SELECT s %te 70 Match
WHERE { WHERE {sp?0. (s)-[:p{ type:property,
s p[?ts,?te]-n 20 . p rdfitype rdf:property . hasStartTime: ts,
} p rdft:hasStartTime ?ts . hasEndTime: te,
p rdft:hasEnd Time ?te . hasNumUpdate:n }]-(0)
p rdft:hasNumUpdate n . } return ts,te,o
v oNW x SELECT ?n %0 SELECT ?n %0 Match
WHERE { WHERE {sp?0. (s)-[:p{ type:property,
splts,te]-?n 20 . p rdf:type rdf:property . hasStartTime: ts""xsd:date,
} p rdft:hasStartTime ts"xsd:date . hasEndTime: te" xsd:date,

p rdft:hasEndTime te”"xsd:date .
p rdft:hasNumUpdate ?n .}

hasNumUpdate:n }]-(0)
return n,0

Comments: ¥ indicates that the item is a variable, and V indicates that the item is a constant value or a resource.

VOLUME 7, 2019

85013

IEEE Access

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

FIGURE 12. Graphical User Interface of the prototype system.

the properties between resources change over time, but that
the resources themselves change. In [25], the authors propose
a concept of temporal meta-information to represent time
declaration and RDF graph data in large-scale linked data.
In [12], an uncertain temporal knowledge base KB =< F,
C > is defined to resolve temporal conflicts in inconsistent
RDF knowledge bases, where a fact in F has the form: p (s, o,
i)d, where p (s, o) is an RDF triple, i is a (half-open) temporal
interval of the form [#, t.), and d € [0, 1] is a confidence
degree that p (s, 0) is true during interval i.

Furthermore, in order to query the time information
from the temporal RDF data models as mentioned above,
some corresponding temporal RDF query techniques are
proposed. In brief, there are two main types, one is the
SPARQL-like query languages by extending SPARQL with
the temporal information. For example, the query languages

85014

AnQL [14], [7], stSPARQL [23], nSPARQL [26], SPARQLT
[27], [28], TA-SPARQL [24], [17], [11], EP-SPARQL [29],
and CQELS (Continuous Query Evaluation over Linked
Stream) [30]. Another is the specific query languages. For
example, the query language of the temporal RDF graph
model [5], which uses the expression method to describe
the query statement; the five tuple query language in [6];
the atomic and connection query language in [9]; and the
C-SPARQL query language for continuous data streams [31].

To our best knowledge, although there have been some
researches on the representation and querying of temporal
data as summarized above, there is no report about how to
represent and query the temporal data with both the time
information and the update count information. From the
detailed summarization above, to sum up, it can be found
obviously that there are several main differences between our

VOLUME 7, 2019

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF IEEEACC@SS

(1) NBA athlete dataset

FIGURE 13. The fragments of two datasets: NBA athletes and YAGO.

VOLUME 7, 2019 85015

IEEEACC@SS F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

(2) YAGO dataset

FIGURE 13. (Continued.) The fragments of two datasets: NBA athletes and YAGO.

85016 VOLUME 7, 2019

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

IEEE Access

TABLE 18. Some SPARQL[t] querying transformation examples and querying results on the NBA dataset.

(1) SPARQL[t] querying transformation examples on the NBA dataset

Queries SPARQL]t] SPARQL Cypher

Oi: Querying Yao SELECT ?t ?BirthCity SELECT ?t ?BirthCity MATCH

Ming's Birth Dateand ~ WHERE { WHERE { (People)-[Relationship0:

Place. ?People info:hasBirthCity[?t]-1 ~ ?People ?hasBirthCity ?BirthCity . hasBirthCity{type:'property',
?BirthCity . ?hasBirthCity a rdf:property . rdft_hasTime:t,
FILTER ?hasBirthCity rdft:hasTime ?t . rdft_hasNumUpdate: 1}]—(Object)

0>: Querying A.C.
Green's career
information from 1992
to 2001.

QOs: Querying
Shaquille-O'Neill's
historical records and
selecting the top 20
records.

Qs Querying Allen
Iverson's score in
Philadelphia 76 and
Denver Nuggets
between 2006 and
2007.

Os: Querying the
height information of
athletes, and their birth

VOLUME 7, 2019

?People="“Yao_Ming”}

SELECT ?ts ?te
DISTINCT(?team)

WHERE {?People info:
Plays For[?ts,?te]-?n ?team .
FILTER ?ts > “1992-01-01”
and ?te < “2001-01-01”
FILTER
?People=“AC_Green Jr”}

SELECT ?s ?p ?ts ?te 7n ?0
WHERE {

?s info:Name ?name

?s ?p[?ts,?te]-?n 20 .

FILTER ?name

=“Shaquille Rashaun ONeal”

}
LIMIT 20

SELECT ?Team ?Score
WHERE {

{“Allen_Ezail Iverson”
info:Plays For[?ts],?te1]-?n11
?Team .

“Allen_Ezail Iverson”
info:Scorel[?ts],?te1]-7n12
?Score .

FILTER ?Team
="Philadelphia_76ers"
FILTER ?tsl > “2006-01-01”
and ?tel < “2007-01-01"}
{“Allen_Ezail Iverson”
info:Plays For[?ts2,?te2]-7n21
?Team .

“Allen_Ezail Iverson”
info:Scorel[?ts2,?te2]-?n22
?Score .

