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ABSTRACT A public transport journey planning service often yields multiple alternative journeys plans to
get from a source to a destination. In addition to journey preferences, such as connecting time and walking
distance, passengers can select the optimal plan based on mobile crowdsourced WiFi coverage available
along the journey. This requires discovering mobile crowdsourced WiFi services available along the journey
path. However, this task is challenging due to the uncertain availability of discovered services. To enhance
the availability of WiFi coverage, we propose a probabilistic approach to discover groups of available
crowdsourcedWiFi services alongwith the journey segments.Wefirst analyze the log of their trajectories and
use a density estimation technique to discover reference spots representing the frequently visited locations.
Then, a joint discrete Fourier transform and autocorrelation analysis are applied to mine the periods of the
presence of moving crowdsourced services with respect to each reference spot. A low-complexity cluster
analysis based on Jensen–Shannon divergence is then used to mine the periodic movement behaviors of
services during the identified periods. Finally, mobile crowdsourced WiFi services that are simultaneously
available at intersecting reference spots are grouped. The QoS of discovered groups is computed in terms
of availability confidence, failover capacity, aggregated bandwidth capacity, and coverage. Additionally,
we propose an algorithm to determine the best public transport journey plan offering based on the QoS of
available WiFi service groups along the journey path. We conduct a comprehensive comparative study to
validate the effectiveness of the proposed framework.

INDEX TERMS Journey planning, crowdsourced WiFi services, reference spots, service failover.

I. INTRODUCTION
The recent technological achievements in mobile and IoT
infrastructures have contributed to the development of
smarter devices such as smartphones and smart watches.
These devices and gadgets are equipped with multiples sen-
sors capable of capturing rich data e.g. position, tempera-
ture, pulse. As a result, a new generation of applications has
emerged by soliciting the contribution of the crowd. The new
paradigm is termed as mobile crowdsourcing [1], [8].

Recently, mobile crowdsourcing has become an attractive
research topic. A great body ofworksmakes use of crowd par-
ticipation to drive new achievements particularly in context
of smart cities. In [2], authors used mobile crowdsourcing to

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuiguang Deng.

track the available parking spots and suggested key guidelines
to effectively harness crowd participation. Dong et al. [3]
proposed a mobile application to track gas price across city
by relying on crowd participation. The mobile camera is trig-
gered when the participant is in the vicinity of a gas station.
Then, an image processing algorithm extracts the fuel price.
In context of urban city management, MySanJose mobile
App. allows residents of San Jose to report any issue such
as pothole or street light problem. Similarly, NYC311 mobile
App. allows residents of New York to report potholes, snowy
streets or sidewalks and more. In [4], a feasibility study of
mobile crowdsourcing is conducted to manage municipality
resources. This study argued that the success of large-scale
crowdsourcing solution heavily depends on user preference
and behavior of the citizens. Authors conducted a survey on
1300 participants to discover key concerns and behavioral
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preference regarding municipality services. Based on the
findings, authors proposed urban services reporting platform
and emphasized on the importance of matching between the
mobility patterns against the location of the tasks.

Public transportation service is a key component of any
smart city initiative and project. Classic transportation ser-
vice relied on static schedule as advertised by the service
provider (e.g. the Metropolitan Transportation Authority) to
provide commuters with journey plan from source to des-
tination. The recent advances in data analytics have been
very useful to further drive transportation service toward
better QoS. Pelletier et al. [6] reviewed how smart transport
card can be useful not only in daily transit system opera-
tion but also in long-term strategic planning of the trans-
port network. Zheng et al. [5] used taxicabs logs to discover
regions with salient traffic problems. The findings allow
also to evaluate how effective the undertaking measures by
city planners such as new road segments and subway lines.
Furthermore, results can be used to recommend changes to
future city planning projects. The aforementioned approaches
are termed as infrastructure-based since they rely on costly
built-in sensors deployed by service providers. Lu et al. [7]
further argued that infrastructure-based approach does not
capture the quality of commuting experience such as how
long a person had to wait at a taxi stands for boarding.
Authors advocated for the interoperability of infrastructure
approach and participatory sensing or mobile crowdsensing
to further get better insights about transportation and enhance
the QoS. Neiat et al. [10] proposed a novel spatiotemporal
abstraction on the cloud of the sensors embedded on public
transport transit vehicle (tram, bus . . . ). This abstraction is
termed sensor-cloud service. It enables composition between
services in order to provide the best QoS journey plan from
source to destination using public transport service. This
service abstraction is driven by the ease of access, storage
and management not to mention the low cost and wide
availability of the cloud. Sensors, embedded on the transit
vehicle, are made available on the cloud as a service in space
and time. Spatiotemporal composition is conducted since one
single service usually does not fulfill user journey preference
(waiting time, travel time . . . ). The sensor-cloud service is
abstracted in space and time as a line segment from source
to destination with functional and non-functional attributes.
In [11], authors proposed spatiotemporal model to provide
better quality of experience of journey planning service by
adding a second layer of composition of crowdsourced WiFi
coverage service. Specifically, suppose Sarah has extra data
balance till the next billing period, she wants to share WiFi
with others in return for a monetary compensation. In this
context, the sensor is the smartphone providingWiFi sharing.
The crowdsourced WiFi service is abstracted in space and
timewith functional and non-functional attributes. Given a set
of optimal journey plans, the proposed framework identifies
the best composition of crowdsourced WiFi services and
consequently, the best optimal plan in terms of WiFi cov-
erage. However, the functional and non-functional attributes

