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ABSTRACT In this paper, a novel multilayer hidden conditional random fields (MHCRFs)-based cervical
histopathology image classification (CHIC) model is proposed to classify well, moderate and poorly
differentiation stages of cervical cancer using a weakly supervised learning strategy. First, the color, texture,
and deep learning features are extracted to represent the histopathological image patches. Then, based on
the extracted features, artificial neural network, support vector machine, and random forest classifiers are
designed to calculate the patch-level classification probabilities. Third, effective classifiers are selected
to generate unary and binary potentials. At last, using the generated potentials, the final image-level
classification results are predicted by ourMHCRFmodel, and an overall accuracy around 77.32% is obtained
on six practical cervical histopathological image datasets with more than 600 immunohistochemical (IHC)
stained samples. Among the six test accuracies, the highest reaches 88%. Furthermore, we also test our
MHCRF method with a gastric hematoxylin-eosin (HE) stained histopathological image dataset including
200 images for an extended experiment, and achieve an accuracy of 93%.

INDEX TERMS Cervical cancer, conditional random fields, deep learning, feature extraction, histopatho-
logical image, weakly supervised learning.

I. INTRODUCTION
Among females, cervical cancer ranks fourth for both inci-
dence and mortality. In 2018, the number of new cases of cer-
vical cancer is 569847 in worldwide, accounting for 3.2% of
all new cancer cases; the number of cervical cancer deaths is
311365, accounting for 3.3% of all cancer deaths [1]. In all of
the 185 countries surveyed, the incidence of cervical cancer
is the highest among women in 28 countries, and the number
of countries with the highest mortality rate reaches 42 [1],
[2]. Hence, the study of cervical cancer is very important and
attracts a lot of attention from different scientific fields.

In recent years,Machine Learning (ML) plays a more and
more important role in the computer-aided diagnosis (CAD)
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of cervical cancer. In terms ofCervical Histopathology Image
Classification (CHIC), a variety of ML methods are devel-
oped and applied to image segmentation, feature extraction
and classification tasks. From decision trees to Support Vec-
tor Machines (SVMs), from classical Artificial Neural Net-
works (ANNs) to complex Deep Learning (DL), the ML
methods are constantly updatedwith the development of tech-
nology in the CHIC field. However, the existing approaches
usually focus on individual characteristics and properties,
such as color, shape or texture features, without a strat-
egy to describe the integral information. Therefore, some
advanced methods are proposed to integrate these individ-
ual existing methods to obtain an even better performance.
Especially, because Conditional Random Fields (CRFs) can
characterize the spatial relationship of images, they are
effective and robust methods for analysing the contents
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FIGURE 1. The workflow of the proposed weakly supervised MHCRF method. The blue boxes denote the training process, the green box
represents the MHCRF model, and the yellow box shows the test process.

of complex images. Whilst, due to medical doctors usu-
ally are too busy to support a large number of ground
truth images for a strongly supervised learning process,
an effective weakly supervised learning approach is expected.
Hence, we propose a weakly supervised Multilayer Hid-
den Conditional Random Field (MHCRF) framework to
address the CHIC problem, where the cervical histopatholog-
ical images are mixed with the complicated nucleus, inter-
stitial and tissue fluid. As far as we know, in the CHIC
field, MHCRFs are not used before our work. Further-
more, because cellular visual features in a histopathological
image are observed on patch scales, training a patch-level
classifier has good performance as training an image-level
classifier [3].

The workflow of the proposed MHCRF model is shown
in Fig. 1, and the details are introduced in Sec. III:
• Step 1 (Data Input): Input cervical histopathological
digital images of training set and validation set to the
proposed MHCRF framework for a Weakly Supervised
Learning process.

• Step 2 (Image Pre-processing): Image meshing is used
as a method of image pre-processing to support the
next feature extraction step. We unify the image size to
1280 × 960 pixels, then mesh the image into patches
(100× 100 pixels).

• Step 3 (Feature Extraction): We extract multiple fea-
tures from the pre-processed image patches, including
color, texture and DL features. Color features: Intensity
histograms of R, G, B channels and gray-level images.

Texture features: Scale-invariant Feature Trans-
form (SIFT), DAISY, Gray-level Co-occurrence
Matrix (GLCM) and Histogram of Oriented Gradi-
ent (HOG) features. DL features: Inception-V3 [4] and
VGG-16 [5] features.

• Step 4 (Post-processing): In order to obtain a priori prob-
ability, we use SVMs, ANNs, and RFs to pre-classify
image patches. In the SVMs, ‘RBF’ and ‘linear’ kernels
are applied. In the ANNs, different hidden layers are
compared. In the RFs, different numbers of trees are
tested. Finally, we obtain 19 types of classifiers, and they
are trained with seven features, resulting in 133 patch-
level pre-classification results. Furthermore, we select
the top 8% of these 133 feature-classifier combinations
to generate our unary and binary potentials.

• Step 5 (Classifier Design): Based on the selected
patch-level pre-classification results, we generate unary
and binary potentials of the MHCRF, and combine them
to calculate the joint probability for the final image-level
classification.

• Step 6 (System Evaluation): We input test images to the
trainedMHCRF framework to evaluate the effectiveness
of the proposed method.

The structure of this paper is as follows: Sec. II is the
related work about cervical cancer, ML techniques for cer-
vical cancer and applications of CRFs. Sec. III specifies how
the MHCRF in this paper is designed. Sec. IV is experiments
and results of the proposedmethod. Finally, Sec. V closes this
paper with a brief conclusion.
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II. RELATED WORK
This section summarizes the related work of this paper and
consists of three subsections. Sec. II-A is about cervical
cancer, Sec. II-B is the ML techniques for cervical cancer,
and Sec. II-C is the applications of CRFs.