FILTER ?Team
=“Denver_Nuggets”
FILTER ?ts2 > “2006-01-01”
and ?te2 < “2007-01-01"}

}

SELECT
?People ?num ?City 2t

?hasBirthCity rdft:hasNumUpdate 1 .
FILTER ?People=“Yao_Ming” }

SELECT ?ts ?te DISTINCT(?team)
WHERE({ ?People ?Plays For ?team .
?Plays_For a rdf:property .
?Plays_For rdft:hasStartTime ?ts .
?Plays_For rdft:hasEndTime ?te .
?Plays_For rdft:hasNumUpdate ?n .
FILTER ?ts > “1992-01-01* and ?te <
“2001-01-01”

FILTER ?People=“AC_Green_Jr”}

SELECT ?s ?p ?ts ?te ?n ?0
WHERE({ ?s info:Name ?name
?s ?p 20 . ?p ardf:property .
?p rdft:hasStartTime ?ts .

?p rdft:hasEndTime ?te .

?p rdft:hasNumUpdate ?n .
FILTER ?name =“Shaquille
Rashaun_ONeal”} LIMIT 20

SELECT ?Team ?Score
WHERE{{“Allen_Ezail Iverson”
?Plays For ?Team. ?Plays For a
rdf:property .

?Plays_For rdft:hasStartTime ?tsl .
?Plays For rdft:hasEndTime ?tel .
?Plays_For rdft:hasNumUpdate ?nl1 .
“Allen_Ezail_Iverson” ?Scorel ?Score .
?Scorel a rdf:property .

?Scorel rdft:hasStartTime ?tsl .
?Scorel rdft:hasEndTime ?tel .
?Scorel rdftthasNumUpdate 7n12 .
FILTER ?Team ="Philadelphia_76ers"
FILTER ?tsl >*2006-01-01" and
e1<<2007-01-01"}

{“Allen_Ezail _Iverson” ?Plays_For
?Team . ?Plays_For a rdf:property .
?Plays_For rdft:hasStartTime ?ts2 .
?Plays_For rdft:hasEndTime ?te2 .
?Plays For rdft:hasNumUpdate ?n21 .
“Allen_Ezail Iverson”
info:Scorel[?ts2,?te2]-?n22 ?Score .
?Plays_For a rdf:property .
?Plays_For rdft:hasStartTime ?ts2 .
?Plays_For rdft:hasEndTime ?te2 .
?Plays_For rdft:hasNumUpdate ?n22 .
FILTER ?Team ="Denver Nuggets"
FILTER ?ts2>*2006-01-01" and
te2<2007-01-017} }

SELECT ?People ?num ?City 2t
WHERE({ {?People info:Stature ?num .}

WHERE People=“Yao_Ming”
RETURN t,Object

MATCH
(AC_Green_Jr:AC_Green _Jr)-
[Relationship:Plays For]—(team)
WHERE
Relationship.rdft_hasStartTime >
'1992-01-01" and
Relationship.rdft_ hasEndTime <
2001-01-01' RETURN
AC_Green_Jr,Relationship,team

MATCH (Name)<«—
[Relationship:Name]-(s)-
[Relationship:p {type:'property’,
rdft_hasStartTime:ts,rdft hasEndTime
:te,rdft_hasNumUpdate:n}]—(o)
WHERE Name =“Shaquille Rashaun
_ONeal” RETURN s,p,ts,te,n,0
LIMIT 20

MATCH (Score)«—
[Relationship0:Scorel {type:'property’,
rdft_hasStartTime:tsl,rdft hasEndTi
me:tel,rdft_hasNumUpdate:n12}]-
(People: “Allen_Ezail Iverson”)-
[Relationship0: Plays For
{type:'property',rdft _hasStartTime:tsl,
rdft_hasEndTime:tel,rdft_hasNumUp
date:nl1}]—(Team:

“AC_Green_Jr”),

(Score)«—

[Relationship1:Scorel {type:'property’,
rdft_hasStartTime:ts2,rdft hasEndTi
me:te2,rdft hasNumUpdate:n22}]-
(People: “Allen_Ezail_Iverson”)-
[Relationship1: Plays For
{type:'property',rdft hasStartTime:ts2,
rdft_hasEndTime:te2,rdft hasNumUp
date:n21}]—>(Team: “AC_Green_Jr”),
WHERE (Relationship0.ts1>“2006-
01-01” and Relationship0.te1<*“2007-
01-017)

AND ((Relationship1.ts2>“2006-01-
01” and Relationship1.te2<“2007-01-
017)

)

RETURN Team, Score

MATCH (People)-
[Relationship0:Stature]—(num)

IEEE Access

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

TABLE 18. (Continued.) Some SPARQLI[t] querying transformation examples and querying results on the NBA dataset.

85018

places are chosen as
the optional attribute
(OPTIONAL). The
result set is
constrained to 5-15.

Os: Querying Lin
Shuhao's highest total
score on the Rockets
or the Lakers
(UNION).

07: Querying whether
Bryant played for the
Lakers from 1996 to
2016.

Qs: Constructing a
new relation
info:isTeammate to
represent that two
athletes are team-
mates.

WHERE{

{?People info:Stature ?num .}
OPTIONAL

{?People info:hasBirthCity[?t]-
?n ?City .}} OFFSET 5 LIMIT
15

SELECT

(MAX(?Gradel) AS ?Score)
(MAX(?Grade2) AS ?Score)
WHERE/{

{“Jeremy_ ShuHow_Lin”
info:Plays For[?ts],?tel]-?n11
> "Houston_Rockets" .
“Jeremy_ShuHow_Lin”
info:Scorel[?ts1,?tel]-?n12 >
?Gradel .}

UNION

{“Jeremy ShuHow Lin”
info:Plays For[?ts2,?te2]-
21> "Los Angeles Lakers" .
“Jeremy_ShuHow_Lin”
info:Scorel[?ts2, ?te2]-?n22 >
?Grade2 .} }

ASK {
“Kobe_Bean_Bryant”
info:Plays For[?ts,?te]-?n
"Los_Angeles Lakers" .
FILTER ?ts > “1996-01-01”
and ?te < “2016-12-30”

}

CONSTRUCT
{“Kobe Bean Bryant”
info:isTeammate[?ts1,?tel]-1
“Shaquille_Rashaun ONeal” .}
WHERE {

“Kobe Bean_ Bryant”
info:Plays For[?tsl,?tel]-?nl
"Los_Angeles Lakers" .
“Shaquille_Rashaun_ONeal”
info:Plays For[?ts2,?te2]-?n2
"Los_Angeles Lakers" .
FILTER (?ts1 2 ?ts2 and ?tel <
?te2) or (?tsl < ?ts2 and ?tel >
te2)}

OPTIONAL {?People ?hasBirthCity
2City .

