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ABSTRACT The motion status recognition of the preceding vehicle in a long-distance region is a
requirement for autonomous vehicles to make appropriate decisions and increase their comprehension of
the environment. At present, the lane change behavior of the leading vehicle at a short distance is detected
using stereo cameras and LiDAR. However, the short detection distance (about 100 m) does not meet
the requirements of high-speed driving of autonomous vehicles on expressways; this is a fundamental
problem limiting the development of autonomous vehicles exhibiting human-like behavior. In this paper,
a comprehensive model consisting of a back-propagation (BP) neural network model optimized by a particle
swarm optimization (PSO) algorithm, and a continuous identificationmodel is developed based on the results
of naturalistic on-road experiments using millimeter-wave radar data. By considering different time-to-lane
crossings (TLCs), the PSO-BP neural network model is trained using real vehicle lane change data and
implemented when the TLC of the leading vehicle is longer than 1.0 s. In contrast, when the TLC is less
than 1 s, the continuous recognition model of the TLC is used. By comparison with the BP neural network
model, the recognition accuracy rate of the proposed model is increased from 80% to 87% after the PSO
optimization for a time window of 1.0 s; these results meet the recognition requirements of the autonomous
driving systems for distant targets. The findings of this paper improve the cognitive competence and safety
of autonomous driving systems.

INDEX TERMS Autonomous driving perception, cognitive competence, lane change behavior, BP neural
network.

I. INTRODUCTION
Autonomous driving systems have developed progressively
and have been demonstrated by vehicle safety organiza-
tions to improve the safety of driving and reduce traffic
collisions [1]–[3]. Autonomous driving systems anticipate
potential accidents and promptly deliver the information to
the decision-making system based on a precise perception
of the traffic environment, including the movements of sur-
rounding vehicles and pedestrians and the presence of traffic
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signs [4], [5]. The main cause of accidents of autonomous
vehicles during road tests is that the autonomous systems
do not identify the motion status of surrounding vehicles
accurately [6]–[8]. At present, the lane change detection
of preceding vehicles within a short distance range (about
100 m) is accurately identified using stereo cameras and
LIDAR [9]–[11]. However, due to the limitation of the sensor
detection distance, the motion status of the leading vehicle
cannot be precisely detected, resulting in a potential safety
hazard for high-speed driving of autonomous vehicles on
expressways [12]–[14]. Therefore, the identification of the
motion status of potential conflicting targets in the distant
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range is crucial for improving the cognitive competence of
autonomous vehicle systems with regard to the traffic envi-
ronment and developing autonomous vehicle systems with
human-like behavior.

In actual driving, the abrupt lane change behavior of
a leading vehicle has a significant impact on the subject
vehicle and the possibility of a rear-end collision is greatly
increased when the subject vehicle is compelled to change
lanes as well [15]–[17]. In an adaptive cruise control (ACC)
system, the cruising speed may suddenly be reduced when
an unexpected vehicle changes into the target lane and the
large change in velocity may cause driver discomfort [18].
However, if the lane change behavior of the leading vehicles
could be identified in advance, the ACC system can adjust
the velocity of the subject vehicle more smoothly. Simi-
larly, a lane change warning system may detect in time the
potential danger of a leading vehicle that intends to change
into the target lane from another lane [19]. The system can
then deliver an alarm to the decision-making system if the
lane change behavior of the leading vehicle is recognized in
advance. In an autonomous vehicle, the lane change detection
of the preceding vehicle affects the subsequent decisions of
the system. In brief, lane change identification is essential
for exploiting intelligent algorithms that provide responses
that are similar to those of a person. Accurate and prompt
recognition provides the basis for other auxiliary decision
systems. Hence, the establishment of the identification model
is regarded as the key to perception technologies [20]. The
current lack of this technology limits the cognitive com-
petence of autonomous systems and impacts the safety of
autonomous vehicles.

Over the years, researchers have developed methods to
improve the performance of identifying the vehicle lane
change status. At present, traditional machine learning meth-
ods, such as support vector machines (SVM), hidden Markov
models (HMM), and artificial neural networks (ANN) have
been widely employed to establish lane change identifica-
tion models. Zheng et al. [21] established an ANN model
for discerning left-lane changes and right-lane changes by
considering the distance, speed, and acceleration of different.
Prevost et al. [22] defined the kinestate and predicted the
route of mobile vehicles using an extended Kalman filter.
Hermes et al. [23] proposed a predictionmodel for themotion
status that combined trajectory classifications and particle
filters; the trajectories were classified using a radial basis
function classifier and a particle filter was used for trajec-
tory tracking. This approach was validated by forecasting
the movement of a subject vehicle and ambient vehicles
within seconds. Dou et al. [24] suggested that combining
an SVM and a neural network by using weight allocations
could improve the recognition rate for lane changes; vehicle
data were extracted, including horizontal and vertical coordi-
nates, speed, and type, from the next-generation simulation
(NGSIM) database. Haijing et al. [25] developed an identifi-
cationmodel for lane change intention that integrated a hybrid
Gaussian HMM with a SVM and used the standard deviation

of the horizontal angle of the driver’s head, the number of
times the driver gazed at the rear-view mirror, the average
scanning range, and the steering wheel angle entropy as
input parameters. Semantic segmentation and target detection
based on deep learning techniques have been used to detect
the motion state of the target using data derived from stereo
cameras and LIDAR [26]–[29]. However, the detection range
of a stereo camera does not exceed 100 m and the range
of the LIDAR is only about 120 m. This detection distance
ensures the safety of autonomous driving at low-speed but
for high-speed driving on expressways, this short detection
results in extensive risks to the autonomous vehicle and other
drivers. Therefore, the detection and recognition of distant
targets currently depend on the use of millimeter-wave radar
(the detection distance is about 200 m).