A. CERVICAL CANCER
According to the data of [1], in the worldwide female cancer
diseases, the incidence of cervical cancer in 2018 accounts
for 6.6% and the mortality rate is 7.5%. Both morbidity
and mortality are ranked fourth in the world. Therefore,
the prevention and timely diagnosis of cervical cancer are
particularly important. The biopsy diagnosis of cervical can-
cer can be roughly divided into three types. The first is the
Pap test [6], which can be used as a screening test, but
produces a false negative in up to 50% of cases of cervical
cancer [7]. Confirmation of the diagnosis of cervical cancer
or precancer requires a biopsy of the cervix. This is often
done through colposcopy, a magnified visual inspection of
the cervix aided by using a dilute acetic acid (e.g. vinegar)
solution to highlight abnormal cells on the surface of the
cervix [8]. Further diagnostic and treatment procedures are
loop electrical excision procedure [9] and cervical coniza-
tion [10], in which the inner lining of the cervix is removed
to be examined pathologically. These are carried out if the
biopsy confirms severe cervical intraepithelial neoplasia [8].
With the rise and development of computer technology, more
and more ML related technologies have been applied to the
medical field. The diagnosis of histopathological images of
cervical cancer is no exception.

B. ML TECHNIQUES IN CERVICAL CANCER RESEARCH
1) FEATURE EXTRACTION METHODS
Scale-invariant feature transform (SIFT) is a classical opera-
tor for extracting local features of images [11]. The essence
of SIFT algorithm is to find the key points in different scale
space and calculate the direction of the key points [12]. The
description is characterized by scale invariance.

DAISY [13] is a description operator which can quickly
calculate local image features in the face of dense feature
extraction. DAISY extends the basic idea of SIFT: Block
statistical gradient direction histogram. The difference is that
DAISY uses Gauss convolution to aggregate the histograms
of gradient direction [14]. Because of the convolution prop-
erty of Gauss kernels, the gradient graphs with different
weights can be obtained only by convoluting the gradient
graphs several times when calculating DAISY operators.

The gray-level of the pixel appears repeatedly in the spatial
position to form the texture of the image [15]. Gray-level
co-occurrencematrix (GLCM) describes the joint distribution
of the gray-level of two pixels with some spatial position rela-
tionship. GLCM not only reflects the distribution character-
istics of brightness, but also reflects the location distribution
characteristics between pixels with the same brightness or

near brightness [16]. It is a second-order statistical feature
of image brightness change.

Histogram of oriented gradient (HOG) feature is a feature
descriptor for object detection in computer vision and image
processing [17]. The HOG method is based on the compu-
tation of normalized local orientation gradient histograms
in dense grids [18]. The HOG method can maintain good
geometric invariance and optical deformation. At present,
Hog features are widely used in image recognition fields.

In image processing, a color histogram is a representation
of the distribution of colors in an image [19]. For digital
images, a color histogram represents the number of pixels that
have colors in each of a fixed list of color ranges, that span the
image’s color space, the set of all possible colors. The color
histogram can be built for any kind of color space, although
the term is more often used for three-dimensional spaces like
RGB or HSV [20]. Like other kinds of histograms, the color
histogram is a statistic that can be viewed as an approximation
of an underlying continuous distribution of colors values.

In order to describe the properties of uterine cervical cancer
histology images, six shape features are extracted, including
the average area of triangles, standard deviation of area of the
triangles, average edge length, the standard deviation of edge
length, average nuclei area, and the ratio of background over
nucleus area. The first four features describe the global shape
the tissue, and the last two features represent the local shape
of single cells. [21]

A survey paper about ‘histology image analysis for carci-
noma detection and grading’ is proposed, where image seg-
mentation, feature extraction and classification approaches
for cervix, prostate, breast, and lung cancers are mainly sum-
marized and discussed. This paper refers to 161 relatedworks,
including ten papers that focus on the cervical cancer [22].

2) CLASSIFIER MODELS
Support vector machine (SVM) is a type of supervised learn-
ing method [23]. The basic model of SVM is to find the
best separating hyperplane in the feature space to maximize
the interval between positive and negative samples in the
training set. The core idea of SVM is to make every effort
to maximize the separation between the two categories, so
as to make the separation more credible. Moreover, it has
good classification and prediction abilities for unknown new
samples (called generalization ability in ML) [24]. Currently,
SVMs are also applied in handwritten digit string recognition
with a new cascade of hybrid principal component analysis
network (PCANet) and support vector machine (SVM) clas-
sifier called PCA-SVMNet [25].

Artificial neural networks (ANNs) or connectionist sys-
tems are computing systems vaguely inspired by the biolog-
ical neural networks that constitute animal brains [26]. The
neural network itself is not an algorithm, but rather a frame-
work for many different ML algorithms to work together and
process complex data inputs. Such systems ‘‘learn’’ to per-
form tasks by considering examples, generally without being
programmed with any task-specific rules [27]. Components

90380 VOLUME 7, 2019



C. Li et al.: Cervical Histopathology Image Classification

of an ANN include neurons, connections, weights, biases,
propagation functions and learning rules. Recently, a novel
probabilistic process neural network (PPNN) was purposed
to classify electrocardiogram signals [28]. In addition, a new
content-based medical image retrieval (CBMIR) framework
using convolutional neural network (CNN) and hash coding
is proposed [29].