?hasBirthCity a rdf:property .
?hasBirthCity rdft:hasTime 7t .
?hasBirthCity rdft:hasNumUpdate ?n.} }
OFFSET 5 LIMIT 15

SELECT (MAX(?Gradel) AS ?Score)
(MAX(?Grade2) AS ?Score)
WHERE({ {“Jeremy ShuHow_Lin”
?Plays_For "Houston Rockets" .
?Plays_For a rdf:property .
?Plays_For rdft:hasStartTime ?tsl .
?Plays_For rdft:hasEndTime ?tel .
?Plays_For rdft:hasNumUpdate ?nl1 .
“Jeremy ShuHow_Lin” ?Scorel ?Gradel.
?Scorel a rdf:property .

?Scorel rdft:hasStartTime ?tsl .
?Scorel rdft:hasEndTime ?tel .
?Scorel rdft:hasNumUpdate 7n12 .}
UNION {“Jeremy ShuHow_ Lin”
?Plays For "Los_Angeles Lakers".
?Plays_For a rdf:property .
?Plays_For rdft:hasStartTime ?ts2 .
?Plays_For rdft:hasEndTime ?te2 .
?Plays_For rdft:hasNumUpdate ?n21 .
“Jeremy ShuHow_ Lin” ?Scorel ?Grade?2.
?Scorel a rdf:property .

?Scorel rdft:hasStartTime ?ts2 .
?Scorel rdft:hasEndTime ?te2 .
?Scorel rdft:hasNumUpdate 7n22 .} }

ASK {"Kobe Bean Bryant"
?Plays_For "Los_Angeles_Lakers".
?Plays_For rdf:type rdft:property .
?Plays_For rdft:hasStartTime ?ts"
xsd:date . ?Plays_For rdft:hasEndTime
?te” xsd:date . ?Plays_For
rdft:hasNumUpdate 1 . FILTER ?ts >
“1996-01-01” and ?te < “2016-12-30"}

CONSTRUCT {“Kobe_Bean Bryant”
?isTeammate

“Shaquille Rashaun_ONeal” .
?isTeammate a rdf:property .
?isTeammate rdft:hasStartTime ?ts1 .
?isTeammate rdft:hasEndTime ?tel .
?isTeammate rdft:hasNumUpdate 1 .}
WHERE{

“Kobe Bean Bryant” ?Plays For
"Los_Angeles Lakers" .

?Plays_For a rdf:property .
?Plays_For rdft:hasStartTime ?tsl .
?Plays_For rdft:hasEndTime ?tel .
?Plays_For rdft:hasNumUpdate ?n1 .
“Shaquille_Rashaun_ONeal”

?Plays For "Los_Angeles Lakers" .
?Plays_For a rdf:property .
?Plays_For rdft:hasStartTime ?ts2 .
?Plays_For rdft:hasEndTime ?te2 .
?Plays_For rdft:hasNumUpdate ?n2 .
FILTER (?ts] > ?ts2 and ?tel < ?te2) or
(?ts1 < 2ts2 and ?tel = 7te2)}

OPTIONAL MATCH (People)-
[Relationship1: hasBirthCity
{type:'property’, rdft hasTime:t,
rdft_ hasNumUpdate:n}]—(City)
RETURN People,num,City,t
SKIP 5 LIMIT 15

MATCH (Gradel)«
[Relationship:?Scorel {type:'property’,
rdft hasStartTime:ts1,rdft hasEndTi
me:tel,rdft hasNumUpdate:n12}]-
(People: “Jeremy_ShuHow_Lin”)-
[Relationship: Plays For
{type:'property’',rdft_hasStartTime:ts1,
rdft hasEndTime:tel,rdft hasNumUp
date:nl1}]—(Team:
“Houston_Rockets”)

RETURN max(Gradel)

UNION

MATCH (Grade2)«—
[Relationship:?Scorel {type:'property’,
rdft hasStartTime:ts2,rdft hasEndTi
me:te2,rdft hasNumUpdate:n22}1]-
(People: “Jeremy_ShuHow_Lin”))-
[Relationship: Plays For
{type:'property’,rdft_hasStartTime:ts2,
rdft hasEndTime:te2,rdft hasNumUp
date:n21}]— (Team:
“Los_Angeles_Lakers”)

RETURN max(Grade2)

MATCH (Kobe Bean_ Bryant)-
[Relationship:Plays For]—
(Los_Angeles_Lakers) WHERE
Relationship.rdft_hasStartTime>'1996
-01-01" and

Relationship.rdft_ hasEndTime<'2016-
12-30' RETURN [Relationship]

MATCH

(Kobe Bean_ Bryant:Kobe Bean Bry
ant)-[Relationship: Plays_For
{type:'property',rdft_hasStartTime:ts1,
rdft_hasEndTime:tel,rdft_hasNumUp
date:nl}]—(objects:Los_Angeles
Lakers)<[Relationship: Plays For
{type:'property’',rdft_hasStartTime:ts2,
rdft hasEndTime:te2,rdft hasNumUp
date:n2}]-(Shaquille Rashaun
ONeal: Shaquille Rashaun_ONeal)
WHERE (Relationship.ts1 >
Relationship0.ts2 and Relationship0.tel
< Relationship.te2) or
(Relationship0.ts1 < Relationship0.ts2
and Relationship.tel > Relationship.te2)
RETURN tsl,tel;

CREATE

(Kobe Bean Bryant:Kobe Bean Bry
ant)-[Relationship: isTeammate
{type:'property’',rdft hasStartTime:tsl,
rdft hasEndTime:tel,rdft hasNumUp
date:1}]-(Shaquille_Rashaun ONeal:
Shaquille_Rashaun_ONeal)

VOLUME 7, 2019

IEEE Access

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

TABLE 18. (Continued.) Some SPARQLI[t] querying transformation examples and querying results on the NBA dataset.