The determination of the time window is a key factor
in the development of detection models of the vehicle lane
change status [30]. The optimal time window results in a
higher detection rate and greater efficiency of the back-
propagation neural network (BPNN) model. The longer the
time window, the larger the amount of gathered information
is and the higher the recognition rate is, but the model can-
not immediately determine the motion status of the vehicle.
In contrast, a rapid decision can be obtained using a shorter
time window but the recognition rate is lower. The length
of the time window determines the amount of information
that is obtained by the model. Scholars have used different
time windows to determine the lane change status. Doshi and
Trivedi [31] established a recognition model of lane change
intentions based on the driver’s head posture and eye move-
ment trajectory; the results demonstrated that the model had
the best recognition performance for a time window of 3 s.
Lethaus and Rataj [32] determined a time window of 10 s
by exploiting the driver’s eye movement characteristics to
analyze the lane change behavior. Jin et al. [33] divided the
timewindows of the lane change identificationmodel into 5 s,
3 s, and 2 s, depending on different driving styles. The driving
intention identification model proposed by Zong et al. [34]
used a time window of 0.08 s to recognize the driver’s short-
term operation. The results of these studies indicate that the
time window can vary from 0.08 s to 10 s, representing a
rather large range. Therefore, the appropriate time window
should be considered in terms of accuracy and real-time
performance and based on the actual lane change behavior
and the specific situation.

At present, research has mainly concentrated on the iden-
tification of the lane change status of the subject vehicle
and few studies were conducted on the recognition of the
lane change status of leading vehicles. When the leading
vehicle was the research focus, most of the commonly used
parameters for the prediction of driver lane change behavior,
such as eye movements and head movements could not be
obtained by the subject vehicle. Only the lateral and longi-
tudinal parameters of the leading vehicle can be collected
using millimeter-wave radar. In view of this disadvantage,
we identified the relative kinematic parameters of the subject
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and leading vehicles by using the results of the naturalistic on-
road experiment. We propose a comprehensive recognition
model based on a BPNN optimized by a particle swarm
optimization (PSO) algorithm and a continuous identification
model of time-to-lane crossing (TLC). The remainder of this
paper is organized as follows. The related studies on ANNs
and PSO algorithm are discussed in Section II. The proposed
identification model for the lane change status based on a
BPNN and PSO algorithm for optimization is described in
Section III. The training data for the proposed PSO-BPNN
model are presented in Section IV. The simulation results
and analysis are described in Section V. The conclusions are
presented in Section VI.

II. RELATED STUDIES
The essence of the identification model is to extract the char-
acteristic differences among disparate data, thereby establish-
ing a mapping relationship between the input data and the
target identifier andminimizing the error [35]. Currently used
recognition models may be roughly divided into production
models, discriminative models, and learning models. Pro-
duction models calculate the internal potential probability of
the data and classify it by means of probability maximiza-
tion [36], [37]. These models include the HMM, the naive
Bayes classifier, and the mixed Gaussian model. HMMs have
been widely used for the identification of driving intention
and behavior [38]. However, the HMM requires that the
events be independent of each other and the HMM is a
linear model, which is not suitable for complex identifica-
tion problems. Discriminative models recognize the targets
by analyzing the regional characteristics inside the feature
space. These types of models include the SVM, conditional
random fields, and similar models. However, the greatest
disadvantage of these models is the inability to support a
large number of training samples [39]. Learning models are
patterned after the learning behavior of biological organisms
and various neural network models are representatives of
this type of model. Particularly, ANN models based on the
structure of the brain have been used to solve complex recog-
nition problems and these model have a good tolerance for
erroneous data [40]. At present, many identification models
based on ANNs have been used to recognize the motion
status of vehicles. Zhou et al. [41] used a miniature car and
developed a following model based on a recurrent neural
network for the accurate determination of traffic fluctuations.
Liu and Jing [42] constructed a decision-making model based
on a BPNN for vehicles driving on an expressway to detect
the lane-changing behavior. A quick response controller for
steering control based on an ANN was implemented by Aal-
izadeh and Asnafi [43] for vehicle handling in uncertain road
conditions.

In spite of the significant development of ANN models,
it was found that complex nonlinear optimization problems
cannot be efficiently solved by the available neural net-
work models. In particular, some problems persist, such as
the difficulty of determining the initial connection weight

thresholds and the slow convergence of BPNNs [44].
The gradient descent method used in BPNNs is highly sensi-
tive to the initial connection weight and the set threshold [45];
therefore, the selection of different initial values may lead to
different training results and there exists sparse theoretical
guidance for determining the appropriate weight and thresh-
old. To address these problems, numerous optimization algo-
rithms have been employed and the optimized models with
the optimal parameters were used to improve the mapping
capability of BPNNs [46]. Kapanova et al. [47] proposed a
novel automated method based on a genetic algorithm (GA)
to search for BPNN architectures, which included the number
of neurons, the number of hidden layers, and the types of
synaptic connections. Taghavifar et al. [48] used a GA as an
optimization tool to improve the reorganization ability of a
BPNN. Zhu et al. [49] employed the PSO algorithm to opti-
mize the initial weights and thresholds of the BPNN. The PSO
algorithm has been used in different identification models
for optimizing disparate parameters of neural networks; the
selection of the optimization parameters should depend on
the specific conditions. For tracking the applied operators and
connections of layers of anANNmodel, a hybridmodel based
on a BPNN model and the PSO algorithm were proposed by
Hao et al. [50] to forecast the number of end-of-life vehicles.
A parallel design and application method for implementation
of the PSO-BPNN was proposed by Liu et al. [51]. However,
given the discrepancy of the input data, a model for the
identification of the behavior of surrounding vehicles still
faces significant challenges.