Random forest (RF) algorithm is to train multiple deci-
sion trees, generate models, and then use multiple decision
trees to classify [30]. Random forests have improved the
prediction accuracy without increasing the computational
complexity [31]. Currently, RFs are also applied in driving
assistance systems to recognize the propensity of drivers [32].
Random forests are insensitive to multivariate collinearity.
The results are robust to missing data and unbalanced data,
and can predict the effects of up to thousands of explanatory
variables. Random forests are regarded as one of the most
effective classification algorithms at present.

Weakly supervised learning is a branch of the ML strategy,
which only annotates an image with the label of its category,
but do not give any other annotations. Hence, the weakly
supervised learning approach is a suitable solution for big
dataset or complex image labelling problems. For example,
in our previous work [44], a sparse coding based weakly
supervised learning framework is introduced to address a
microscopic image classification task.

C. APPLICATIONS OF CONDITIONAL RANDOM FIELDS
Currently, conditional random fields (CRFs) are used for
labelling or parsing of sequential data, such as natural
language processing or biological sequences [34] and in com-
puter vision [35]. Specifically, CRFs find applications in part-
of-speech (POS) tagging, shallow parsing [36], named entity
recognition [37], gene finding and peptide critical functional
region finding [38], among other tasks, being an alternative
to the related hidden Markov models (HMMs). In computer
vision, CRFs are often used for object recognition, image
classification and image segmentation [39].

In [40], a probabilistic discriminative method is proposed
to fuse contextual constraints in functional images based on
the CRFs and it is applied to the detection of brain activa-
tion from both synthetic and real fMRI data. Experimental
results show that the proposed CRF approach effectively
integrates contextual constraints within the detection process
and robustly detects brain activities from fMRI data.

In [41], a new segmentation method is introduced by com-
bining CRFs with a cost-sensitive framework. The experi-
ment shows that this method further improves its previous
cost-sensitive SVM results by incorporating spatial informa-
tion with the CRFs.

In [42], [43], colposcopy images of cervical cancer neo-
plasia are used as data in a CRF framework to extract the
domain-specific diagnostic features in probabilistic form.
They judge and locate precancerous and cancerous areas
based on the optical and tissue relationships of different
tissues.

With the development of DL, some researchers combine
DL methods with CRF frameworks to obtain a even bet-
ter classification performance. For example, in our previ-
ous work [33], a microscopic image classification engine
is proposed, which can automatically classify and segment
the images using DL features in a strongly supervised CRF
model. In contrast to it, we further improve our CRF frame-
work in this paper, which includes more ML techniques and
only uses weakly supervised learning (does not need any
ground truth images for CRF training, which means that
labels of patches are endowed from the labels of correspond-
ing images directly).

III. MULTILAYER HIDDEN CONDITIONAL
RANDOM FIELDS
In this section, the basic knowledge of CRFs is first intro-
duced in Sec. III-A. Then, the details of our MHCRF model
is proposed in Sec III-B, including unary potential, binary
potential and the combination of them.

A. BASIC KNOWLEDGE OF CRFS
Conditional Random Field (CRF) is first proposed in [34].
The definition of a CRF is as follows: Firstly, X is defined
as a random variable of the data sequence to be labelled, and
Y is a random variable of the corresponding label sequence.
Then, let G = (V ,E) be a graph such that Y = (Yv)v∈V ,
so that Y is indexed by the vertices (or nodes) of G. V
is the array of all sites, corresponding to the nodes of an
associated undirected graph G = (V ,E), whose edges E
model interactions between adjacent sites. So, (X ,Y ) is a
CRF in case, when conditioned on X , the random variables
Yv obey the Markov property with respect to the graph: p =
(Yv|X ,Yw,w 6= v) = p(Yv|X ,Yw,w ∼ v), where w ∼ v
means that w and v are neighbours in G. This means that the
CRF is an undirected graphical model whose nodes can be
divided into two disjoint sets X and Y , which is the observed
variable and the output variable. Then, the model conditional
distribution is p(Y |X ).

According to the basic theorem of the random fields
in [45], the joint distribution on the label sequence Y of a
given X has the form as Eq. (1).

pθ (y|x) ∝ exp(
∑
e∈E,k

λk fk (e, y|e, x)+
∑
v∈V ,k

µkgk (v, y|v, x)),

(1)

where x is a data sequence, y is a label sequence, and y|S
is the set of components of y associated with the nodes in
sub-graph S.
It can be known from [46], [47] that Eq. (1) can be rewritten

as Eq. (2).

p(Y |X ) =
1
Z

∏
C

ψC (YC ,X ), (2)

whereψC (YC ,X ) is the potential function on the cliqueC and
Z =

∑
XY P(Y |X ) is the normalization factor. A clique, C ,
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FIGURE 2. The structure of our proposed weakly supervised MHCRF model. The left part denotes the term of the unary potential, and the right part
shows the term of the binary potential.

in an undirected graph G = (V ,E) is a subset of the vertices,
C ⊆ V , such that every two distinct nodes are adjacent.