Qo Querying all
players' personal
information of the
2018 Warriors.

DESCRIBE ?People
{?People
info:Plays_For[?ts,?te]-7n
"Golden_State Warriors" .

DESCRIBE ?People {?People
?Plays_For "Golden_State Warriors" .
?Plays_For a rdf:property .
?Plays_For rdft:hasStartTime ?ts .
FILTER ?ts = “2017-12-30” ?Plays_For rdft:hasEndTime ?te .

and ?te < “2018-12-30” ?Plays_For rdft:thasNumUpdate ?n .

} FILTER ?ts > “2017-12-30” and ?te <
“2018-12-307}

MATCH (People)-[Relationship0:
Plays_For {type:'property’,
rdft_hasStartTime:ts,rdft hasEndTime
:te,rdft_hasNumUpdate:n}]—(Team:
“Golden_State Warriors”)

WHERE Relationship0.ts > “2017-12-
30” and Relationship0.te < “2018-12-
30” RETURN (People)-[0...5]—(m)

(2) SPARQL[t] querying results of O;-0y on the NBA dataset

Queries Querying results

0 “1980-9-12” “Shanghai_China”

[0 [1992-03-15,1993-07-21]-8 “Los_Angeles_Lakers” .
[1993-01-23,1994-11-16]-1 “Phoenix_Sun” .
[1994-08-17,1995-10-21]-2 “Phoenix_Sun” .
[1995-03-21,1996-01-09]-3 “Phoenix_Sun” .
[1996-01-25,1997-06-13]-4 “Phoenix_Sun” .
[1996-03-07,1997-03-10]-1 “Dallas_Mavericks” .
[1997-08-27,1998-11-27]-2 “Dallas_Mavericks” .
[1998-03-22,1999-01-10]-3 “Dallas_Mavericks” .
[1999-02-08,2000-05-26]-9 “Los_Angeles Lakers” .
[2000-03-24,2001-07-02]-1 “Miami_Heat” .

0O Return to the top 20 records of Shaquille O'Neill's historical
competition information. Some of the data are as follows:
"Shaquille_Rashaun_ONeal" hasBirthCity[1972-03-06]-1
"Newark New Jersey" .

"Shaquille_Rashaun_ONeal" Stature "2.16"""<xsd:decimal> .
"Shaquille_Rashaun_ONeal" Weight "147""<xsd:integer> .

Oy "Philadelphia_76ers" 468
"Denver_Nuggets" 1241

Os Includes the height of the athlete and the city and time of birth
(optional attributes). Some of the data are as follows:
“Anthony_Bennett” “Toronto_Ontario” “1993-3-14"
“Anthony_Bennett” "2.03""<xsd:decimal>
“Anthony_Brown” "1.96"""<xsd:decimal>

Os 1095
0Oy TRUE/FALSE
Os The results are stored in Neo4J database

[All triple sets with ?People as the subject

work in this paper and the existing works: (i) Regarding to the
representation of temporal data, as has mentioned in the intro-
duction of Part I, each of the existing representation models
is proposed for different representation demands of temporal
data, and the existing work are not enough to represent and
manage all types of temporal information in practical applica-
tions (e.g., the temporal data with both the time information
and the update count information). Therefore, in this paper
we propose a new temporal RDF data model called RDFt,

VOLUME 7, 2019

which can represent the temporal data with both the time
information and the update count information, and we also
present the syntax and semantics of RDFt model in detail and
provide the example to well explain the model; (ii) Regarding
to the query of temporal data, the existing query languages
cannot realize the query for our proposed RDFt data model.
To this end, we propose a query language called SPARQL[t]
for RDFt, and we also propose the querying transforma-
tion algorithms from SPARQL([t] to SPARQL and Cypher.

85019

IEEE Access

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

TABLE 19. Some SPARQL[t] querying transformation examples and querying results on the YAGO dataset.

(1) SPARQL[t] querying transformation examples on the YAGO dataset

Queries

SPARQL][t]

SPARQL

Cypher

O,: Querying
Fabio_Ongaro's birth
date and place.

0»: Querying
Mauricio_Soler's
career information
from 2001 to 2006.

Os: Querying the
information of Ricardo
Souza Silva and
selecting the first 15
records.

QO4: Querying the team
of athletes who lived
in Falkirk in 1988.

Os: Querying the
information of male
athletes, and their birth
places are chosen as
the optional attribute
(OPTIONAL). The
result set is
constrained to 5-15.

QOs: Querying the
teams that Gustavo_
Bou plays for and
belongs to.

07 Querying whether
the The_Culture plays
for the team Israel
national_football_team
from 1996 to 2005.

85020

SELECT ?t ?BirthCity
WHERE { ?People wasBornln
[?t]-1 ?BirthCity .