III. MODEL FRAMEWORK
A. FRAMEWORK DESIGN
To achieve the rapid and accurate identification of the motion
status of a distant leading vehicle, in this study, a comprehen-
sive recognition model was proposed to ensure that all lane
changes of the leading vehicles were detected. Considering
the difference in the time-to-lane crossing (TLC), the identifi-
cation model can be divided into two parts, namely, the PSO-
BPNN model and the continuous identification model of the
TLC. The lateral distance, lateral velocity, and longitudinal
velocity of the leading vehicle were deduced from naturalistic
driving data and this information was used to train the reor-
ganization model based on the BPNN. Due to the slow rate of
convergence of the BPNN and the possibility of falling into
a local minimum, in this study, we use the PSO algorithm
to optimize the initial connection weights and thresholds
of the BPNN. In the following section, we present some
brief explanations of the PSO-BPNN model. The continuous
identification model of the TLC replaced the PSO-BPNN
when the TLC of the leading vehicle was shorter than the
time window. The TLC is defined as the time required for
the leading vehicle to cross the lane from the start position.
The TLC is a key indicator of safe driving. The TLC is defined
in (1). By continuously subdividing the TLC interval, the lane
change probability within each interval can be calculated.
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FIGURE 1. The flowchart of the comprehensive identification model.

The flowchart of the comprehensive identification model is
shown in Fig. 1. The PSO-BPNN model was implemented
when the TLC of the leading vehicle was longer than 1.0 s,
whereas the continuous recognition model of the TLC was
used when the TLC was less than 1.0 s.

TLC = dis
/
speed (1)

where TLC is the lane crossing time, dis is the lateral distance
between the leading vehicle and the lane, and speed is the
lateral velocity of the leading vehicle.

B. BPNN DESIGN
The learning process of a BPNN is achieved by the forward
transmission of data and the reverse transmission of the error.
When the level of error exceeds the expected range, the BP
of the error is implemented and the network weights and
thresholds are calibrated layer by layer according to the error
value [52]. The training process commonly comprises the
following seven steps: network initialization, output value
calculation of the hidden layers, output value calculation
of the output layers, error calculation, updating of weights,
updating of thresholds, and termination judgment. The pro-
cesses are described below.

ek = Yk − Okk = 1, 2, . . . ,m (2)

wij = wij + ηHj
(
1− Hj

)
x (i)

∑m

k=1
wjkek (3)

wjk = wjk + ηHjek (4)

aj = ai + ηHj
(
1− Hj

)∑m

k=1
wjkek (5)

bk = bk + ek (6)

where ek is the forecast error,Ok is the predicted output value,
Yk is the desired output value, wij and wjk are the weight
values, aj and ai are the hidden layer thresholds, Hj is the
hidden layer output value, x(i) is the output variable, b is the
output layer threshold, and η is the learning rate.

Parameter training is the primary kernel for the establish-
ment of the BPNN model [53]–[55]. The determination of
the learning rate and the learning method directly affect the
performance of the BPNN model. The larger the confirmed
learning rate, the greater themodification value of theweights

FIGURE 2. BPNN structural diagram.

would possess. However, the weights may fluctuate and
become unstable when the output value approaches the target
value if the learning rate was too high. In this study, a variable
learning rate was used. A large value for the learning rate was
used in the initial stage to ensure the rapid convergence of
the neural network. The value of the learning rate decreased
as the output data gradually approached the target value. The
variable learning rate is defined in (7).

η(n) = ηmax − n(ηmax − ηmin)/nmax (7)

where ηmax is the maximum learning rate, ηmin is the mini-
mum learning rate, and n is the number of iterations.
The gradient correction method modifies the weights and

the thresholds in the direction of the negative gradient of the
prediction error. However, due to the lack of accumulation of
previous experience, the learning speed of this method was
relatively slow. Therefore, an additional momentum method
was used to solve the problem of the slow convergence of
the gradient correction method; the computational process is
defined as:

w (n) = w (n− 1)+ α (w (n)− w (n− 1))

+β (w (n− 1)− w (n− 2)) (8)

wherew(n),w(n-1), andw(n-2) are the weights of n iterations,
n-1 iterations, and n-2 iterations, respectively; α and β are the
momentum learning rates.

A BPNN provides an intuitive and effective approach
to determine the complex nonlinear mapping relationships
between the lane change status of the leading vehicles and
the kinematic parameters that define the driving process.
After normalization of the input parameters and principal
components analysis, the proposed model can detect the lane
change status of leading vehicles according to the data char-
acteristics within a time window. The structure of the BPNN
is shown in Fig. 2. The longitudinal velocity, lateral velocity,
and lateral distance of the leading vehicle were used as input
variables in this work. The optimal input combination was
determined by evaluating the identification accuracy of the
neural network model under different input combinations.
The different input combinations are shown in Table 1.

C. PSO-BPNN MODEL DESIGN
By searching for the optimal connection weights and thresh-
olds, the BP algorithm continuously minimizes the output
error of the trainingmodel. Since the gradient descent method

83232 VOLUME 7, 2019



C. Wang et al.: Cognitive Competence Improvement for Autonomous Vehicles

TABLE 1. Combinations of input parameters.