B. THE PROPOSED MHCRF MODEL
1) STRUCTURE OF THE MHCRF MODEL
Because we focus on the visual features of cellular scales in
histopathological images [3], we first design a unary potential
to represent the information of cells, and then we design
a binary potential to describe the surrounding special rela-
tionships among different cells. Hence, based on the basic
definition of CRFs introduced in Sec. III-A, our MHCRF is
expressed by Eq. (3).

p(X |Y ) =
1
Z

∏
i∈V

ϕi(xi;Y )
∏

(i,j)∈E

ψij(xi, xj;Y ), (3)

where

Z =
∑
XY

∏
i∈V

ϕi(xi;Y )
∏

(i,j)∈E

ψij(xi, xj;Y ) (4)

is the normalization factor; V is the set of all nodes in the
graph G; E is the set of the all edges. The clique potential

function consists of two parts (terms): The unary potential
function ϕi(xi,Y ) is used to measure the probability that a
node i is labelled as xi for a given observation vector Y ;
the binary potential function ψij(xi, xj;Y ) is used to describe
the adjacent nodes i and j in the graph. The spatial context
relationship between them is related not only to the tag of
node i but also to the tag of its neighbour node j. Finally,
we find the largest posterior label X̃ = argmaxX p(X |Y ) and
solve the problem of image classification. The structure of
our MHCRF model is shown in Fig. 2.

In Fig. 2, the structure of our MHCRF model is shown:
• Layer 1 shows the real labels xi of the patches in an
image.

• Layer 2 represents the original image patches yi which
correspond one-to-one with the labels xi in Layer 1.

• Layer 3 denotes seven types of features extracted from
each image patch yi, including RGBGray histogram,
SIFT, DAISY, GLCM,HOG, Inception-V3 andVGG-16
features. Especially, there is an additional layer, namely
the Layer 3.5, in the binary potential, where the features
of the target image patches yi are obtained by calculating
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FIGURE 3. ‘‘Lattice’’ layout of the binary potential. ‘‘
∑

’’ denotes that the
sum of the eight neighbourhood feature vectors is used as the feature
vector of the target patch (the central patch).

the characteristics of their surrounding image patches
according to the layout in Fig. 3.

• In Layer 4, the extracted features in Layer 3 are classi-
fied by four categories of classifiers, including Linear-
SVMs, RBF-SVMs, ANNs and RFs, to obtain a priori
probability for patch-level classification.

• In Layer 5, according to the Gaussian distribution
and proportion, the most effective patch-level feature-
classifier combinations are selected.

• In Layer 6, the selected patch-level feature-classifier
combinations are jointly used for image-level classifi-
cation.

• In Layer 7, the best image-level classification combina-
tions are further selected to generate the unary or binary
potentials.

• Finally, in Layer 8, the generated unary and binary
potentials are combined in the proposed MHCRF model
and used as a classifier for the CHIC task.

2) UNARY POTENTIAL
The probability of a label xi taking a value c ∈ L is connected
with the unary potential parts ϕi(xi;Y ) of the Eq. (3) given the
data Y by ϕi(xi;Y ) ∝ p(xi = c|fi(Y )) [48], where the image
data is expressed as site-wise feature vectors fi(Y ) which may
depend on all the data of Y .
We extract seven types of features from each image patch:
• Color features: We extract the intensity histograms of
the R, G, B color channels and gray-level images, and
link them together to obtain a 1024-dimensional feature
vector [20].

• Texture features: Four texture features are extracted,
including SIFT [12], DAISY [13], GLCM [16] and
HOG [17] features. The vector dimensions of these tex-
ture features are 128, 200, 64, and 4356, respectively.

• DL features: One is Inception-V3 feature [4] and another
is VGG-16 feature [5], where transfer learning by Ima-
geNet is applied to pre-train the Inception-V3 and
VGG-16 networks [49], and the second last layer are
fine-tuned with our cervical histopathological images.
Finally, the length of the extracted DL feature vectors is
set to 1000 dimensions based on our pre-tests.

In order to obtain the label probability, we use a total
of 19 classifiers in four categories:
• Linear-SVMs: SVMs with a linear kernel.
• RBF-SVMs: SVMs with a radial based function kernel.
• ANNs: We use the quantization gradient algorithm
‘‘trainscg’’, and the hidden layer uses the six forms from
one to six layers, respectively.

• RFs: We use RFs as classifiers, where the number of
trees is set to 2n (n = 1, 2, . . . , 11).

Based on the features and classifiers mentioned above,
we generate our unary potential as follows:
• First, according to the combinations of seven features
and 19 classifier types, we build 133 single patch-level
classifiers and obtain 133 pre-classification results.

• Then, based on the Gaussian distribution of these
133 results, we select the top 8% feature-classifier com-
binations of them (about 11). Among these 133 combi-
nations, the number of the top 8% of the DL features
is about three, and the number of the top 8% of the
handicraft features is about eight. In the handicraft fea-
tures, color features and texture features have the same
numbers, so the most effective four features of each of
them are selected, respectively.

• Thirdly, based on the patch-level pre-classification prob-
abilities of the selected 11 feature-classifier combina-
tions, the joint probabilities of all patches are calculated
as the image-level classification probabilities.

• Fourthly, we combine the calculated image-level clas-
sification probabilities to obtain a second order joint
probability, where the number of the combinations is a
factorial of 11, i.e. 39916800.

• Fifthly, the top ten from 39916800 combinations are
further selected as promising candidates to generate the
unary potential in the image-level classification. Here,
we combine each two of these ten candidates together,
so 100 third order joint probabilities are achieved.

• Finally, the combination with the best classification
result is selected from 100 joint probabilities, and it is
used as the unary potential in our MHCRF model.