FILTER ?People =
“Fabio_Ongaro”}

SELECT ?ts ?te
DISTINCT(?team) WHERE {
?People info:playsFor [?ts,?te]-7n
?team . FILTER ?ts > “2001-01-
01” and ?te<“2006-01-01”
FILTER ?People="“Mauricio_
Soler”}

SELECT ?s ?p ?ts ?te 7n ?0
WHERE{

?s ?p[?ts,?te]-?n 20 .
FILTER ?s
=“Ricardo_Souza_Silva”

} LIMIT 15

SELECT DISTINCT(?Team)
WHERE {

{?People wasBornIn[?t]-1
“Falkirk” .

FILTER ?t > “1988-01-01" and ?t
<“1988-12-31” }

{?People playsFor[?ts],?te1]-?nl
?Team .} }

SELECT ?People ?City
WHERE{

{?People hasGender <male> .}
OPTIONAL

{?People wasBornln [?t]-?n ?City
3

OFFSET 5 LIMIT 15

SELECT DISTINCT(?Team)
WHERE {

{“Gustavo_Bou”
playsFor[?ts1,?tel]-?n ?Team .}
UNION

{“Gustavo_Bou” isAffiliatedTo
[?ts2,?te2]-?n ?Team .}

}
FILTER ?ts1=?ts2 and ?te1=2te2

ASK {“The_Culture”
info:playsFor[?ts,?te]-7n
"Israel_national_football_team" .
FILTER ?ts > “1996-01-01” and
2te < “2005-12-30”

}

SELECT ?t ?BirthCity WHERE {?People
?wasBornIn ?BirthCity . ?wasBornIn a
rdf:property . ?wasBornIn rdft:hasTime ?t .
?wasBornIn rdft:hasNumUpdate 1 .
FILTER ?People=“Fabio_Ongaro” }

SELECT ?ts ?te DISTINCT(?team) WHERE {
?People ?playsFor ?team . ?playsFor a
rdf:property . ?playsFor rdft:hasStartTime

2ts . ?playsFor rdft:hasEndTime ?te . ?playsFor
rdft:hasNumUpdate ?n .

FILTER ?ts>*2001-01-01” and ?te<*2006-01-
01” FILTER ?People=“Mauricio_Soler”}

SELECT ?s ?p ?ts ?te 7n ?0

WHERE{ ?s ?p ?0 . ?p a rdf:property .

?p rdft:hasStartTime ?ts . ?p rdft: hasEndTime
2te . ?p rdft:hasNumUpdate ?n .

FILTER ?s=“Ricardo_Souza_Silva”}

LIMIT 15

SELECT DISTINCT(?Team)

WHERE({ {?People ?wasBornln “Falkirk” .
?wasBornlIn a rdf:property .

?wasBornln rdft:hasTime ?t .

?wasBornIn rdft:hasNumUpdate 1 .
FILTER ?t > “1988-01-01" and ?t < “1988-12-
317} {?People ?playsFor ?Team .
?playsFor a rdf:property .

?playsFor rdft:hasStartTime ?tsl .
?playsFor rdft:hasEndTime ?tel .
?playsFor rdft:hasNumUpdate ?nl .}}

SELECT ?People ?City

WHERE({ {?People hasGender <male> .}
OPTIONAL {?People ?wasBornlIn ?City .
?wasBornlIn a rdf:property .

?wasBornIn rdft:hasTime ?t .
?wasBornIn rdft:hasNumUpdate ?n .} }
OFFSET 5 LIMIT 15

SELECT DISTINCT(?Team)

WHERE {{“Gustavo_Bou” ?playsFor ?Team.
?Plays_For a rdf:property .

?Plays_For rdft:hasStartTime ?tsl .
?Plays_For rdft:hasEndTime ?tel .
?Plays_For rdft:hasNumUpdate ?n .}
UNION

{“Gustavo_Bou” ?isAffiliatedTo ?Team .
?isAffiliatedTo a rdf:property .
?isAffiliatedTo rdft:hasStartTime ?ts2 .
?isAffiliatedTo rdft:hasEndTime ?te2 .
?isAffiliatedTo rdft:hasNumUpdate ?n .} }
FILTER ?ts1=?ts2 and ?tel=2te2

ASK { "The_Culture" ?playsFor
"Israel_national football team" . ?playsFor
rdfitype rdft:property . ?playsFor
rdft:hasStartTime ?ts™xsd:date . ?playsFor
rdft:hasEndTime ?te”"xsd:date . ?playsFor
rdft:hasNumUpdate 1 . FILTER ?ts > '1996-
01-01" and ?te < '2005-12-30'}

MATCH (People)-[Relationship:
wasBornlIn {type:'property’,
rdft_hasTime:T,rdft hasNumUpdate:1}]—
(Object) WHERE People=“Fabio_Ongaro”
RETURN T, Object

MATCH (People)-[Relationship: playsFor
{type:'property',rdft_hasStartTime: Ts,rdft
hasEndTime:Te,rdft_hasNumUpdate:N}]
—(Team) WHERE Relationship.Ts>2001-
01-01" and Relationship.Te<‘2006-01-01"
WHERE People=“Mauricio_Soler”
RETURN Ts, Te, Team

MATCH (Name)<«[Relationship:Name]-
(S)-[Relationship:p {type:'property’,
rdft_hasStartTime:Ts,rdft hasEndTime:Te,
rdft_hasNumUpdate:N}]—(O)

WHERE Name =‘Ricardo_Souza_Silva’
RETURN S, P, Ts, Te, N, O LIMIT 15

MATCH (People)-[Relationship0:
wasBornIn{type:'property',rdft hasTime:T,
rdft_hasEndTime:Tel,rdft_hasNumUpdate:
1}]—>(Team: ‘Falkirk’),
(People)-[Relationship1:playsFor
{type:'property',;rdft_hasStartTime:Tsl,rdft
_hasEndTime:Tel,rdft hasNumUpdate:N1
}]—>(Team) WHERE Relationship0.
rdft_hasTime > ‘1988-03-31" and
Relationship0. rdft hasTime < ‘1988-12-
31 RETURN Team