FIGURE 3. The flowchart of BPNN optimization based on the PSO
algorithm.

is extremely sensitive to the initial values of the connection
weights and thresholds, different initial values will lead to
different training results [56]. However, there is no rele-
vant theoretical guidance for choosing the initial connection
weights and threshold. In addition, the BPNN often falls into
a local extremum and cannot find a globally optimal solution,
whichweakens the generalization ability of the BPNNmodel.
In order to address these disadvantages of the BPNN, the PSO
algorithm was used to optimize the proposed model [57]. The
PSO algorithm is a meta-heuristic algorithm based on swarm
intelligence. The aim of the PSO algorithm is to find the best
solution by simulating the particle movements in the search
space [58]. In this study, the PSO algorithm was employed
to optimize the initial weights and thresholds of the BPNN
model. We determined the sum of weights and thresholds in
the BPNN as the vector dimension of particles; each particle
position corresponded to a set of feasible solutions of the
weights and thresholds. The variation of the particle positions
indicated the continuous updating process of the weights
and thresholds. By calculating the fitness value, the particle
position with the smallest fitness value was confirmed as the
optimal initial weights and thresholds for the BPNN. The
specific steps are described as follows and the basic flow of
the BPNN optimization based on the PSO algorithm is shown
in Fig. 3.

Step 1: PSO-BPNN initialization. The initialization
included setting the parameters of the BPNN and PSO algo-
rithm (i.e., the number of input layer nodes, hidden layer
nodes, and particles; the initial position and speed of the
particles and the vector dimension of particles). Then the con-
nection weights and thresholds in the BPNN were encoded
according to the vector dimension of the particles and the ini-
tial position and velocity of the particles. The vector dimen-
sion of the particles was obtained using (9).

D = m ∗ n+ n ∗ p+ q+ s (9)

where D is the vector dimension of the particles, m is the
number of the input layer nodes, n is the number of the hidden
layer nodes, p is the number of the output layer nodes,m∗n is
the number of the connection weights between the input layer
and the hidden layer, n∗p is the number of the connection
weights between the hidden layer and the output layer, q is
the number of the hidden layer thresholds, s is the number of
the output layer thresholds.

Step 2: Fitness function selection and fitness value calcu-
lation. The absolute error between the expected output and
predicted output of the BPNN was calculated; the fitness
function is defined in (10); each individual particle’s fitness
value was calculated.

f =
1
n

∑n

j=1
(ỹj − yj)

2 (10)

where n is the number of samples in the training set, ỹj is the
output of the BPNN, and yj is the expected output.

Step 3: Updating of the optimal value. For each particle,
if the current position possessed a smaller fitness value than
the previous individual optimal value, then the current posi-
tion was confirmed as the individual optimal value; if the
current position possessed a smaller fitness value than the
previous global optimal value, then the current position was
confirmed as the global optimal value.

Subsequently, the speed and position of the particles were
updated. The PSO algorithm simulates the foraging behavior
of birds in flight. By using local and global optimizations,
the particles are directed toward the optimal solution [59].
The particles dynamically update their speeds and positions
according to their flying experience in the solution space
and the flying state of the whole population. The updated
positions and speeds during the flying process are defined
in (11) and (12), respectively. The inertia weights were also
updated for generating new populations. In order to avoid
that the PSO algorithm falls into a local optimum, a linearly
decreasing weight method was employed to update the inertia
weight, as defined in (13).

vk+1ij = wvkij + c1r1
(
pij − xkij

)
+ c2r2

(
pgj − xkij

)
(11)

xk+1ij = xkij + v
k+1
ij (12)

w = wmax − k(wmax − wmin)/kmax (13)

where x is the position, v is the velocity, w is the inertia
weight, c1 and c2 are the acceleration coefficients, r1 and r2
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are random numbers between zero and one, pij is the optimal
position (i.e., the optimal fitness value) of the individual par-
ticle until the current population, pgj is the optimal position
(i.e., the optimal fitness value) of the global particles until the
current population,wmax is the maximum inertia weight,wmin
is the minimum inertia weight, kmax is the maximum number
of iterations.

Finally, the predetermined threshold of the optimal fitness
value was used to determine whether to end the algorithm
loop. The predetermined threshold of the optimal fitness
value indicates that the current connection weights and
thresholds can improve the convergence speed and global
optimization ability of BPNN. If the fitness values in the
current population reached the predetermined range, the posi-
tions of the global particles were determined as the initial
weights and thresholds of the BPNN model. In contrast,
the positions of the particles were updated and the fitness
values were recalculated. After the determination of the initial
weights and thresholds, the BPNNwas used to train themodel
using the conventional steps. In general, the selection of the
predetermined threshold value is directly related to the accu-
racy of the recognition model results. The PSO optimization
algorithm can be summarized in Algorithm 1.

Algorithm 1 BPNN Optimization Based on the PSO Algo-
rithm

Data: the number of the input layer nodes m, the number
of the hidden layer nodes n, the number of the
output layer nodes p, the number of the hidden
layer thresholds q, the number of the
output layer thresholds s, the acceleration
coefficients c1 and c2

Result: the initial weights and thresholds of the
BPNN model

begin
Input and initialization
While k< kmax

for i = 1 : n
vk+1ij = wvkij+c1r1

(
pij − xkij

)
+c2r2

(
pgj − xkij

)
xk+1ij = xkij + v

k+1
ij

w = wmax − k(wmax − wmin)/kmax
end
for j = 1 : n

if f (xi) > f (pi)
pi = xi

if f (pi) > f (pg)
pg = pi

end
end

IV. TRAINING DATA
Training sample establishment is a preliminary work for the
PSO-BPNN model training. In this work, we employed nat-
uralistic driving data to extract characteristic parameters of
lane change behaviors of distant preceding vehicles. By using

FIGURE 4. Components of the data collection platform.

a discrete Kalman filter, the interference in the original data
were filtered out; and dimensionality reductionwas employed
to convert the data in the high-dimensional space into data
values the low-dimensional space. The establishment of train-
ing samples and the pre-processing of input data provided
support for improving the efficiency of the recognition model
training.

