
Received May 29, 2019, accepted June 19, 2019, date of publication June 24, 2019, date of current version August 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2924491

Sequential Minimax Search for Multi-Layer
Gene Grouping
WENTING WANG 1,2, XINGXING ZHOU3, FUZHONG CHEN4, AND BEISHAO CAO5
1College of Computer Science and Software Engineering, Big Data Institute, Shenzhen University, Shenzhen 518060, China
2National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518060, China
3Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
4School of International Trade and Economics, University of International Business and Economics, Beijing 100029, China
5Department of mathematics, Sun Yat-sen University, Guangzhou 510275, China

Corresponding author: Xingxing Zhou (zhouxingxing0808@163.com)

This work was supported in part by the Guangzhou Science and Technology Plan Project ‘‘Guangdong Provincial Modern Agri-tech
Transfer and Demonstration Center Construction’’ under Grant 201806040001, and in part by the Guangdong Academy of Agricultural
Sciences Dean Fund Project ‘‘Research on the Integration of Key Elements in the Construction of Agri-tech Transformation Service
Platform’’ under Grant 201829.

ABSTRACT Many areas of exploratory data analysis need to deal with high-dimensional data sets. Some real
life data like human gene have an inherent structure of hierarchy, which embeds multi-layer feature groups.
In this paper, we propose an algorithm to search for the number of feature groups in high-dimensional data
by sequential minimax method and detect the hierarchical structure of high-dimensional data. Several proper
numbers of feature grouping can be discovered. The feature grouping and group weights are investigated for
each group number. After the comparison of feature groupings, the multi-layer structure of feature groups is
detected. The latent feature group learning (LFGL) algorithm is proposed to evaluate the effectiveness of the
number of feature groups and provide a method of subspace clustering. In the experiments on several gene
data sets, the proposed algorithm outstands several representative algorithms.

INDEX TERMS Machine learning, evolutionary computing, feature grouping, high-dimensional data
analysis, gene grouping, knowledge transfer.

I. INTRODUCTION
Analysis of high-dimensional data is a challenging problem
in machine learning and artificial intelligence. Thousands of
features in the objects cause a great complexity when using
the classic tools to cluster and analyze the data [1]. High-
dimensional data often contain many redundant, irrelevant
and noise features, which affects the learning of the data.
Gene data, as one typical kind of high-dimensional data, has
drawn attention from different disciplines [2]. The research
on how the gene influence different kinds of diseases is
expected to start from a proper division of gene groups
[3]–[5]. However, the underlying distribution and structure of
the features is invisible, which causes dilemma for the further
understanding of gene. In the area of machine learning and
bioinformatics, researchers attempt to transfer the problem of
feature grouping to the clustering of the objects. By observing
the objects in the same clusters, the important feature groups
they share are identified.

The associate editor coordinating the review of this manuscript and
approving it for publication was Quan Zou.

In the past decades, subspace clustering algorithms are
discovered to be one of the most effective method to han-
dle high-dimensional data like the gene data. They do not
cluster data in the original space, instead, they map the data
into subspace where the clustering is easier [6]. Among the
various subspace clustering methods, soft subspace cluster-
ing is an important technique. It assigns weights to indi-
vidual features and uses the weights to identify important
features from which the subspace structures of clusters can
be discovered [7], [8]. For instance, the feature grouping
weighting k-means algorithm FG-k-means was proposed for
high-dimensional data [9]. In this algorithm, the features
are divided into a small set of feature groups, each being
treated as a grouping feature in the low dimensional space
of feature groups. The high-dimensional data is clustered
on group features and the clusters in different subspaces
of group features are discovered by assigning weights to
group features [10]. Because the group features generalize the
information of individual features in high-dimensional data,
the FG-k-means algorithm often performs better than the
clustering algorithms that cluster data on individual features.
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In the past decade, research in this area have been developed
significantly [8]–[25].

However, the research in this area are mostly based on the
prior knowledge of the number of feature groups and feature
structures. Due to the high cost and technical difficulties to
obtain the real information of feature structures, the num-
ber of features are usually set randomly in the clustering
algorithms. The natural structure of high-dimensional data
can easily get misunderstood and the clustering algorithm
becomes inaccurate and instable.