3) BINARY POTENTIAL
The binary potential term ψij(xi, xj;Y ) of the Eq. (3) shows
how probably the pair of adjacent sites i and j is to take the
label (xi, xj) = (c, c′) given the data: ψij(xi, xj;Y ) = p(xi =
c; xj = c′|fi(Y )fj(Y )) [48]. Fig. 3 shows the layout of our
binary potential. We use this ‘‘lattice’’ layout to characterize
the feature vector of each patch by calculating the sum of each
patch of eight neighbourhood feature vectors. The other steps
are consistent with the unary potential in Sec. III-B.2.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTING
1) IMAGE DATASET
In this paper, we use six immunohistochemical (IHC) stained
cervical histopathological image datasets (AQP1, AQP2,
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HIF1, HIF2, VEGF1 and VEGF2 datasets) to test the effec-
tiveness of our proposed MHCRF model in the CHIC task.
In addition, we have a hematoxylin-eosin (HE) stained gastric
histopathological image datasets to verify the generalization
ability of the MHCRF model. The details of the applied
datasets are introduced as follows.

Six Cervical IHC Histopathological Image Datasets:

• Data source: Three practical medical doctors (Doctor
A, Dr. B and Dr. C) from Shengjing Hospital of China
Medical University provide image samples and give
image-level labels for the weakly supervised learning
process. Dr. A and Dr. B provide us with the AQP1,
HIF1 and VEGF1 datasets. Dr. A and Dr. C provide us
with the AQP2, HIF2 and VEGF2 datasets. The image
labelling rules are as follows:
Rule 1: When the doctors find only one differentiation
stage in an image, they give this stage as the label to this
image;
Rule 2: When the doctors find multiple differentiation
stages in an image, they give the most significant stage
as the label to this image;
Rule 3: In Rule 2, if different differentiation stages have
similar distributions in the image, the doctors give the
most serious stage as the label to this image.
Rule 4:When Dr. A has a different judgement with other
doctors, we follow the judgement of Dr. B or Dr. C, due
to they have a higher-level professional qualification.

• Staining method: IHC Staining, AQP, HIF, VEGF.
• Magnification: 400×.
• Microscope: Nikon (Japan).
• Acquisition software: NIS-Elements F 3.2.
• Image size: 1280× 960 pixels.
• Image format: ‘‘*.tiff’’ or ‘‘*.png’’.
• Image types:
Well differentiation: The tumour cells are closer to nor-
mal cells, cell heteromorphism is relatively small, cell
sizes and morphology are similar;
Moderate differentiation: Most cancer cells are concen-
trated in moderately differentiated, the characteristic is
between well differentiated and poorly differentiated
cervical cancer cells;
Poorly differentiation: The cell structure is not visible,
and the topological structure is disordered [2]. An exam-
ple of these six datasets is shown in Fig. 4, and the
detailed information of it is as follows:

Gastric HE Histopathological Image Dataset:

• Data source: A public dataset of gastric histopatholog-
ical images is additionally tested in our paper [50].
Especially, due to the original dataset is not balanced on
normal or abnormal classes, we randomly select
100 images from each class to build a sub-dataset in
our work.

• Staining method: HE Staining.
• Magnification: 20×.

TABLE 1. Experimental data settings (Cervical IHC Datasets). The first
column shows the names of datasets. The second column shows the
differentiation stages. The third to the fifth columns show usage of data,
respectively. The last column is the number of well images, the number of
Moderate images, the number of Poorly images, and the total number of
images in the dataset for each dataset.

TABLE 2. Experimental data settings (Gastric HE Dataset). The first
column shows the differentiation stages. The second to the forth
columns show usage of data, respectively. The last column is the
number of normal images, the number of abnormal images and
the total number of images in the dataset for this dataset.

• Image size: 2048 × 2048 pixels. Furthermore, to use
the original images in our system, we resize them into
1280× 960 pixels.

• Image format: ‘‘*.tiff’’ or ‘‘*.png’’.
• Image types:
Normal: No cancerous cells appeared in the section.;
Abnormal: Cancerous cells appear in this section. An
example of the gastric HE datasets is shown in Fig. 5,
and the detailed information of it is as follows:

2) TRAINING, VALIDATION AND TEST DATA SETTING
We randomly divide all the datasets into training, validation
and test sets at a ratio of 1:1:2. The specific data settings
for these six cervical IHC datasets are shown in TABLE 1.
And the data settings for the gastric HE dataset is shown in
TABLE 2.

B. EVALUATION OF UNARY AND BINARY POTENTIALS
1) EVALUATION OF UNARY POTENTIAL
First, in order to select effective feature-classifier combina-
tions to general our unary potential, we compare the 133
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FIGURE 4. An example of the six cervical IHC datasets. The first, second and last column show histopathological
images of well, moderate and poorly differentiation stages of cervical cancer, respectively. The images of lines one
to six belong to the six databases of AQP1, AQP2, HIF1, HIF2, VEGF1, and VEGF2, respectively.

accuracies of single classifiers on all the six cervical IHC
validation sets in the patch-level, and the classification result
of AQP1 validation set is shown in TABLE 3 as an example.

Then, the classification results of the selected feature-
classifier combinations and the generated unary potential in

the image-level are shown in Fig. 6, where the tags on the
horizontal axis denote the selected combinations and the opti-
mized unary potential. For example, ‘‘RGBGray’’ means the
color features extracted from R, G, B channels and gray-level
images; ‘‘LINEAR’’ means the kernel function of SVM
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FIGURE 5. An example of the gastric HE image dataset. The left one is normal and the right one is abnormal.

TABLE 3. An example of patch-level pre-classification accuracies of unary potential on AQP1 validation set. The first two columns show the types of
classifiers. The third to the last columns show the extracted features. The numbers in red bold are related to 11 selected feature-classifier
combinations. (Unit:%).

classifier is a linear function; the number after ‘‘ANN’’ means
the number of hidden layers; the number after the ‘‘RF’’ refers
to the index of the tree, because we represent the number of
trees as 2n (n = 1, 2, . . . , 11).