A. DATA DESCRIPTION
A total of 41 experienced drivers (i.e., 36 male, 5 female)
were recruited to participate in the naturalistic driving test.
During the naturalistic driving experiments, all participants
were only informed of the initial points and destinations; no
other instructions were given. The participants could navi-
gate the host vehicle as they saw fit under the premise of
obeying the rules and ensuring driving safety. The kinematic
parameters of the leading vehicle were obtained by using the
actual vehicle test data while driving on a freeway. To achieve
our research objective to use data from an on-road test,
we developed an integrated data gathering platform incorpo-
rated in a real vehicle. The platform comprised the follow-
ing instruments and sensors: a millimeter-wave radar, GPS
system, video monitoring system, vehicle gyro, CAN bus,
and advanced warning system (AWS), among other instru-
ments. The system components are shown in Fig. 4. During
the naturalistic driving test, each participant was required to
follow his or her normal habit of navigating. The lane change
process of the leading vehicle was recorded via the video
monitoring system and the distances between the lanes and
subject vehicle were obtained by the AWS in our test vehicle.
The kinestate parameters of the preceding vehicle, such as
the lateral position in the lane, the relative velocity, and the
relative distance were synchronously obtained by the sensors
installed in our test vehicle. The collected real-time data
provided the basis for establishing the leading vehicle lane
change identification model and confirming the appropriate
time window. In order to obtain as many lane change samples
of the leading vehicles as possible, a closed two-way, 4-lane
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FIGURE 5. The initial moment of the lane change behavior of the leading
vehicle.

FIGURE 6. The termination moment of the lane change behavior of the
leading vehicle.

TABLE 2. The sectional data obtained by the sensors.

freeway was selected for the driving experiments. On account
of the heavy traffic and the limited number of lanes, more
lane change behaviors were recorded than in experiments
conducted on a 6-lane freeway.

B. DATA AND KALMAN FILTERING
Using the video monitoring system and the data from the
AWS, the initial and termination moments of the lane change
behavior of the distant leading vehicles were determined
(Figs. 5 and 6). Simultaneously, the kinestate parameters
deduced from the sensors were captured; the sectional data
are shown in Table 2. The data include time, distance between
the subject vehicle and the left lane, distance between the
subject vehicle and the right lane, velocity of the subject
vehicle, relative angle between the subject vehicle and the
leading vehicle, relative distance between the subject vehicle

FIGURE 7. Comparison of original and filtered data of the distance to the
lane.

FIGURE 8. Comparison of original and filtered data of relative velocity.

and the leading vehicle, and the relative velocity between
the subject vehicle and the leading vehicle. The actual data
collected by the millimeter-wave radar was frequently mixed
with random noise because of the random disturbances that
occurred during the measurement of the motion parameters
of the leading vehicles. Therefore, the required data must be
isolated from the original data. Given this problem, we could
not precisely determine the headway, speed, and other data
for the leading vehicles. Hence, an estimation of the data
according to the measured signals was used as an appropriate
approach. Kalman filters incorporate the concept of state
space in stochastic estimation theory and signal processing is
regarded as a linear state influenced by white noise [60], [61].
In a statistical sense, the estimated value of the Kalman
filtering is the probable value that is close to the real value.
In the present study, a discrete Kalman filter [62] was used to
filter the discrete data collected by the sensors. The results are
shown in Figs. 7 and 8. As shown in the graph, the filtered data
was smooth and the trend of the original data was preserved
completely. Consequently, the Kalman filter was a suitable
solution to the data perturbation problem.

C. REPRESENTATION PARAMETER DEDUCTION
The road curvature was calculated by the yaw rate and speed
of the test vehicle, as defined in (14).

C =
wr
v
=

1
R

(14)

where C is the road curvature, wr is the yaw rate,v is the test
vehicle speed, and R is the radius of the road curvature.
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FIGURE 9. Characterization parameters of the curve.

In Fig. 9, A is the subject vehicle, B is the leading vehicle,
RA is the radius of the road curvature of the host lane, RB is
the radius of the road curvature of the adjacent lane, dRA is
the distance between the subject vehicle and the right lane,
dLA is the distance between the subject vehicle and the left
lane, θ is the relative angle between the subject vehicle and
the leading vehicle, LAB is the relative distance between the
subject vehicle and the leading-vehicle, VAB is the relative
velocity between the subject vehicle and the leading vehicle,
L is the subject vehicle width, VA is the subject vehicle
velocity,VB is the longitudinal velocity of the leading vehicle,
VLB is the lateral velocity of the leading vehicle, dLB is the
distance from the leading vehicle to the left lane, andW is the
width of the lane. The relationship between RA and RB was
obtained by analyzing the geometric relationships in Fig. 9.
The road curvature of the test road ranged from 600 m to
1000 m and the width of the lane was 3.75 m.