In this paper, we propose a method to determine the num-
ber of feature groups and feature structures by the sequen-
tial minimax search. An unsupervised clustering algorithm
named latent feature group learning (LFGL) is established to
evaluate the feature grouping and provide clustering results
for gene data. The algorithm learns the latent feature groups in
the process of subspace clustering of high-dimensional data.
Since the best number of feature groups is not unique for
some data sets. We compare the feature groupings based on
several different groups numbers and investigate the hierar-
chical structure in the gene data.

Experiments were conducted on disease data sets, which
contain high-dimensional gene features. In the experiments
on several gene data sets, the proposed algorithm outstands
several representative algorithms.

The remainder of this paper is organized as follows.
In Section 2, we review some related work. In Section 3,
we present the details of sequential minimax search.
In Section 4, we propose the algorithm to determine the
best numbers of feature groups. Section 5 presents the latent
feature group learning(LFGL) model for projection of high-
dimensional data to a low-dimensional space. The experimen-
tal results on several real world data sets are discussed in
Section 6. The conclusions are drawn in Section 7.

II. RELATED WORK
The technology of clustering has many applications in gene
data expression [26]–[28] and gene sequence [29]. The
research on both proteomics and metabolomics are devel-
oped [30], as well as on the context of protein comparison
and structure prediction [31], [32]. However, the studies in
this kind are usually rely on the class symbol of the clusters.
For some data, it is difficult to obtain the symbols, where the
unsupervised are employed.

In the past decade, soft subspace clustering has
been an important research topic in cluster analysis
[8]–[15], [17]–[21], [24], [25].

Huang et al. [19] proposed the W-k-means clustering
algorithm which not only provide the clustering but the
weights of the clusters as well. Some similar algorithms were
proposed [8], [20]

Chen’s algorithm [9], [10] proposed a two-level weighting
method, which enhance the ability to select the important
features and feature groups among the high-dimensional fea-
tures. Later, Cai et al. [33] used the FG-k-means for text
clustering. They first used the topic model LDA to partition

the words into several groups and then used FG-k-means to
cluster text data. The experimental results showed that the
word grouping method has improved the clustering perfor-
mance on text data.

However, the research in this area are mostly based on the
prior knowledge of the number of feature groups and feature
structures. The number of feature groups t in a cluster is
a hyperparameter whose setting is affected by the subspace
dimension of the cluster. For most of the studies, an estima-
tion of the upper bound of t is

t ≤ m/fmax (1)

where fmax denotes the maximum number of determinant
features of a cluster. The estimation in (1) is based on the
assumption that the determinant features of a cluster can be
collected as one of the t groups automatically by the algo-
rithms listed. The natural structure of high-dimensional data
can easily get misunderstood and the clustering algorithm
becomes inaccurate and instable. In this paper, we will learn
the number of feature groups and the clustering of data sets
at the same time.

III. SEQUENTIAL MINIMAX SEARCH
High-dimensional data exist in the structure of groups,
or even in the form of hierarchy. More than one proper value
of t may exist. It is almost impossible to learn the proper
group numbers by violence search. Hence, we intend to find a
method to search for more than one feature grouping in a data
set analytically. In this section, we introduce the sequential
minimal search, which provide a method to search for the
number of feature groups.

The method was built to search for an interval of the
parameter, or a strategy to optimize a problem when the
function is not given [34], [35]. Take the number of feature
group t for instance, the unknown function to solve is the
best way to group the high-dimensional features and calculate
any possible machine learning process f (t) afterwards. The
cost of computation is huge if we consider it as a discrete
problem and search for the solution of any t given the feature
numberN . Instead, we look for an intervalDwith length L(D)
where the proper value of t is contained.

First of all, we build several nonrandomized strategy sets
in the form of S = {t1, ϕ2, · · · , ϕn, s, t}. In the strategy,
the number t1 is any random value t ∈ [1,N ], functions
ϕ2, · · · , ϕn are the strategies to looking for the value of
t2, · · · , tn. For instance, t2 = g(t1, ϕ2, f (t1)). The starting
point of the interval s and the end point t are determined
eventually by the values of t1, · · · , tn.

To solve an unknown problem, we will build a class of
strategy set SN to find an S∗N ∈ SN such that

sup
f ∈f

L(D(f , S∗N )) ≤ inf
s∈SN

sup
f ∈f

L(D(f , SN ))+ ε (2)

where we can find at least one proper searching strategy ϕ∗

and consequently determine the best value for t .
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FIGURE 1. Feature mapping model of LFGL.