MATCH (People)-[Relationship:
hasGender]—(Male)

OPTIONAL MATCH (People)-
[Relationship: wasBornln
{type:'property',rdft_hasTime:T,rdft_hasNu
mUpdate:N}]—(City)

SKIP 5 LIMIT 15

(People: ‘Gustavo_Bou’)-[Relationship0:
Plays For {type:'property’,
rdft_hasStartTime:Tsl,rdft_hasEndTime:T
el,rdft_ hasNumUpdate:N}]—(Team)
UNION MATCH (People: ‘Gustavo_Bou’)
-[Relationship1: isAffiliatedTo {type:
‘property',rdft_hasStartTime:Ts2,rdft _hasE
ndTime:Te2,rdft_hasNumUpdate:N}]—
(Team) WHERE Relationship0.
rdft_hasStartTime = Relationshipl.
rdft_hasStartTime and Relationship0.
rdft_hasEndTime = Relationshipl. rdft
hasEndTime RETURN DISTINCT(Team)

MATCH (The_Culture)-
[Relationship:playsFor]—(Israel_national f
ootball_team) WHERE
Relationship.rdft_hasStartTime > '1996-01-
01' and Relationship.rdft_hasEndTime <
'2005-12-30' RETURN [Relationship]

VOLUME 7, 2019

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

IEEE Access

TABLE 19. (Continued.) Some SPARQL[t] querying transformation examples and querying results on the YAGO dataset.

Os: Querying all
players' personal
information of
Spandauer_SV in
2018.

Qy: Constructing a
new teammate
relationship called
isTeammate between
two athletes

DESCRIBE ?People {?People
info:playsFor[?ts,?te]-?n
"Spandauer SV".

FILTER ?ts > 2017-12-30" and
2te < 2018-12-30”

¥

CONSTRUCT
{“Mariano_Pavone”
isTeammate[?ts1,?te1]-1
“Joao_Rojas” .}

WHERE{

“Mariano_Pavone” isAffiliatedTo
[?ts1,?tel]-?nl "Cruz_Azul".
“Joao_Rojas” isAffiliatedTo
[?ts2,?te2]-n2 "Cruz_Azul" .
FILTER (?ts1 = ?ts2 and ?tel <
2te2) or (?ts1 < ?ts2 and ?tel >
2te2)}

DESCRIBE ?People {?People ?playsFor
"Spandauer SV" . ?playsFor a rdf:property .
?playsFor rdft:hasStartTime ?ts .

?playsFor rdft:hasEndTime ?te .

?playsFor rdft:hasNumUpdate ?n .

FILTER ?ts > ‘2017-12-30" and ?te < 2018-
12-30’}

CONSTRUCT {*“Mariano_Pavone”
?isTeammate “Joao_Rojas”.
?isTeammate a rdf:property .
?isTeammate rdft:hasStartTime ?ts1 .
?isTeammate rdft:hasEndTime ?tel .
?isTeammate rdft:hasNumUpdate 1 .}
WHERE {

“Mariano_Pavone” ?isAffiliatedTo
"Cruz_Azul".

?isAffiliatedTo a rdf:property .
?isAffiliatedTo rdft:hasStartTime ?ts1 .
?isAffiliatedTo rdft:hasEndTime ?tel .
?isAffiliatedTo rdft:hasNumUpdate nl .
“Joao_Rojas” ?isAffiliatedTo "Cruz_Azul" .
?isAffiliatedTo a rdf:property .
?isAffiliatedTo rdft:hasStartTime ?ts2 .
?isAffiliatedTo rdft:hasEndTime ?te2 .
?isAffiliatedTo rdft:hasNumUpdate 7n2 .

FILTER (?tsl > ?ts2 and ?tel < ?te2) or (?ts1 <

2ts2 and ?tel > ?te2)}

MATCH (People)-[Relationship: playsFor
{type:'property',rdft_hasStartTime:Ts,rdft
hasEndTime:Te,rdft hasNumUpdate:N}]
—(Team: ‘Spandauer_SV’)

WHERE Relationship.Ts > 2017-12-30"
and Relationship.Te < ‘2018-12-30°
RETURN (People)-[0...5]—(m)

MATCH (Mariano_Pavone:
Mariano_Pavone)-[Relationship:
isAffiliatedTo {type:'property’,
rdft_hasStartTime:Ts1,rdft_hasEndTime:T
el,rdft_ hasNumUpdate:N1}]—(objects:
Cruz_Azul)«[Relationship: isAffiliatedTo
{type:'property',rdft hasStartTime:Ts2,rdft
_hasEndTime:Te2,rdft hasNumUpdate:N2
}1-(Joao_Rojas: Joao_Rojas)

WHERE (Relationship.ts1 >
Relationship0.ts2 and Relationship0.tel <
Relationship.te2) or (Relationship0.ts1 <
Relationship0.ts2 and Relationship.tel >
Relationship.te2)

RETURN Tsl,Tel

CREATE (Mariano_Pavone:
Mariano_Pavone)-[Relationship:
isTeammate

{type:'property',rdft _hasStartTime:Ts1,rdft
_hasEndTime:Tel,rdft_hasNumUpdate:1}]
-(Cruz_Azul: Cruz_Azul)

VOLUME 7, 2019

(2) SPARQLJt] querying results of O;-QOy on the YAGO dataset

Queries

Querying results

O
O

Os

Os

Os

O
Os
O

“1977-09-23” “Mestre”

“2001-02-03” “2002-10-09” “Cultural_y Deportiva_Leonesa”
€2005-03-23" “2006-06-17" “CD_Guijuelo”
€2006-12-01” “2007-11-14” “CD_Tudelano” ...