R2B = R2A + L
2
AB − 2RA × LAB × cos (90− θ) (15)

The distance from the subject vehicle to the left lane is:

dLB = RA − RB − dRA −
L
2

(16)

The formula for calculating the road radius is:

RA =
VA
wr

(17)

The distance from the subject vehicle to the left lane was
deduced from (15), (16), and (17):

dLB

=
VA
wr

−

√(
VA
wr

)2

+L2AB−
2VA
wr
×LAB × cos (90− θ)−dRA−

L
2

(18)

The lateral distance fitting formula was established by
selecting the lateral distance of the continuous time point.
Then, the formula for the lateral velocity was deduced by
using the derivative of the fitting formula.

VLB = d
′

LB (19)

The longitudinal velocity was calculated by using the
relative velocity, relative angle, and subject vehicle velocity.

VB = VAB × cos θ − VA (20)

As deduced from Fig. 9:

α = 90− β = 90− (90− θ + δ) = θ − δ (21)

R2B = R2A + L
2
AB − 2RA × LAB × cos (90− θ) (22)

L2AB = R2A + R
2
B − 2RA × RB × cosδ (23)

Then, the longitudinal velocity was refined as:

VB = VAB × cos(θ − arccos

× (
VA
wr
− LAB × cos(90− θ )√

R2A + L
2
AB −

2VA
wr
× LAB × cos(90− θ )

))− VA

(24)

D. DIMENSIONALITY REDUCTION
The main purpose of dimensionality reduction is to convert
the data in the high-dimensional space into data values the
low-dimensional space [63], [64]. In general, the motion
parameters of the leading vehicle are directly transformed
into vectors, which serve as the model input. This process
might result in data redundancy. Some variable values that
are independent of the identified vehicle motion state are
included in the model, which wastes processing resources
and might affect the training model. Therefore, the train-
ing sample dimension must be minimized to improve train-
ing efficiency without losing important data. In contrast,
the scope of the longitudinal velocity, lateral velocity, and
lateral distance of the leading vehicle showed significant
discrepancies. The longitudinal velocity varied from 20 to
120 km/h, the lateral velocity varied from 0 to 4 m/s, and the
lateral distance varied from−7 to 3.5 cm. To a certain degree,
the wide range of longitudinal velocity might conceal other
data during the modeling process if the raw data were directly
utilized as inputs. In order to minimize the problems caused
by differences in dimension and magnitude, we normalized
the original data. The normalization process is shown in (25).

y = (ymax − ymin)
x − xmin

xmax + xmin
+ ymin (25)

where xmax and xmin are themaximum andminimumvalues of
the data, respectively, ymax and ymin are the mapping ranges,
which we set to [−1, 1]. The results are shown in Table 3.

Principal components analysis is a multivariate statistical
method that uses dimensionality reduction to transform mul-
tiple indicators into fewer indicators. The method ensures
that the remaining few indicators adequately contain the key
information of the original variables. The principal compo-
nents analysis is commonly used to simplify problems. In this
study, the longitudinal velocity, lateral velocity, and lateral
distance of the leading vehicle were used as variables in
the principal component analysis. The contribution rate and
cumulative contribution rate of each principal component are
shown in Fig. 10. The cumulative contribution of the first four
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TABLE 3. Normalization results.

FIGURE 10. Cumulative contribution rate of the principal components.

principal components was 97.43%. Therefore, the parameters
were expressed by the first four principal components.

V. RESULTS AND ANALYSIS
A. HIDDEN LAYER NODES OPTIMIZATION
The number of hidden layer nodes directly affects the per-
formance of the BPNN; however, at present, there exists little
theoretical guidance for the determination of the hidden layer
nodes of the BPNN. When the number of hidden layer nodes
is relatively small, the learning speed of the BPNN is fast but
the learning ability for complex problems is not strong due
to the simple structure of the model. In contrast, when the
number of hidden layer nodes is relatively high, the learning
ability is strong but the learning speed is slow due to the
complex structure of the model. Sometimes, the learning
ability decreases suddenly due to over-fitting. In order to
balance the learning speed and the learning ability of the
BPNN and to avoid over-fitting, it is necessary to optimize
the number of hidden layer nodes.

An instance analysis was accomplished for determining the
appropriate number of hidden layer nodes. The identification
accuracy rate of the BPNN model for different numbers
of hidden layer nodes was calculated using a time window
of 1.0 s and the lateral distance and lateral velocity as the input
parameters of the preceding vehicles. The number of input
nodes was determined as 4 according to the results of the nor-
malization and principal components analysis of the lateral
distance data and lateral velocity data from the naturalistic
driving test. The output of the BPNN model was the motion

FIGURE 11. The identification accuracy rate of the BPNN model with
different numbers of hidden layer nodes.

status of the preceding vehicle and the number of output
nodes was confirmed as 1. The identification accuracy rates
of the BPNN model with the number of hidden layer nodes
ranging from 5 to 30 were calculated. The results are shown
in Fig. 11. The peak value of the recognition accuracy rate
was 84% for 6, 11, and 21 hidden layer nodes, indicating that
the learning ability of the BPNN model for identifying the
lane change status of the leading vehicle the same for different
numbers of hidden layer nodes. However, the learning speeds
were slower when the number of hidden layer nodes was
11 and 21 because of discrepancies caused by the complexity
of the model structure. Therefore, we used a BPNN with
6 hidden layer nodes after comprehensive consideration of
the learning speed and learning ability.