of the crowdsourced service are considered static and known
beforehand. In addition, in the highly dynamic environment
of sensed data, non functional attributes of a crowdsourced
service are very likely to fluctuate. Indeed, a participant ser-
vice might not be consistently available or no longer provide
a satisfactory QoS. Therefore, a failure mechanism to assure
the continuation of the service is mandatory. In [12], authors
proposed a novel algorithm based on the well known D∗Lite
algorithm, termed STD∗Lite, for journey planning. D∗Lite
is a dynamic shortest path algorithm with wide usage in
robotics and autonomous vehicle navigation. Whenever the
QoS is no longer satisfactory or a component crowdsourced
service becomes unavailable, STD∗Lite is invoked to find an
alternative crowdsourced service composition.

In our previous work [9], we focused on undeterministic
crowdsourced WiFi services. Undeterministic refers to the
lack of a priori knowledge on the availability of a crowd-
sourced service at a certain location for a certain period.More
precisely, We formulated the task as a two-stage learning
framework. In the first stage, we sought to find which ser-
vice(s) is (are) available at the area where a query for WiFi
access is received. By leveraging spatiotemporal features of
the historical service availability, the problem is formulated
as a classification procedure. A Deep Neural Network (DNN)
model, once trained, can be queried to predict the set of
potential available services. In the second stage, the objective
is to determine the duration of the service availability.

In this work, we focus on providing the best journey plan
using both the service paradigm and spatiotemporal data
analytics. Specifically, given a set of optimal journey plans,
the objective is to identify the optimal plan, i.e. the one
with the best WiFi coverage provided by the crowd. The ser-
vice paradigm is used to abstract the crowdsourced service.
Furthermore, we assume the realistic scenario in which the
availability of crowdsourced WiFi service is unknown. This
uncertainty property has motivated us to apply a probabilistic
periodic behaviormining approach to determine the availabil-
ity of a crowdsourced service. This strategy is driven by the
availability of spatiotemporal data and the intrinsic periodic
property of human behavior. In addition, to maintain the con-
tinuity of theWiFi coverage, we consider the grouping pattern
of crowdsourced services in order to ensure the availability of
failover services in the vicinity.

Our contribution is summarized as follows:
• We propose a framework to determine the optimal plan
based on the service paradigm and the periodicity of
crowdsourced service providers.

• We propose a novel abstraction of crowdsourced WiFi
coverage service based on the grouping pattern. This
abstraction is necessary in order to ensure the availabil-
ity of failover service.

• We introduce a low complexity periodic behavior anal-
ysis approach that makes use of spatiotemporal records
of service providers. Thus, the periodic behavior of each
provider is derived and the probability of its availability
at a particular spot and particular time is obtained.
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• We propose a simple and effective algorithm to deter-
mine the best journey plan in terms of WiFi coverage
that takes into account the QoS of both individual and
group of crowdsourced services.

• We demonstrate through synthetic data and real-world
scenario the effectiveness of our framework in mining
the periodic behavior and finding the best journey plan.

II. JOURNEY PLANNING AND CROWDSOURCED WiFi
COVERAGE SERVICE
In this section, we start by a motivation scenario and present
our journey planning and crowdsourced WiFi coverage ser-
vice framework.