Return the first 15 records of Ricardo Souza_Silva's personal information, such as:

“Ricardo_Souza_Silva” wasBornln “1963-02-17" 1 “Sao_Paulo”

“Ricardo_Souza_Silva” playsFor “1982-10-04” “1985-01-28" 1 “Guaratinguetd_Futebol”
“Ricardo_Souza_Silva” playsFor “1985-11-08" “1988-05-23" 2 “Nagoya_Grampus”

Some of the data are as follows:
“Scotland_national under-19_football team”
“Scotland_national under-21_football team”

“Falkirk_FC”

“St Johnstone FC”

Including the sex of the athlete and the time of birth:
“Jonathan_Quick” “Milford Connecticut”
“Franco_De_Piccoli”

“Tenirberdi_Suiunbaev”

“Ion_Oncescu” “Bucharest”

“Club_Olimpo”

“Club_Atlético_River Plate”
“Club_de_Gimnasia_y_Esgrima_La_Plata”

“LDU_Quito”

TRUE/FALSE

The results are stored in Neo4J database

All triple sets with ?People as the subject

85021

IEEE Access

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

Moreover, we implemented a prototype system to support
RDFt temporal data representation and querying, and the case
studies and experimental results on two datasets of NBA play-
ers and YAGO verify the feasibility of the proposed approach.

VII. CONCLUSIONS AND FUTURE WORK
In order to represent temporal data with both the time infor-
mation and the update count information, in this paper we
proposed a new temporal RDF data representation model
RDFt and its corresponding querying mechanism. We defined
the syntax and semantics of the RDFt model in detail. Further,
we proposed a corresponding query language of the RDFt
model called SPARQL][t] by extending the standard RDF
query language SPARQL. We presented the query syntax and
operations of SPARQL[t]. Moreover, a querying transforma-
tion algorithm from SPARQL[t] to SPARQL was proposed,
in order to achieve compatibility with the existing RDF query
engines. Finally, we implemented a prototype system that
can support RDFt temporal data representation and querying,
and case studies and experimental results on two datasets of
NBA players and YAGO verify the feasibility of the proposed
approach.

In future works, we aim at testing our approach and the
performance of prototype with more cases, and considering
and investigating more temporal features based on RDF.

APPENDIX 1
See Table 17.

APPENDIX 2
See Fig. 12.

APPENDIX 3
See Fig. 13.

APPENDIX 4
See Table 18.

APPENDIX 5
See Table 19.

ACKNOWLEDGMENTS

The authors thank the anonymous referees for their valuable
comments and suggestions, which improved the technical
content and the presentation of the paper.

REFERENCES

[1] (2014). RDF 1.1 Primer, W3C Working Group. [Online]. Available:
http://www.w3.0rg/TR/2014/NOTE-rdf1 1-primer-20140225/

[2] A. Sozer, A. Yazici, H. Oguztiiziin, and O. Tas, ““Modeling and querying
fuzzy spatiotemporal databases,” Inf. Sci., vol. 178, no. 19, pp. 3665-3682,
Oct. 2008.

[3] D. Ognyanov and A. Kiryakov, “Tracking changes in RDF (S) repos-
itories,” in Proc. Int. Conf. Knowl. Eng. Knowl. Manage., Oct. 2002,
pp. 373-378.

[4] M. Gergatsoulis and P. Lilis, “Multidimensional RDFE,” in Proc. OTM
Confederated Int. Conf. Move Meaningful Internet Syst., Oct. 2005,
pp. 1188-1205.

85022

[5]
[6]
[7]

[8]

9

—

[10]

(11]

[12]

[13]

(14]

[15]
[16]

[17]

(18]
[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

C. Gutierrez, C. Hurtado, and A. Vaisman, ‘“Temporal RDF,” in Proc. Eur.
Semantic Web Conf., May 2005, pp. 93-107.

A. Pugliese, O. Udrea, and V. S. Subrahmanian, “Scaling RDF with time,”
in Proc. 17th Int. Conf. World Wide Web, Apr. 2008, pp. 605-614.

B. Motik, “Representing and querying validity time in RDF and
OWL: A logic-based approach,” in Proc. Int. Semantic Web Conf.,
Apr. 2012, pp. 3-21.

N. Noy, (2014). Rector A Defining N-Ary Relations
Semantic Web. W3C Working Group Note. [Online].
http://www.w3.org/TR/swbp-n-aryRelations/

O. Udrea, D. R. Recupero, and V. S. Subrahmanian, “Annotated RDE,”
ACM Trans. Comput. Log., vol. 11, no. 2, p. 10, 2010.

Y. Wang, M. Zhu, L. Qu, M. Spaniol, and G. Weikum, “Timely
YAGO: Harvesting, querying, and visualizing temporal knowledge from
Wikipedia,” in Proc. 13th Int. Conf. Extending Database Technol.,
Mar. 2010, pp. 697-700.

F. Grandi, “Multi-temporal RDF ontology versioning,” in Proc. 3rd Int.
Workshop Ontology Dyn., Oct. 2009, pp. 1-10.

M. Dylla, M. Sozio, and M. Theobald, “Resolving temporal conflicts in
inconsistent RDF knowledge bases,” Coordination Chem. Rev., vol. 2,
no. 1, pp. 474-493, 2011.

J. Huber, “Temporal reasoning for RDF (S): A Markov logic based
approach,” Arbeitspapier, vol. 2, May 2014, pp. 1-134.

A.Zimmermann, N. Lopes, A. Polleres, and U. Straccia, ‘A general frame-
work for representing, reasoning and querying with annotated Semantic
Web data,” Web Semantics, Sci., Services Agents World Wide Web, vol. 11,
no. 3, pp. 72-95, Mar. 2012.