B. BPNN MODEL
In this study, a fixed time window with an optimal length was
used to segment the data to improve the recognition accu-
racy and recognition efficiency of the proposed identification
model. The lane change status of the leading vehicles had to
be discerned before the leading vehicle crossed the lane for
the following reasons. First, abundant traffic conflicts occur
after vehicles cross lanes. Identifying the lane change status
before the vehicles cross the lanes provides a warning to elim-
inate conflicts. Second, if the leading vehicle’s distance to the
lane was equal to 0, it indicated that the leading vehicle has
crossed the lane. Therefore, discerning the lane change status
after vehicles have crossed the lanes using the identification
model is insignificant. In summary, the time window ought
to be less than the average time required for vehicles to cross
the lanes.

Based on 1170 lane change events, it was determined that
the average time required for a lane change was 7.85 s and the
average time required for a lane crossing was 2.01 s. Thus, the
upper limit of the time window was determined to be 2.0 s.
In order to improve the real-time performance of the identifi-
cation model and the accuracy, the detection time should be
as short as possible. In this study, the recognition rates of the
BPNNmodel with different input parameters were calculated
for time windows of 0.6, 0.8, 1.2, 1.4, 1.6, 1.8, and 2.0 s,
respectively. The results are shown in Table 4 and Fig. 12.
The results indicate that the identification model achieved
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TABLE 4. Identification accuracy rate for different input parameters and
different time windows.

TABLE 5. Percentage of lane crossing times longer than the disparate
time windows.

high recognition accuracy rate when the combinations of
input parameters were LD, LV, ZV and LD, LV. Considering
the recognition efficiency, we wanted the fewest number of
input parameters. Hence, LD and LV were determined as
the ultimate combination of input parameters. In this case,
the recognition accuracy of the neural network was higher
than 85% when the time windows were 1.6 and 2.0 s.

The percentages of the lane crossing times of the leading
vehicle that were longer than the disparate time windows
relative to all lane change behaviors are shown in Table 5. The
values indicate the suitability of the BPNN model. As shown
in Table 5, as the time window increased, the percentage of
lane crossing times with TLC longer than the time window
decreased. The BPNN only can predicted 74.4% of the lane
crossing times of the leading vehicles when the time window
was 1.6 s. Therefore, if only the BPNN is used, the accuracy
requirements of the recognition rate and recognition range are
not met.

C. PSO-BPNN MODEL
In this study, the PSO algorithm was used to optimize the
initial connectionweights and thresholds of the BPNNmodel.
The values of the acceleration coefficients c1 and c2 were
3 and 1, respectively. The maximum number of iterations was
set to 300 and the predetermined fitness value ranged from
0.005 to 0.015. The PSO-BPNN structure was set as 4-6-1.
Namely, the input layer had 4 nodes, the hidden layer had
6 nodes, and the output layer had 1 node. Therefore, the vector
dimension of the particles was 37, as defined in (9). The
neural network mapping was improved and the recognition
rate of the BPNN model was optimized by the PSO for
different input parameters and time windows of 0.6, 0.8, 1.2,

FIGURE 12. Identification accuracy rate for different input parameters
and different time windows.

FIGURE 13. Identification accuracy rate for different input parameters
and different time windows.

TABLE 6. Identification accuracy rate for different input parameters and
different time windows.

1.4, 1.6, 1.8, and 2.0 s. The results are shown in Table 6 and
Fig. 13.

The results in Table 4 and Table 6 indicate that the recog-
nition accuracy rate of the lane change status of the leading
vehicle by the BPNNmodel increased significantly after opti-
mization with the PSO algorithm. The identification accu-
racy rate increased from 80% to 87% for the time window
of 1.0 s and the same input parameters. The highest recogni-
tion accuracy rate was 93% for the 2.0 s time window and
the combinations of input parameters of LD, LV, and ZV.
However, the more rapidly the model detected the motion
status of the preceding vehicle, the faster the other intelligent
algorithm adjusted the motion status of the host vehicle.
As shown in Fig. 13, the recognition accuracy rate improved
as the time window increased beyond 1.0 s. After 1.0 s,
the rate of increase of the recognition accuracy was lower
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FIGURE 14. Comparison of the fitness values of two types of BPNN
models.

than the rate of decrease of the application degree with the
increase in the time window (i.e., Table 5). Although the
recognition accuracy rate still remained high for the time
windows of 1.2, 1.4, 1.6, 1.8, and 2.0 s, the application range
of the proposed model became increasingly narrow as the
timewindow increased. By synthetically considering the rela-
tionships among promptness, validity, and application range,
we determined that 1.0 s was the optimum time window.
As shown in Table 5, 98.2% of the lane crossing times of
the leading vehicle could be predicted by the neural network
model for the time window of 1.0 s and the recognition
accuracy was 87%, indicating that the accuracy requirements
were met.

The training results by comparison with the GA-BPNN
is shown in Fig. 14. The fitness value were 0.011 and
0.126 respectively for 140 iterations. The results indicated
that the PSO-BPNN reached the predetermined fitness value
before the GA-BPNN. The fitness value of the GA-BPNN
reached 0.015 at 250 iterations. The results demonstrated that
the PSO-BPNN not only resulted in higher accuracy but also
required less training time.