A. MOTIVATION SCENARIO
John would like to travel from point A to B using public
transport service. While commuting, he would like to enjoy
internet access. In this scenario, illustrated in Fig. 1, WiFi is
provided by the crowd. Indeed, suppose Sarah has extra data
balance till the next billing period. We suppose she is well-
incentivized [15], [16] to share WiFi access. For example,
in return Sarah gets bonus points that can be used in future
to access internet provided by other crowdsourced services.
During a journey on public transport, crowdsourced services
can be available at the same transit vehicle, or along the
way between two stations. Therefore, the WiFi coverage is
regarded as a second layer of service offered on top of the
journey planning service. Unlike the work proposed in [11],
we do not dispose of any information related to the availabil-
ity of crowdsourced services at a given location and given
time. In addition, to ensure maximum connectivity during the
journey, we consider the presence of group of crowdsourced
services along a journey plan as a key QoS parameter to
select the optimal plan. Indeed, the presence of group of
service providers maximizes the chance of failover service
availability in case a service becomes unsatisfactory.

FIGURE 1. Crowdsourced WiFi coverage: Sarah has two candidate optimal
journey plan to travel from A to B.

B. JOURNEY PLANNING FRAMEWORK
Fig. 2 illustrates our framework. Given a set of optimal
plans, our objective is to determine the best public transport
journey plan in terms of WiFi coverage. This set consists of
journey plans that result from applying STA∗ algorithm [10],
a composition approach of line segment services. The set of
optimal plans satisfies user requirement such as maximum
travel time, maximum waiting time at a station, etc. A line
segment is an abstraction of sensors embedded in the transit

vehicle on the cloud. It is characterized by its spatiotem-
poral attributes: source and destination points and departure
and arrival time in addition to its QoS such as travel time.
By applying STA∗, a composition of line segment services is
obtained and results in a set of optimal linear plans that fulfill
user requirements such as the preferred travel time. In this
framework, the crowdsourced WiFi coverage is modeled in
space and time. It has a set of functional and non-functional
attributes. We discuss in section III the details of this model.
We also dispose of the track records of each crowdsourced
service in form of trajectories, i.e a sequence of time stamped
geolocations. Using the spatiotemporal model and the trajec-
tory log, we use a probabilistic approach to determine the
availability of services in a particular location at a particular
time. The first step consists of applying a reference spot
detection algorithm to determine the most frequently visited
areas. Then, we analyze the periodicity with respect to each
reference spot. Given the set of optimal plans, we determine
the relevant reference spots crossed by the line segments.
To ensure the availability of failover service, we propose
a new abstraction of services as a group. The grouping is
conducted by deriving the set of intersecting reference spots.
A group of crowdsourced services is characterized by its QoS.
Finally, we propose an algorithm that takes the set of journey
plans, the availability of services and their associated groups
and derives the best journey plan in term of WiFi coverage.

In the next sections, we give details of each component of
the framework.

III. GROUP OF CROWDSOURCED SERVICES FOR
JOURNEY PLAN
In this section, we present the abstraction of WiFi coverage
provided by the crowd as a service.We also detail the abstrac-
tion of crowdsourced services as a group.

A. CROWDSOURCED WiFi COVERAGE AS A SERVICE
We present in the following, the spatiotemporal model of
crowdsourced service S. We adopt the model proposed
in [11]. The abstraction of crowdsourced WiFi coverage in
space and time is illustrated in Fig. 3. It represents the crowd-
sourced sensor (typically a smartphone) with its functional
and non-functional attributes [11]:
• ID: unique identifier.
• Sensors: Set of sensors. We suppose that the service
consists of one sensor at location loc and sensing area
of radius Rs.

• Space-time: spatio-temporal domain of S. The space is
described by a square representing the minimum bound-
ing box of the coverage area as illustrated in Fig. 3. The
time is a tuple (ts, te) where ts and te are the start and
end time of the service availability at the current sensing
area.

• Trajectory: a set of historical K geospatial time stamped
locations (xi, yi, ti)1≤i≤K representing the itinerary of S
where xi, yi and ti are respectively, the latitude, longitude
and timestamp.
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FIGURE 2. Summary of the proposed probabilistic approach for maximizing travel journey WiFi coverage
using mobile crowdsourced services.