Usually, the n-th Fibonacci number Un is used to build
the sets of ϕn. A possible S∗N may provide the strategy as
follows: x1 = UN−1/UN+1, x2 = 1x1 = UN /UN+1. Since
L(D(f , S∗N )) ≤ ε + l/UN+1, there would exist a procedure
S ∈ Sn+1 for which

sup
f ∈f

L(D(f , S)) < 1/Un+2 (3)

We may suppose that, under S, ϕ can be proved as a con-
stant [34], [35]. Here, an empirical value is used as follows:
t2 = l − t1 = −l/2+ 51/2/2 = 0.618 = ϕ. Then, we do not
need to determine the observation of t1 randomly. Instead,
we specify the value after several values are observed. In this
way, the best strategy set S∗N can be found, where more than
one value of t are provided.
In the next several sections, we will use the method to find

the values of t and build feature groups. We intend to build
relations between the feature groups with different values of
t and look for the hierarchy structure in the high-dimensional
gene data.

IV. DETERMINE THE NUMBER OF FEATURE GROUPS
Although many features are used to describe data in high-
dimensional spaces, only a few of them are needed to dis-
tinguish a specific cluster from others. Thus, the subspace
clustering algorithms [8], [19], [20], [36] have obtained better
performance than that of the general k-means algorithm.
As the number of dimension increases, the strategy of search-
ing the subspace of determinant features in the entire space of
features often leads to suboptimal results, due to many noise
features [10]. Meanwhile, it makes the performance of the
subspace clustering deteriorated.

To solve the above problem, we map the high-dimensional
features into low latent feature grouping space. Features
are not independent in high-dimensional spaces. Rather,
they gather together into nearly mutually exclusive groups.

For some data sets, they exist in the hierarchy structure as
illustrated in Fig.1.

However, the research in this area are mostly based on
the prior knowledge of the number of feature groups, which
may cause misunderstanding of the natural structure of the
data. In this section, we search for the best number of groups
t in high-dimensional data. In this paper, we propose an
algorithm to determine the number of feature groups in high-
dimensional data as in Algorithm 1.

Algorithm 1 Determine the Number of Feature Groups

Input: The data set X ∈ Rn×m, where n is the number
of objects and m is the number of features; The set of
unlabeled samples for current batch, Un; The searching
parameter ϕ;

Output: The number of feature groups, t;
1: Given m, build a set T = {t1, t2, · · · , tl}, where t1 = m,
t2 = [ϕt1] · · · till tl becomes a single digit (the
symbol [ ] means trunc);

2: For each value ti in T , build 20 chromosomes (in section
4.1) using the Darwinian method;

3: Evaluate all of the chromosomes by Davies Bouldin
Index calculated from the latent feature grouping
clustering algorithm (in section 4.1 and 4.2);

4: Keep the best half and build new generations by crossover
and mutation between chromosomes with same number
of feature groups ti. If the number of chromosomes are
not enough for the process, no new generation will be
made;

5: Repeat step 3-4 for 10 times and find the ti with the
highest accuracy or rand index in the last round, t = ti;

6: Record the number of chromosomes from different ti in
every loop;

7: return t;

V. LATENT FEATURE GROUP LEARNING(LFGL)
In this section, we propose an unsupervised clustering
algorithm named latent feature group learning(LFGL). The
algorithm is embedded in the process to determine the num-
ber of feature groups and provide a proper result of clustering
eventually.

A. FEATURE GROUP WEIGHTING
In this part of study, we build the latent feature grouping
model as in Fig.2. We define a mapping g from the data space
Rm to the latent space Rt . The first layer in Fig.1 shows
the features in a data set Xi,j ∈ Rn×m. This set of features
A = {x1, x2, · · · , xm} are mapped into t groups
{g1, g2, · · · , gt } in the middle layer. The weights are kept in
the feature-group matrix V ∈ Rt×m

+ . Then, the feature groups
are weighted with W ∈ Rt

+ to result in the weighted group
values g(x)1, g(x)2, · · · , g(x)t . The process is based on the
observation that not all groups are useful to identify a specific
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FIGURE 2. Feature mapping model of LFGL.

cluster and different clusters should be identified by different
sets of groups.