From Fig. 6, we find that the classification result is sig-
nificantly improved by the unary potential than all the single
feature-classifier combinations. Especially, the unary poten-
tial can increase the classification accuracy in a range of
10.22% to 30.27%, with an increasing rate from 15.13% to
49.60%. These data fully reflect the validity of the unary
potential model.

Comparing the results of different staining datasets (AQP1,
HIF1 and VEGF1) given by Dr. A and Dr. B, the combina-
tion of RGBGray features and RF classifiers is better, and
a combination of RGBGray-RF is combined in the unary
potential model. However, this rule does not hold in the
dataset given by Dr. B and Dr. C. In another three datasets
(AQP2, HIF2, and VEGF2), there is not only a combination
of RGBGray-RF but also a combination of GLCM-ANN and

DAISY-ANN. In addition, comparing the results of different
sets of data for the same kind of staining, the accuracy of
the second set of data is lower than that of the first set. This
is related to the method, time, experience, and location of the
slice selected by different doctors.

In addition, we also used the gastric HE dataset to do the
same experiments. Fig. 7 shows the classification results of
the selected feature-classifier combinations and the generated
unary potential in the image-level. We can find that the clas-
sification result is significantly improved by the in the unary
potential than the all single feature-classifier combinations,
where an accuracy of 94.00% is achieved, exceeding the best
single result of 85.15%. In this dataset, the unary potential
increases the accuracy by 8.85%, with an increasing rate
of 10.39%. From these two data of increasing quantity and
increasing rate, the result of gastric HE dataset is not as high
as that of cervical IHC datasets, because the single classifica-
tion accuracy rate of gastric HE dataset reaches 85.19%, even
higher than most cervical IHC unary potential results, and the
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FIGURE 6. A comparison of image-level classification accuracies between selected feature-classifier combinations and the
generated unary potential on the six cervical IHC validation sets.

upside is not large, and the accuracy of the unary potential
reaches 94.00%, which proves that the unary potential of the
proposed MHCRF model is valid.

2) EVALUATION OF BINARY POTENTIAL
First, in order to select effective feature-classifier combi-
nations to general our binary potential, we compare the

133 accuracies of single classifiers on all the six cervical IHC
validation sets in the patch-level, and the classification result
of AQP1 validation set is shown in TABLE 4 as an example.
Then, the classification results of the selected features

and the generated potentials are in the image-level shown
in Fig. 8, where the horizontal axis denotes the optimized
combination of features and the pre-classifiers. Further,
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TABLE 4. An example of patch-level pre-classification accuracies of binary potential on AQP1 validation set. The first two columns show the types of
classifiers. The third to the last columns show the extracted features. The numbers in red bold are related to 11 selected feature-classifier
combinations. (Unit:%).

FIGURE 7. A comparison of image-level classification accuracies between
selected feature-classifier combinations and the generated unary
potential on the gastric HE validation set.

‘‘RGBGray’’ means the color features extracted from R, G,
B channels and gray-level images. And the number after
‘‘ANN’’ means the number of hidden layers. Moreover,
the number after the ‘‘RF’’ refers to the index of the tree,
because we represent the number of trees as 2n (n =
1, 2, . . . , 11).

From Fig. 8, we find that the classification result is signif-
icantly improved by the in the binary potential than the all
single feature-classifier combinations. Especially, the binary
potential can increase the classification accuracy in a range
of 7.07% to 12.95%, with an increasing rate from 9.63% to
20.23%. These data fully reflect the validity of the binary
potential model. From the two data of increment and growth
rate, the effect of unary potential is much better than the
binary potential. This is because in the same dataset, the clas-
sification accuracy of a single combination under the unary
framework is basically lower than that under the binary
framework, and the increasing space of the unary potential
is bigger than that of the binary potential.

Comparing the results of different staining datasets (AQP1,
HIF1 and VEGF1) given by Dr. A and Dr. B, the combination

of RGBGray features and ANN classifiers is better, and a
combination of RGBGray-ANN is combined in the binary
potential model. However, this rule does not hold in the
dataset given by Dr. B and Dr. C. In another three datasets
(AQP2, HIF2, andVEGF2), there is not only a combination of
RGBGray-ANN but also a combination of GLCM-ANN and
VGG16-RF. In addition, comparing the results of different
sets of data for the same kind of staining, the accuracy of
the second set of data is lower than that of the first set.
This case occurs the same as the unary potential, where
different doctors have different methods, skills, experience,
and judgements.

Furthermore, we also used the gastric HE dataset to do the
same experiments. Fig. 9 shows the classification results of
the selected feature-classifier combinations and the generated
binary potential in the image-level. We can find that the
classification result is significantly improved by the binary
potential than all the single feature-classifier combinations,
where an accuracy of 96.00% is achieved, exceeding the
best single result of 89.85%. In this dataset, the binary
potential increases the accuracy by 6.15%, an increasing
rate of 6.84%. From the two data of increasing quantity
and increasing rate, the result of gastric HE dataset is not
as good as that of cervical IHC dataset, because the single
classification accuracy rate of gastric HE dataset reaches
89.85%, even higher than most cervical IHC binary poten-
tial results, and the upside is not large, and the accuracy
of the binary potential reaches 96.00%, which proves that
the binary potential part of the proposed MHCRF model
is valid.