FIGURE 3. Crowdsourced sensor service.

• Set of functionalities F: describes the offered service e.g.
providing WiFi access.

• Set of QoS properties Q = (q1, q2, . . . , qn): where qi is
a QoS property.

A crowdsourced service is characterized by its QoS.
We adopt the quality model proposed by Neiat et al. [11].
Taking into account the type of the offered service, i.e. WiFi
access, the model describes the WiFi signal coverage and the
service usage:
Coverage cov: It is associated to the coverage of the WiFi
signal with respect to the position from a linear plan. The
stronger the signal is, the better the coverage is. Given
a confident radius Rc and coverage radius Rs with Rc <
Rs, the coverage cov is expressed as follows:

cov =


1

if d(P, loc) ≤ Rc
exp
(
− k(d(P, loc)− Rc)

)
else

(1)

where d(P, loc) is the perpendicular distance between
the linear plan and the location loc of the crowdsourced
service. k is a system related constant.

Capacity cap: It reflects the amount of available band-
width for each WiFi access request:

cap =
TR
NCR

(2)

It is the ratio of the total available bandwidth TR of S
over the number of users NCR requesting access to the
service. In other words, cap describes the crowdsourced
service usage.

B. GROUP OF CROWDSOURCED SERVICES
Motivated by the requirement to ensure continuous WiFi
coverage during a journey, we propose to take the abstrac-
tion of services into a second level and consider the group
of crowdsourced services. Indeed, the set Q has fluctuating
attributes, i.e. qi value varies across time. This fluctuation
imposes ensuring a failover mechanism to ensure the continu-
ation of theWiFi coverage during the journey. By considering
the grouping of services, we can mitigate the risk of discon-
nection in case of service failure since we can favor joining
a group of crowdsourced services with higher availability or
failover capacity. This abstraction allows to assign to a group
of services a set of QoS. We describe in the following this
abstraction and the quality model of a group of crowdsourced
WiFi service.

A group is defined with respect to the intersection of
particular areas called reference spots which will be further
detailed in section IV.

The quality model of a group of crowdsourced services
is inherited from the quality model of its members. it is
characterized by its confidence, failover capacity, coverage
and capacity:
• Group confidence conf : We define the confidence of
a group of crowdsourced services as the ratio of the
sum of probabilities of availability of crowdsourced ser-
vices over the total number of crowdsourced services.
We detail in the next section the approach to calculate
this particular probability.

• Group failover capacity qfo: It is the number of crowd-
sourced services, members of the group. Each individual
service represents a failover in case a service is no longer
available or delivers unsatisfactory QoS.
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• Group coverage qcov: At a given timestamp, multi-
ple crowdsourced services, members of a group, can
intersect a linear plan. Therefore, qcov is defined as the
normalized sum of coverages of crowdsourced services:

qcov =
∑
i

max
(
covSi

)
− covSi

max
(
covSi

)
−min

(
covSi

) (3)

• Group capacity qcap: It is defined as the normalized
sum of capacities of the crowdsourced services, mem-
bers of the group:

qcap =
∑
i

max
(
capSi

)
− capSi

max
(
capSi

)
−min

(
capSi

) (4)

• Overall quality qtot : It is the sum of the weighted afore-
mentioned qualities:

qtot=w1 · conf +w2 · qfo+w3 · qcov+w4 · qcap (5)

where wi is a weight that reflects the importance of each
quality parameter.

IV. PROBABILISTIC PERIODIC BEHAVIOR FOR
CROWDSOURCED SERVICE AVAILABILITY
In this section, we describe the mechanism used to determine
the availability of services at a given space and time using a
reference spot detection approach and thus calculating conf ,
a key QoS parameter to select a group of crowdsourced
service.

Realistically, we do not dispose of information related to
crowdsourced service availability. Therefore, it is essential to
develop approaches that allow finding the available service
with degree of certainty.

Periodicity is an intrinsic property of human being. We fre-
quently visit the same places as part of our daily routine.
Thus, to discover crowdsourced services along a linear plan,
we analyze the historical movement of services to deter-
mine the frequently visited areas, called also reference spots.
To achieve this goal, we propose a modified version of the
approach proposed by Li et al. [13], [14] where we use a
Jensen-Shannon divergence to reduce computation complex-
ity while maintaining accurate performance. The reference
spot detection pipeline is illustrated in Fig. 4.