Therefore, we delegate the task to the vector-value func-
tion g, which can be defined as needed for different sets of
concerns. We set V = V0 ◦ Vl to separate the partition and
weights of feature groups into two matrices. Here, we define
the linear mapping g as

g(x) = Wl(V0 ◦ Vl)xT . (4)

The none zero elements in Vl are the same as those in
V0. Vls are initialized and optimized on the constraint of
VlV T

l = I so we have

6∑
j=1

v2i,j = 1, for 1 ≤ i ≤ 3 (5)

Since Vl = V0 ◦ Vl , the feature group structure V0 and
the individual feature weights Vl in each cluster can be opti-
mized separately. In the current feature grouping weighting
algorithms such as FG-k-means, V0 is supposed to be known
in advance and Vls are optimized in the clustering process.
However, V0 is not known in many real world data sets.
Therefore, the current algorithms are not able to learn the
feature grouping structure automatically. Here, we propose
the first method to learn the feature grouping structure auto-
matically in the clustering process.

B. REVISED FG-K-MEANS
The objective function of the revised FG-k-means [9] is
defined as follows:

P(U ,Z ,V ,W ) =
k∑
l=1

[
n∑
i=1

T∑
t=1

∑
j∈Gt

hi,lwl,tvl,jd(xi,j, zl,j)

+ λ

T∑
t=1

wl,t log(wl,t ) (6)

subject to 
∑k

l=1 hi,l = 1, i = 1, . . . , n∑
wl = 1, l = 1, . . . , k

vlvTl = I , l = 1, . . . , k

where X = {xi | xi ∈ Rm
}
n
i=1 is the set of n objects each

with m features, H = {hi,l | hi,l ∈ {0, 1}}
n,k
i=1,l=1 is the set

of indicators of memberships of k objects in clusters, and
Z = {zl | zl ∈ Rm

}
k
l=1 is the set of k cluster centers.

We revise the original FG-k-means by setting the orthog-
onal constraint on the matrices of the individual feature
weights Vl .

We minimize the cost function Eq.(10) by iteratively
solving the following four minimization problems. In each
problem, we fix three parameters among Z ,V ,W ,U , and
optimize the last one eventually.

The optimization of U is solved by:{
ui,l = 1, if Dl ≤ Ds for 1 ≤ s ≤ k;
ui,s = 0, otherwise.

where Ds =
∑T

t=1 ws,t
∑

j∈Gt vs,jd(xi,j, zs,j).
The optimization of Z is solved by updating the centers of

the clusters by Algorithm 1.

Algorithm 2 Cluster Center Updating
Input: U , W , V ;
Output: The updating cluster centers Z ;
1: Generate a similaritymatrix S ∈ Rn∗n, where si,j = sj,i =
ui,jd(xi, xj);

2: Generate a distance sum matrix Ssum ∈ R1∗n, where si =∑n
j=1 sj,i;

3: Generate a density matrix D ∈ R1∗n, find the smallest
value in every column m of D ∗ U and consider the
corresponding object as the center of the cluster m for
m = 1, 2, · · · , k .

4: return Z ;

The optimization of W is solved by Theorem 1:
Theorem 1 Let U = Û , Z = Ẑ , and V = V̂ be fixed
and λ > 0, P(Û , Ẑ , V̂ ,W ) is minimized iff

wl,t = exp
−El,j
λ

/
∑
j∈Gt

exp
−El,j
λ

(7)

where

Dl,t =
n∑
i=1

ûi,l v̂l,jd(xi,j, ẑl,j) (8)

Proof: Given U = Û , Z = Ẑ and V = V̂ ,
we minimize the objective function with respect to W . Since
there exist a set of k × T constraints

∑T
t=1 wl,t = 1,

we form the Lagrangian by isolating the terms which contain
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{wl,1,wl,2, · · · ,wl,t } and adding the appropriate Lagrangian
multipliers as

L{wl,1,wl,2,··· ,wl,T } =
T∑
t=1

[wl,tDl,t

+ λ

T∑
t=1

∑
j∈Gt

wl,t logwl,tvl,j log vl,j

+ γl,t (
∑
j∈Gt

wl,t − 1)] (9)

where Dl,t is a constant in the t-th feature group on the l-th
cluster for fixed U = Û , Z = Ẑ and V = V̂ , and calculated
before.

By setting the gradient of L{wl,1,wl,2,··· ,wl,T } with respect
to γ and wl,t to zero, we obtain

∂L{wl,1,wl,2,··· ,wl,T }
∂γ

=

T∑
t=1

wl,t − 1 = 0 (10)

and
∂L{wl,1,wl,2,··· ,wl,T }

∂wl,t
= Dl,t

+ λ
∑
j∈Gt

vl,j log vl,j(1+ logwl,t )+ γ = 0 (11)

where t is the index of the feature group which the j-th feature
is assigned to.