3) EXPERIMENTAL RESULTS AND ANALYSIS OF UNARY AND
BINARY POTENTIALS
Fig. 10 shows the confusion matrices for image-level classi-
fication results for six cervical IHC datasets, including unary
potentials on validation sets, binary potentials on validation
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FIGURE 8. A comparison of image-level classification accuracies between selected feature-classifier combinations and the
generated binary potential on the six cervical IHC validation sets.

sets, the MHCRF framework on validation sets, and the
MHCRF framework on test sets.

Comparing the four confusion matrices of the same dataset
in Fig. 10, we find that the accuracy of the validation set
classification results is generally greater than or equal to the
larger values in unary and binary. Only in HIF1 the validation
set results are close to the smaller values in unary and binary.
The test set results are generally about 5% to 10% lower than

the validation set results, and occasionally 1% to 4% higher
(AQP1 and VEGF2).

Furthermore, we use the result of AQP1 as an exam-
ple to analyse the experimental performance of unary and
binary potentials. From TABLE 3 and TABLE 4, we can
find that several feature-classifier combinations have good
performance, such as the 11 selected combinations. However,
there are some classification performance of combinations
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FIGURE 9. A comparison of image-level classification accuracies between
selected feature-classifier combinations and the generated binary
potential on the gastric HE validation set.

is not good, only higher than 33.33% (the probability of
randomly guessing). On one hand, color feature combina-
tions almost more efficient than other combinations, which
shows that the cervical IHC staining can enhance the image
color information effectively. In texture feature combinations,
GLCM feature combinations are relatively good, because it
can describe the cervical cell distribution trend very robustly.
In DL feature combinations, the VGG-16 combinations are
significantly better than the Inception-V3 combinations. This
is because we set the patch size to 100-by-100 pixels, there
are only one or two nuclei in a patch, and this case is more
suitable for the ability of VGG-16 network. So, texture fea-
tures and DL features can behave as well as color features.
On the other hand, for the same feature, SVMs perform the
worst in different classifiers, and ANN and RF each have
their own strengths. In the unary potential, ANNs and RFs
have similar performance. In the binary potential, ANNs’
performance is significantly better. This is because SVMs
need to find a hyperplane to achieve classification in the case
of multi-classification, and its effect is not as good as that
of ANNs’ backpropagation network and RF forest structure.
Moreover, the dataset size of from 2800 to 5200 patches is
more advantageous for ANNs and RFs. In contrast, although
the models of the other five datasets have different details,
their frameworks and processes are consistent.

In the gastric HE dataset, we also show the confusion
matrices in Fig. 11. Since the gastric HE dataset is a binary
classification, the four confusionmatrices are also 3×3 sized.
The results of both unary and binary are very good, reaching
94% and 96%. The validation set results are close to a larger
value of 96%. The test set results were not much reduced, and
the accuracy rate was 93%. The reasonswhy these four results
of the gastric HE classification are much higher than those of
the cervical IHC are as follows. First, the gastric HE dataset
only needs to perform the two classification task, while the
cervical IHC datasets need to perform the three classification
task. Second, for computers, it is possible that gastric HE
staining methods are easier to distinguish and identify than
cervical IHC staining. Third, the quality of the image will

also affect the results of the classification. Last, in terms of
the amount of data for a single dataset, the amount of data in
the gastric HE dataset is approximately twice that of the other
six cervical IHC datasets.

C. EVALUATION OF THE PROPOSED MHCRF MODEL
From these results, it can be seen that although the combined
result of the unary and binary potentials has the same per-
formance on the validation set, it has a better classification
performance on the test set, showing a huge potential of the
proposed method.

In order to further prove the effective classification ability
of our method in the CHIC work, besides the evaluation with
accuracy in Fig. 10, we also calculate another four evaluation
criteria in TABLE 5, including recall (sensitivity), precision,
specificity and F1-score, of each differentiation stage. These
four criteria are defined in Eq. (5), Eq. (6), Eq. (7) and
Eq. (8) [51].

Recall = Sensitivity =
TP

TP+ FN
(5)

Precision =
TP

TP+ FP
(6)

Specificity =
TN

TN+ FP
(7)

F1− score =
2× Precision× Recall
Precision+ Recall

=
2TP

2TP+ FP+ FN
(8)

where TP is the True Positive (positive sample is predicted
to be positive), TN is the True Negative (negative sample is
predicted to be negative), FP is the False Positive (negative
sample is predicted to be positive), FN is the False Negative
(positive sample is predicted to be negative), Recall (also
known as sensitivity) is the fraction of relevant instances
that have been retrieved over the total amount of relevant
instances (high recall means that an algorithm returned most
of the relevant results), Precision (also called positive pre-
dictive value) is the fraction of relevant instances among the
retrieved instances (high precision means that an algorithm
returned substantially more relevant results than irrelevant
ones), Specificity (also called the true negative rate) measures
the proportion of actual negatives that are correctly identified
as such, and the F1-score (also F-score or F-measure) is a
measure of a accuracy of a test (it considers both the precision
and the recall of the test to compute the score).

From TABLE 5, considering the overall performance of
four criteria, we can find that the result of AQP1 dataset
obtains the highest evaluations with the values of 87.87%
recall, 87.96% precision, 94.03% specificity and 87.86%
F1-score. In contrast, the result of AQP2 achieves the lowest
evaluations with the values of 69.88% recall, 69.31% preci-
sion, 84.66% specificity and 69.45% F1-score. Meanwhile,
the results of the other four datasets have overall evalua-
tions around 76% recall, 79% precision, 88% specificity,
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FIGURE 10. Classification results using the six cervical IHC datasets. The first column to the fourth column represent the confusion matrices for
the classification results of unary potentials on validation sets, binary potentials on validation sets, the MHCRF framework on validation sets,
and the MHCRF framework on test sets, respectively.