FIGURE 4. The pipeline for mining the periodic movement behaviors of
services.

Given the set of optimal journey plans and the set of his-
torical service trajectories, the service availability prediction
process uses a kernel density estimation to find the reference

spots of crowdsourced service. Then, the periodicity of each
crowdsourced service with respect to each reference spot is
derived. At runtime, to select the optimal linear plan, we focus
on the reference spots crossed by the linear plans, find the
associated crowdsourced services and their periodicities and
determine the probability of being at the reference spot at a
particular time during the period. In the following, we give
details of each step.

A. DISCOVERING REFERENCE SPOTS
A reference spot is a dense location frequently visited in the
movements. To discover such locations, we partition the area
of study into a w × h grid and compute the density of each
cell. Such approach is widely adopted in studying animal
movement [17], [19]. Indeed, if an animal exhibits high activ-
ity at a place, it represents its home or nest. To estimate the
density of each cell c, we use the bivariate normal kernel:

f (c) =
1
nγ 2

n∑
i=1

1
2π

exp
(d(c, pi)2

2γ 2

)
(6)

where d(c, pi) is the distance between the cell c and the
location pi from the trajectory of the crowdsourced service
of length n. γ is the bandwidth of the kernel which is approx-
imated as follows [17]:

γ =
n−1/6

2

√
σ 2
x + σ

2
y (7)

σx and σy are the standard deviations in x and y directions.
The density estimation allows finding the reference spots
by joining the cell of equal density estimation given some
density threshold th. The bigger the threshold is, the larger
the size of the reference spot is.

B. FINDING PERIODICITY
To determine the periodicity of a crowdsourced service with
respect to a reference spot, the corresponding movement
sequence is converted into a binary sequence bi where b(i) =
1 if the crowdsourced service is at the reference spot and 0
otherwise. To calculate the period of the binary sequence,
we use a joint Autocorrelation and Discrete Fourier (DFT)
Transform approach [18]. The joint analysis is motivated by
the following: first, autocorrelation provides accurate estima-
tion of small and large periods. However, it is difficult to set
the significance threshold for important periods. On the other
hand, with low frequency, DFT provides a poor estimation of
large periods as it suffers from the low resolution problem not
to mention the false positive generated in the periodogram.
Therefore, a joint DFT and autocorrelation analysis can lead
to high accuracy estimation of the binary sequence period.
Discrete Fourier Transform: The normalized DFT of

sequence b(i), i = 1 : N is a sequence of complex
numbers B(f ):

B(fk/N ) =
1
√
N

N∑
i=1

b(i)exp
(
−j2πki
N

)
k = 1 . . .N

(8)
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k/N is the frequency captured by each coefficient. The
period is defined as the inverse of the frequency. There-
fore, by identifying the frequencies that hold most of the
energy, we can determine the most dominant periods.
Given the coefficients of the sequence, the periodogram
P is defined as the square of each coefficient: P(fk/N ) =
||B(fk/N )||2. To identify the most dominant frequency,
a thresholding approach is adopted. Once the domi-
nant frequencies are identified, mapping them to time
domain is required. A single coefficient corresponds to
the period range [Nk ,

N
k−1 ) in time domain. In order to

accurately determine the period, we use circular auto-
correlation.

Circular autocorrelation Circular autocorrelation R(τ )
examines the similarity of a sequence to its previous
values for different lags τ :

R(τ ) =
1
N

N∑
i=1

b(τ )b(i+ τ ) (9)

Given a period range [t1, t2) obtained using the peri-
odogram analysis, we check if there is a peak in
{R(t1),R(t1+1), . . . ,R(t2−1)} by quadratic function fit-
ting. If the obtained fitted function is concave, it reflects
the presence of a period t∗ = argmaxt1≤t<t2R(t).