Then, we obtain

wl,t = exp
−Dl,t
λ

/

T∑
t=1

exp
−Dl,t
λ

(12)

The optimization of V is solved as follows.
Because of the additivity of the objective function (10),

thematrixW can be divided into k subproblems for k clusters,
respectively. Let

Ql = diag(wl)T diag(wl) and

qi,l = hi,l(xi − zl), (13)

the lth subproblem of the original problem can be written as

min
V∈Rt×m+

n∑
i=1

qTi,lV
T
l QlVlqi,l

s.t.

subjectto VlV T
l = I . (14)

The subproblem (21) has nonnegative and orthogonal
constraints simultaneously on the matrix Vl , which makes
the problem NP hard to solve directly. The methods
used here are analogous to that of non-negative matrix
factorization (NMF).

We replace the orthogonal constraint with a F-norm
measurement of orthogonality as the relaxation, that is

min
V∈Rt×m+

n∑
i=1

qTi,lV
TQlVqi,l +

η

2
(VV T

− I )2F , (15)

where η ≥ 0 is a parameter to control the orthogonality of V
explicitly. The Lagrangian of (22) is

L(V ,3)=
n∑
i=1

qTi,lV
TQlVqi,l+

η

2
(VV T

−I )2F−tr(3V
T ),

(16)

where 3 is the Lagrange multiplier for the constraint
V ∈ Rt×m

+ . By ∇VL = 0, we have

2QVSST + 2η(VV T
− I )V −3 = 0, (17)

where S = [q1,l, q2,l, . . . , qn,l] ∈ Rm×n. According to the
KKT complementary condition on [V ]i,j ≥ 0, by making a
Hadamard product with V on both sides of Eq.(24), we obtain

(QVSST + η(VV T
− I )V ) ◦ V = 0. (18)

The multiplicative updating rule for Vl is derived as

Vi,j← Vi,j
[QV (SST )− + ηV ]i,j

[QV (SST )+ + ηVV TV ]i,j
, (19)

where η is a parameter to control the orthogonality among
different rows of V , ()+ and ()− are the operators to get the
positive and negative parts of the input matrix, respectively,
i.e.,

[(A)+]i,j =

{
[A]i,j if [A]i,j > 0
0 otherwise.

(20)

[(A)−]i,j =

{
|[A]i,j]| if [A]i,j < 0
0 otherwise.

(21)

C. EVOLUTIONARY METHOD TO SELECT THE BEST
FEATURE GROUPING STRUCTURE V0
The Darwinian evolutionary process [37] is used to search for
the best feature grouping structure V0. In this process, the fea-
ture grouping structures V0 are encoded as chromosomes and
the revised FG-k-means is used as the fitness function to
evaluate the chromosomes. The best V0 is selected through
evolutions of generations. To our knowledge, this is the first
attempt to use the evolutionary process to search for the best
feature grouping structure from high-dimensional data.

We first present a classical evolutionary method where
the population looks for the best grouping from the set
of features. Each individual chromosome encodes a feature
grouping structure V0. The chromosome Ai,g of the ith indi-
vidual in the gth generation is defined as

Ai,g = (V i,g
1 , · · · ,V i,g

k , · · · ,V i,g
m ) (22)

where Ai,g is a binary sequence of length t , V i,g
k is the kth

column of the matrix V0 andm is the number of features in the
data set. For example, a partition of 6 features into 3 groups
is specified in the partition matrix V0 as follows.

V0 =


A1 A2 A3 A4 A5 A6

G1 1 1 0 0 0 0
G2 0 0 0 1 0 1
G3 0 0 1 0 1 0

 (23)
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where the rows of V0 represent the feature groups and the ele-
ment 1 in each column indicates the feature group the feature
is assigned to. The matrix V0 is equivalent to the chromosome
Ai,g as follows:

Ai,g = {(1, 0, 0), (1, 0, 0), (0, 0, 1), (0, 1, 0),

(0, 0, 1), (0, 1, 0)} (24)

We can see that each binary sequence V i,g
k has only one

element as 1 and the rest as 0. This is a constraint on the
structure of chromosomes. To start the evolutionary process,
20 chromosomes are generated randomly as the first gen-
eration of individuals. To generate the binary sequences for
each chromosome, one position is randomly selected from t
possible positions, and is set as value 1. The rest t-1 positions
are set as 0.