76% F1-score. Hence, the results mentioned above show the
effectiveness and stability of our MHCRF model.

Meanwhile, we show the receiver-operating character-
istic (ROC) curves of these six cervical IHC datasets

in Fig. 12. The ROC curve analyses the binary classification
model, so the three-classification model in the figure draws
three ROC curves, with blue representing high differenti-
ation, green representing moderate differentiation, and red
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FIGURE 11. Classification results using the gastric HE dataset. The first column to the fourth column represent the confusion matrices for
the classification results of unary potential on validation set, binary potential on validation set, the MHCRF framework on validation set,
and the MHCRF framework on test set, respectively.

TABLE 5. Evaluation of each differentiation stage in six cervical IHC test sets. (Unit:%).

TABLE 6. Evaluation of each differentiation stage in gastric HE test set.
(Unit:%).

representing poor differentiation. The area under the Curve
of ROC (AUC ROC) is often used to evaluate classifier
performance. The larger the AUC value, the higher the correct
rate. From Fig. 12, we can find that the three curves of the
validation set are similar to the three curves of Binary poten-
tial, in general. However, the well differentiated and poorly
differentiated curves of the validation set in the AQP2 dataset
are close to the Binary potential, while themid-differentiation
curve is in a state of being between the two under the influ-
ence of the Unary potential. This is a good explanation for the
validity of our proposed MHCRF model.

Similarly, we extract the corresponding four evalua-
tion criteria and ROC curves in the gastric HE dataset.
TABLE 6 shows the four evaluation criteria of gastric HE
test set. And Fig. 13 shows the four ROC curves with
two-classification.

D. MISCLASSIFICATION ANALYSIS
Fig. 14 shows some misclassification examples of the classi-
fication results by the MHCRFmodel on the six cervical IHC
test sets. Meanwhile, misclassification examples of gastric
HE dataset is shown in Fig. 15. According to our analysis and
speculation, the reasons for image classification errors are as
follows:
• First, because the contents of the cervical histopatholog-
ical images are complex, where the characteristics and
properties between various differentiation stages are not
always obviously different, resulting in a difficulty of
image feature extraction.

• Second, the applied binary potential layout has a
small coverage and cannot effectively contain spatial
information.

• Thirdly, because our method is a weakly supervised
learning approach, we only use image-level labels to
train our MHCRF model, some contents of differenti-
ation stages are mixed in one image, resulting in the
training information is not clear enough for the ML
algorithm.
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FIGURE 12. ROC curves using the six cervical IHC datasets. The blue line, the green line and the red line represent well, moderate
and poorly differentiation, respectively. The first column to the fourth column represent the confusion matrices for the
classification results of unary potential on validation set, binary potential on validation set, the MHCRF model on validation set,
and the MHCRF model on test set, respectively.
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FIGURE 13. ROC curves using the gastric HE datasets. The first to the fourth represent the confusion matrices for the
classification results of unary potential on validation set, binary potential on validation set, the MHCRF framework on
validation set, and the MHCRF framework on test set, respectively.

FIGURE 14. An example of the classification results using the six cervical IHC datasets.

Additionally, considering Fig. 14, because moderate dif-
ferentiation is the stage between well and poorly differen-
tiations, most of the misclassification cases occur between
well andmoderate, or poorly andmoderate stages. In contrast,
well and poorly differentiations have fewer misclassification
cases.

E. COMPUTATIONAL TIME
Finally, we briefly describe computational time of our
MHCRF classification method. In our experiment, we use
a workstation with Intelr CoreTM i7-7700 CPU with
3.60 GHz, 32 GB RAM and GeForce GTX 1080 8GB.
Regarding the training time on six cervical IHC datasets and
one gastric HE dataset, the mean time is about 12.5 hours. For
the test time, the detailed information is shown in TABLE 7.

TABLE 7. The test time of six cervical IHC datasets and one gastric HE
dataset.

From TABLE 7, although the training time is 12.5 hours,
the mean test time for one image is 1.64 s, showing the
feasibility of our MHCRF method in the practical clinical
fields.
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FIGURE 15. An example of the classification results using the gastric HE dataset.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose aweakly supervisedMHCRFmodel
to classify the cervical histopathological images into well,
moderate and poorly differentiation stages. The proposed
MHCRF method not only considers the classical color and
texture features, but also combines the state-of-the-art deep
learning techniques into the framework. Furthermore, this
MHCRF model build both unary and binary potentials to
describe the spatial relationship between the image locations.
In the experiment, the proposed method is tested on the six
cervical IHC datasets and obtains an around overall classifi-
cation accuracy of 77.32% and the highest one of the six is
88%, showing the effectiveness and potential of the method.
In addition, we carry out extended experiments on a gastric
HE dataset, achieving overall accuracy of 93%, which can
fully demonstrate the generalization ability of our MHCRF
model.

In our future work, we plan to increase the amount of data
in a single dataset, allowing the same doctors to expand the
data. Then although we have tested our MHCRF model on
gastric cancer, we will test it on more cancer types, such
as breast cancer and liver cancer. Meanwhile, we have not
optimized individual features or classifiers yet, but we will
adjust the relevant parameters to make the classifiers at their
best status. In addition, we will try to use more types of
features and classification algorithms to improve the weakly
supervised MHCRF model.
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