C. PROBABILISTIC PERIODIC BEHAVIOR
The availability of a crowdsourced service at a given refer-
ence spot and given time is modeled using a probabilistic
model. For example, crowdsourced service #1 is located at
reference spot #1 at 10 AM with a probability 0.8. To deter-
mine the probability, let RF = rf1, rf2, . . . , rfr be the set of
reference spots of common period T . Given the sequence of
historical locations loc1, loc2 . . ., the sequence of presence
at the reference spots is q1, q2, . . . , qn where qi = j if
the crowdsourced service location loci is at reference spot
j. The sequence qi is further divided into m = n

T segments
set I = {Ii}. Let the timestamps set be T = {t1 . . . tT }.
We denote by M the probability matrix of size r × T where
each element represents the probability of a segment Ii being
at reference spot rfj at time tk . Assuming an independent cat-
egorical distribution prior, the probability that maximizes the
likelihood represents the best generative model that reflects
the probability of crowdsourced service being at reference
spot j at time tk . Each element of M is expressed as:

p(Ii in rfj at time tk ) =

∑
Ii 1Ii in rfj at time k

|I|
(10)

where 1 is the indicator function, that is p(Ii in rfj at time tk )
is the relative frequency of reference spot rfj at time tk over all
segments in I. A periodic behavior B [13] is thus defined as
a pair (T ,M) where T is the period andM is the probability
with respect to the set of reference spots associated to the
crowdsourced service.

Now, given a set of segments, we need to find the set of
segments generated by the same periodic behavior. In [13],

authors suggested using the agglomerative hierarchical clus-
tering approach [20] to group these segments where each
group represents a periodic behavior. The choice of distance
in in this particular type of clustering greatly influences the
final data partition. Authors proposed to use Kullback-Leiber
(KL) divergence [21], [22] as a distance between two distri-
butions. However, such divergence measure is reported to
be not a good estimator even in presence of high instances
drawn from the distributions [23]. In addition, KL divergence
is not symmetric thus not practical in many applications
where computation complexity is of paramount importance.
Furthermore, KL is not defined when the probability is equal
to 0. To cope with these issues, Li et al. [13] proposed
to use background variable sampled from uniform distribu-
tion and smoothed with a positive parameter to solve this
problem. For these particular reasons, we propose to use
Jensen-Shannon (JS) divergence. JS is used to overcome the
aforementioned drawbacks. Indeed, JS is symmetric, finite
and semi-bounded. Consequently, JS allows further reduc-
tion in computation complexity and does not require any
smoothed background variable. Given two distributions P1
and P2, JS is defined as:

JS(P1,P2) =
1
2
KL(P1, P̂)+

1
2
KL(P2, P̂) (11)

where P̂ = P1+P2
2 and KL(P1,P2) is defined as:

KL(P1,P2) = −
∑
x

P1(x)log
(P1(x)
P2(x)

)
(12)

For better understanding, let us consider the following statis-
tical analysis. From [13], given a set of segments I generated
by a distribution P1, we have:

KL(P1,P2) = −H (P1)−
1
|I|

log(P(I,P2)) (13)

where H (P1) is the entropy of P1 and P(I,P2) is the prob-
ability that the whole set of segments is generated by a
distribution P2. Using Eq. 11, we have:

JS(P1,P2) =
1
2
KL(P1, P̂)+

1
2
KL(P2, P̂)

=
1
2

(
− H (P1)−

1
|I|

log(P(I, P̂))
)

+
1
2

(
− H (P2)−

1
|I|

log(P(I, P̂))
)

×
1
2

(
− H (P1)− H (P2)

)
−

1
|I|

log(P(I, P̂))

(14)

Assuming H (P1) and H (P2) are constant, JS assesses how
likely the set of segments are generated by a mixture of dis-
tributions. This provides better modeling of human behavior
as a periodic behavior can be influenced by another one. For
example, a periodic behavior consists of being at office till
5 PM during weekdays and going for lunch at nearby restau-
rant during the break time from 12 PM to 1 PM. In terms of
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computation complexity, the agglomerative hierarchical clus-
tering involves calculating pairwise distance matrix. Given
the non-symmetric property of KL, this requires m(m − 1)
operations while it only requires m(m−1)

2 operations using JS
given its symmetric property. Once the set of segments are
grouped, each cluster represents the set of segments with the
same periodicity. Finally, we can calculate the confidence
quality conf as:

conf =

∑
Si p(Ii in rfj at time tk )

|Si|
(15)