The receiver operating characteristic (ROC) curve was
plotted to evaluate the recognition performance of the
PSO-BPNN model because the recognition accuracy rate
does not provide information on the errors associated with the
lane changes. The ROC curve is an indicator of the detection
sensitivity and specificity of the recognition model. In the
ROC curve, the true positive (TP) represents the number
of correctly identified lane changes among all lane change
samples. The true negative (TN) represents the number of
correctly identified no lane changes among all no lane change
samples. The false positive (FP) represents the number of
incorrectly identified no lane changes among all lane change
samples. The false negative (FN) represents the number incor-
rectly identified lane changes among all no lane change sam-
ples. The recognition accuracy of the lane changes and no
lane changes are referred to as sensitivity (sen = TP

TP+FN ) and
specificity (spe = TN

TN+FP ), respectively. The horizontal and
vertical coordinates of the ROC curve represent the calculated
values of sensitivity and specificity, respectively. In general,

FIGURE 15. ROC curve.

the closer the value is to the upper left corner, the better
the performance of the model is. The model performance
was determined by the area under the ROC curve (AUC).
A large AUC indicates a high identification accuracy of the
model. In this study, the performances of the PSO-BPNN,
GA-BPNN, and SVM were evaluated using the ROC curve.
As shown in Fig. 15, the AUC was largest for the PSO-
BPNN (0.9328), followed by the GA-BPNN (0.9311) and
the SVM (0.8640). These results indicated that the proposed
PSO-BPNN model had the best recognition accuracy.

D. CONTINUOUS IDENTIFICATION MODEL OF TLC
The PSO-BPNN model did not detect the lane change status
of the leading vehicle when the time window was longer
than the TLC. Statistics have shown that 1.8% of the lane
changes of the leading vehicle were not identified before the
lane crossing occurred when using a conventional classifica-
tion model. The continuous recognition model of the TLC
was used to address the drawbacks of the neural network
model. The stationary time window was divided into five
temporal intervals: (0 s, 0.2 s), (0.2 s, 0.4 s), (0.4 s, 0.6 s),
(0.6 s, 0.8 s), and (0.8 s, 1.0 s). The frequency distribution
of the TLC in each interval was determined statistically.
Then, the lane change probability of each interval was cal-
culated. The results are shown in Table 7 and indicate that
the probability of the lane changes of the leading vehicle
was generally lower than 75%. This result was not sufficient
to determine the status using one TLC value. Each time the
TLC value was transformed, the kinestate of the leading vehi-
cle might change between lane change and no lane change.
The frequency distribution of the TLC with a continuously
decreasing trend in each interval was determined statistically.
The results are shown in Table 8. The results indicated that the
probability of lane changes of the leading vehicle continued
to increase with the decrease in the time interval after the
continuous recognition of TLC. The probability exceeded
88% in the time periods (0.4 s, 0.6 s), (0.2 s, 0.4 s), and
(0 s, 0.2 s). However, the probability for the time periods
(0.8 s, 1.0 s) and (0.6 s, 0.8 s) was still too low to identify
lane changes. The continuous recognition model of TLC was
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TABLE 7. Percentage of lane changes with first statistics.

TABLE 8. Percentage of lane changes with second statistics.

TABLE 9. Percentage of lane changes with third statistics.

used again for the low probability intervals. The distribution
is shown in Table 9. The results indicated that the probability
of lane changes of the leading vehicle continued to improve
with the decrease in the time interval after three consecutive
evaluations of the TLC. The probability for the time periods
(0.8 s, 1.0 s) and (0.6 s, 0.8 s) surpassed 88% and thus this
method was suitable to detect the lane changes.

In summary, the continuous recognition model of the TLC
was applied to identify the lane change status of the leading
vehicle with a TLC of less than 1.0 s. An additional estimation
of the TLC was performed in the time periods (0.4 s, 0.6 s),
(0.2 s, 0.4 s), and (0 s, 0.2 s). The lane change status was
confirmed by the continuous decline in TLC. In time periods
(0.8 s, 1.0 s) and (0.6 s, 0.8 s), two additional assessments
of TLC were executed and the lane change status was deter-
mined by the continuous decline of the TLC. The recognition
accuracy of this process for determining the lane change
status of the leading vehicle was higher than 88% for the TLC
of less than 1.0 s. By using the proposed models, almost all of
the lane changes of the leading vehicles were detected before
the vehicles crossed the lane.

VI. CONCLUSIONS
The recognition of lane change status of a distant leading
vehicle is significant to improve the cognitive competence of
autonomous driving systems. In this study, a comprehensive
identification model for determining the lane change status
of a leading vehicle was established by analyzing the lateral
distance and lateral velocity of the leading vehicles using
millimeter-wave radar data obtained in a naturalistic driving
test. Due to the differences in TLC, the comprehensive iden-
tification model comprises a PSO-BPNNmodel and a contin-
uous identification model for the TLC. Based on 1170 groups
of lane change events recorded during the naturalistic on-
road experiment, it was determined that 98.2% of the lane
crossing times of the leading vehicle was longer than 1.0 s.
Only 1.8% of the lane changes of the leading vehicle were

not detected by the BPNN model when the time window was
1.0 s. The simulation results indicated that the recognition
accuracy rate of the BPNNmodel increased from 80% to 87%
after PSO optimization at TLCs longer than 1.0 s. Therefore,
by considering the relationships among promptness, validity,
and application range, we used 1.0 s as the optimal time
window. The continuous recognition model of the TLC was
used to address the drawbacks of the PSO-BPNN. When
the TLC was shorter than 1.0 s, the recognition accuracy
of the proposed model for the lane changes of the leading
vehicle was higher than 88% due to the use of the contin-
uous TLC model. The results of this study indicate that the
implementation of the proposed comprehensive identification
model for detecting the lane change status of leading vehicles
significantly increased the identification accuracy, thereby
providing a basis for improving the performance of intelli-
gent perception systems. At present, the proposed model is
only suitable for conventional lane change identification on
straight lanes or curve lanes of expressways. A future study
will consider complex lane change behaviors and different
driving styles to enhance the fault tolerance of the proposed
identification model.
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