After all chromosomes are initialized, they are evaluated
by the revised FG-k-means algorithm with the input data
set. From each chromosome, the matrix V0 is constructed.
Matrix Vl is initialized by solving VlV T

l = I . Since the
solutions are not unique, different initial Vls for different
clusters are initialized. Then, the initial Vls are obtained
by Vl = V0 ◦ Vl .
The initial feature group weights and initial cluster cen-

ters are generated and selected randomly. The number of
clusters k is given. The revised FG-k-means algorithm is
executed on the input data set once for each chromosome
to produce one clustering result. The DBI (Davies Bouldin
Index) is used to evaluate the clustering result and score the
chromosome.

After all chromosomes are scored, the genetic operations
like selection, crossover and mutation are applied to the
chromosomes to produce new individual chromosomes for
the next generation as follows:

10 strongest chromosomes are selected according to the
scores. The crossover is performed in the following steps:
randomly divide the 10 chromosomes into 5 pairs. For each
pair of chromosome i and chromosome j, the corresponding
binary sequenceV i,g

k andV j,g
k are compared. If two sequences

are same, the sequence is copied as the new generation of
V s,g+1
k . For the remaining pairs of different binary sequences,

we randomly select one sequence from one chromosome to
replace the corresponding sequence of another chromosome
by the probability αk ∈ [0, 1]. Finally, we encode V0 as a
new chromosome in the next generation. The rule to generate
V s,g+1
k is defined as follows

V s,g+1
k =

{
V i,g
k if V i,g

k = V j,g
k or αk ≥ 0.5

V j,g
k otherwise.

(25)

where αk is randomly generated for each V s,g+1
k .

For the process of mutation, we randomly choose
5 chromosomes from the selected 10 chromosomes. For
each chromosome Ai,g, we generate a random new chromo-
some Arandk = (V rand

1 , · · · ,V rand
k , · · · ,V rand

m ). The rule to

generate V i,g+1
k is

V i,g+1
k =

{
V i,g
k if αk ≥ 0.5
V rand
k otherwise.

(26)

where αk is randomly generated for each V i,g+1
k .

In this way, we generate 10 new chromosomes and com-
bine them with the 10 strongest chromosomes to form a
new population for exploration and exploitation in the next
generation of evolution.

D. LFGL ALGORITHM
The process of learning the latent feature grouping struc-
ture V0, the individual feature weights, the feature group
weights and a chromosome score from the input data set con-
sist of three stages. The initialization stage generates the first
generation of 20 chromosomes representing 20 initial V0s.
The second stage uses the revised FG-k-means algorithm
to score the 20 chromosomes. The third stage selects the
10 strongest chromosomes according to the scores and per-
form the genetic operations on the selected chromosomes
to produce the new generation of chromosomes for evolu-
tion. This process continues until the termination criterion is
met. The LFGL algorithm implements the evolution process
in Algorithm 2.

Algorithm 3 LFGL
Input: The dataset X , the number of clusters k , two positive

parameters λ, η, the number of feature groups t;
Output: Local optimal values ofH, Z , V , W;
1: Initialize 20 chromosomes representing 20 different pos-

sibilities of feature grouping;
2: For each chromosome, we initializeW by sampling posi-

tive values [wl]i ∼ N (1, 0.01), then normalize wl so that
1Twl = 1;

3: Initialize V by the algorithm in Equation (27) and (28) to
build the V matrix, then normalize Vl so that the `2-norm
of each row Vl of is 1;

4: Randomly choose k cluster centers Z0;
5: Update H t+1, Z t+1, W t+1 and V t+1 respectively;
6: The objective function P obtains its local minimum

value, then update V t+1 and go back to the step 9;
7: Calculate the BIC of the 20 clustering results from 20

chromosomes, choose the best 10 ones and make 10 new
chromosomes by crossover and mutation in Section 4.4.

8: Repeat until ten times and find the best solution of clus-
tering.

VI. EXPERIMENT AND ANALYSIS
Nine real world high-dimensional data sets were used in the
experiments to evaluate the algorithm 2. Seven genetic data
sets were downloaded from http : //archive.ics.uci.edu/ml/
datasets.html, and the other two data sets were obtained
from http : //www.escience.cn/people/fpnie/papers.html.
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FIGURE 3. The Davies Bouldin Index values based on different numbers of gene groups in 9 data sets.
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TABLE 1. Dataset description.