(2014). RDF Schema 1.1. W3C Recommendation. [Online]. Available:
https://www.w3.org/TR/rdf-schema/

(2014). SPARQL 1.1 Query Language, W3C Recommendation. [Online].
Available: https://www.w3.org/TR/sparql11-query

B. McBride, and M. Butler, “Representing and querying historical infor-
mation in RDF with application to E-discovery,” in Proc. ISWC, Oct. 2009,
pp. 1-13.

(2019). Neu4J. [Online]. Available: https://Neo4J.com/

C. Gutierrez, C. A. Hurtado, and A. Vaisman, “Introducing time into
RDE” IEEE Trans. Knowl. Data Eng., vol. 19, no. 2, pp. 207-218,
Feb. 2007.

Z.Ma, M. A. M. Capretz, and L. Yan, ““Storing massive resource descrip-
tion framework (RDF) data: A survey,” Knowl. Eng. Rev., vol. 31, no. 4,
pp. 391413, Sep. 2016.
(2019). NBA Data Website.
nba.com/playerList.php

J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, ‘“YAGO2: A spa-
tially and temporally enhanced knowledge base from Wikipedia,”
Artif. Intell., vol. 194, pp. 28-61, Jan. 2013.

K. Bereta, P. Smeros, and M. Koubarakis, ‘Representation and querying of
valid time of triples in linked geospatial data,” in Proc. Extended Semantic
Web Conf., May 2013, pp. 259-274.

A. Rodriguez, R. McGrath, Y. Liu, and J. Myers, “Semantic manage-
ment of streaming data,” in Proc. 2nd Int. Conf. Semantic Sensor Netw.,
Oct. 2009, pp. 80-95.

A. Rula, M. Palmonari, A. Harth, S. Stadtmiiller, and A. Maurino, ‘“‘On the
diversity and availability of temporal information in linked open data,”
in Proc. Int. Semantic Web Conf., Nov. 2012, pp. 492-507.

S. Bykau, J. Mylopoulos, F. Rizzolo, and Y. Velegrakis, “On modeling
and querying concept evolution,” J. Data Semantics, vol. 1, pp. 31-55,
May 2012.

GaoS, Gul, ZanioloC, “RDF-TX: A fast, user-friendly system for querying
the history of RDF knowledge bases,” in Proc. 19th Int. Conf. Extending
Database Technol. (EDBT), Jul. 2016, pp. 269-280.

C. Zaniolo, S. Gao, M. Atzori, M. Chen, and J. Gu, ““User-friendly tempo-
ral queries on historical knowledge bases,” Inf. Comput., vol. 259, no. 3,
pp. 444-459, Apr. 2018.

D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, “EP-SPARQL: A uni-
fied language for event processing and stream reasoning,” in Proc. 20th
Int. Conf. World Wide Web, Mar. 2011, pp. 635-644.

D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth,
“A native and adaptive approach for unified processing of linked
streams and linked data,” in Proc. Int. Semantic Web Conf., Oct. 2011,
pp. 370-388.

D. F. Barbieri, D. Braga, S. Ceri, and E. D. Valle, “Querying RDF
streams with C-SPARQL,” ACM SIGMOD Rec., vol. 39, no. 1,
pp. 20-26, Sep. 2010.

on The
Available:

[Online]. Available: http://www.stat-

VOLUME 7, 2019

F. Zhang et al.: Temporal Data Representation and Querying Based on RDF

IEEE Access

FU ZHANG received the Ph.D. degree from
Northeastern University, China, in 2011, where he
is currently an Associate Professor and a Ph.D.
Supervisor with the School of Computer Sci-
ence and Engineering. He has authored more than
40 refereed international journals and conference
papers. His research work was published in high-
quality international conferences, such as CIKM
and DEXA, and in highly cited international jour-
nals, such as Fuzzy Sets and Systems, Knowledge-

Based Systems, and Integrated Computer-Aided Engineering. He has also
authored two monographs published by Springer. His current research inter-
ests include RDF data management, ontology, knowledge graph, and knowl-
edge representation and reasoning.

VOLUME 7, 2019

KE WANG is currently pursuing the Ph.D.
degree with the School of Computer Science and
Engineering, Northeastern University, China. Her
current research interests include RDF data man-
agement, spatial and temporal data management,
and ontology.

ZHIYIN LI is currently pursuing the mas-
ter’s degree with the School of Computer Sci-
ence and Engineering, Northeastern University,
China. Her current research interests include RDF
data management, and spatial and temporal data
management.

JINGWEI CHENG received the Ph.D. degree from
Northeastern University, China, in 2011, where
he is currently with the School of Computer Sci-
ence and Engineering. He has authored more than
20 refereed international journals and conference
papers (e.g., Wl and DEXA). He has also authored
one monograph published by Springer. His current
research interests include description logics, RDF
data management, and ontology.

85023

	INTRODUCTION
	PRELIMINARIES
	RDF
	SPARQL
	TEMPORAL DATA
	Neo4J GRAPH DATABASE

	TEMPORAL DATA REPRESENTATION MODEL RDFt
	RDFt SYNTAX
	RDFt SEMANTICS

	TEMPORAL DATA QUERY LANGUAGE SPARQL[t]
	SPARQL[t] QUERY SYNTAX AND OPERATIONS
	QUERY TRANSFORMATION FROM SPARQL[t] to SPARQL AND CYPHER
	TRANSFORMATION OF QUERY FORMS
	TRANSFORMATION OF BASIC GRAPH PATTERN
	TRANSFORMATION of COMPLEX GRAPH PATTERNS

	PROTOTYPE AND EXPERIMENTS
	THE ARCHITECTURE OF THE PROTOTYPE
	EXPERIMENTS

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	FU ZHANG
	KE WANG
	ZHIYIN LI
	JINGWEI CHENG