The common characteristics of these data sets are small num-
bers of objects with large numbers of features. The details of
the data sets are listed in Table.1.

A. THE EVALUATION OF GROUP NUMBERS
We use two measures to evaluate the number of feature
groups: the Davies Bouldin Index and the Dunn Index, both
of which calculate the effectiveness of clustering without the
participation of real classes of the data.

Davies Bouldin Index is defined as:

Si = {
1
Ti

Ti∑
j=1

|Xj − Ai|q}1/q (27)

whereXj is the jth member in ith cluster andAi is the center. Ti
is the number of members in the ith cluster. We use q = 1 in
this paper to indicate the mean value of the distances from all
members to their center in one cluster. The DBI is expected
to be high to represent the compactness of one cluster.

Dunn Index is defined as:

DIm =
min1≤i<j≤m δ(Ci,Cj)

max1≤k≤m1k
(28)

where δ(Ci,Cj) is this inter-cluster distance metric, between
clusters Ci and Cj.
The average value and the best value of the Davies Bouldin

Index are presented in Fig.3. We also record the Davies
Bouldin Index and Dunn Index in Table.2. For most of the
data sets, we observe fluctuations of the two values during
the decrease of the group number t . The high values indicate
the good partition of the data set. It is worth investigat-
ing the relations between the groupings of the best several
choices of t .

B. HIERARCHICAL STRUCTURE OF
HIGH-DIMENSIONAL DATA
In this section, we compare the groupings of different group
number t and discover the overlap between the good group-
ings. In table 3, we record the rates of overlaps for the
9 data sets, which may provide hierarchical structures in the
following investigation.

C. CLUSTERING
We have tested the latent feature grouping learning (LFGL)
algorithm on several data sets in high dimensions. The results

TABLE 2. The DBI and DI of the data set.

TABLE 3. The rate of overlaps between the feature structures.

are compared with other five popular clustering algorithms.
In this section, we present the experiments and demonstrate
the results of the LFGL algorithm in comparison with those
of five existing algorithms: Kmeans, TWKM, EWKM, LAC
and the original FG-k-means.
Each algorithm was run on each data set for 100 times to

produce 100 results. The average value of the measures of
the 100 results on each data set by an algorithm is used as the
measure of the algorithm. We use Rand Index and Accuracy
to measure the clustering algorithms.

The number of clusters k was given as the number of
classes in the data sets for all algorithms. For the LFGL algo-
rithm, the two parameters λ and η, included in the objective
function Eq.(6) and the subproblem (22), were set as λ = 1
and η = 1 for all data sets. Since the LFGL algorithm is used
to measure the effectiveness of the feature grouping, we will
not investigate in the optimization of the two parameters in
this paper.

The clustering results of the 9 Genetic data are shown
in Table 4. From the results, we can see that LFGL out-
performed all other five clustering algorithms on most data
sets. If we consider all clustering results, LFGL significantly
outperformed all other five clustering algorithms on almost
all data sets. On other data sets, LFGL produced similar
results as the other five clustering algorithms. If we consider
the 10 best clustering results by the five measures, we can
see that LFGL significantly outperformed all five algorithms
on almost all data sets. These results show that LFGL is
effective in clustering high-dimensional data. The algorithm
LFGL is established particularly with a target on the Genetic
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TABLE 4. Summary of clustering results by six clustering algorithms.

data sets to investigate the relations between human genes and
diseases.

VII. CONCLUSIONS
In this paper, we propose an algorithm to search for the
number of feature groups in human gene by sequential min-
imax method. Afterwards, the feature grouping and group
weights are investigated from the high-dimensional gene and
text data. The latent feature group learning (LFGL) algorithm
is proposed to evaluate the effectiveness of the number of
feature groups and provide a method of subspace clustering.
When the several proper feature groupings are determined,
we compare the groupings and record the overlaps between
them. Therefore, the multi-layer groupings are discovered,
which form a hierarchy structure of the gene data. The
weights of the features and feature groups in every layer are
calculated too. Meanwhile, the clustering results provided by
LFGL outstands some representative algorithms. The future
work will focus on how to use the hierarchy structure to
investigate the relations between gene data and diseases.
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