V. OPTIMAL JOURNEY PLAN SELECTION
We present in the following the proposed algorithm to select
the best linear plan from source to destination. Algorithm 1
describes the details of the algorithm. The selection process is
as follows: for each line segment, we find the set of intersect-
ing reference spots during the journey from the source point
to destination point (Line 5). For each intersecting reference
spot, we identify its associated crowdourced services, i.e. the
services that frequently visit this particular spot. A reference
spot is a collection of reference points forming an area for
which we can calculate the convex hull i.e. the small set
that contains the reference points.. To derive the group of
crowdsourced service, we identify the intersecting convex
hulls of the other reference spots. Thus, the group of crowd-
sourced services are characterized by their intersecting refer-
ence spots. Next, for each crowdsourced service, member of
the group, we calculate its capacity and coverage (Line 7-8).
This allows us to calculate for each group its associated
qualities (Line 11-14). Finally, the overall WiFi coverage
quality of the line segment with respect to a reference spot
is calculated as follows:

qWiFi =
∑
i

qtot/L (16)

where L is the number of line segments composed to form the
linear plan.

VI. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our frame-
work. To the best of our knowledge, there are no available
spatiotemporal services data to assess our approach. There-
fore, we use publicly available mobility data. We assume that
under certain moving patterns such as walking, the obtained
traces would correspond to crowdsourced hotspot services.
In the following, we present the data, how it has been pro-
cessed and the evaluation performance of the framework.

A. DATA
We conduct our experiments on the Geolife GPS trajectory
dataset [24]. Traces were collected by Microsoft Research
Asia under the Geolife project. 178 users were tracked for
four years from April 2007 to October 2011 over 30 Chi-
nese cities, USA and Europe, although the majority of
the traces was collected in Beijing, China. Users include
University students, Microsoft employees, government staff

Algorithm 1 Journey Plan Selection Based on Crowdsourced
WiFi Coverage
1: Input Set of optimal linear plans, Set of reference spots
RF

2: Output: Best linear plan
3: for each linear plan do
4: for each line segment lsi do
5: RFint = RF ∩ lsi
6: for each rfi ∈ RFint do
7: Calculate cov(Srfi ) (Eq. 1).
8: Calculate cap(Srfi ) (Eq. 2).
9: RF int = rfi ∩ RF
10: Group = {}
11: for each rfj ∈ RF int do
12: Calculate cov(Srfj ) (Eq. 1).
13: Calculate cap(Srfj ) (Eq. 2).
14: Insert Srfj in Group

15: Calculate q_cov(Group) (Eq. 3)
16: Calculate q_cap(Group) (Eq. 4)
17: Calculate conf (15)
18: Calculate q_fo
19: Calculate q_tot (Eq. 5)
20: Calculate q_WiFi (Eq. 16)
21: Best linear plan = argmax(q_WiFi)

and employees of other companies. Each track is a set of
time stamped geolocation (latitude and longitude). A total
of 17621 trajectories were collected, 91% of which have a
sampling rate of 1 to 5 seconds or 5 to 10 meters. Users
were trackedwhile conducting different activities: walk, bike,
bus, car&taxi, train and plane. More than 42% (5,436 hours
of 12,856 hours) of the labeled traces correspond to the walk-
ing activity. We assume that the walking traces correspond to
crowdsourced WiFi coverage service. To avoid the sparsity
of walking records, we also assume that data are sampled
at consecutive times without any missed samples as it is
challenging to detect period of sparse data [25] .

To efficiently extract the reference spots, we convert the
latitude and longitude traces to Cartesian axis with respect
to a reference point. Without loss of generality, we choose
Microsoft China Research And Development Group Head-
quarters Building 2 in Beijing as the reference point. It is
the point whose latitude latr = 39.980888 and longitude
longr = 116.310160. Assuming that the earth radius R =
6371 103 m, the new longitude longn is calculated using the
observed longitude longo and latitude lato:

longn=
R× π
180
×

(
longo − longr

)
× cos

(
lato×

π

180

)
(17)

The new latitude latn is derived from the observed latitude
lato:

latn =
(
lato − latr

)
×
R× π
180

(18)
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FIGURE 5. Simulated movement with two potential reference spots.

For the set of linear plans, we establish a scenario in which we
receive a request to travel from China Academy of Sciences
Institute of Automation (latitude = 39.980197, longitude =
116.333305) to Peking University (latitude = 39.986914,
longitude = 116.305880). We assume user preferences are
relaxed in terms of journey plan (long waiting time and walk-
ing distance are accepted) to include maximum candidate lin-
ear plans. By applying STA∗ algorithm, four linear plans are
available: three direct linear plans namely Bus 641, 333 and
913, and one linear plan requires a connection between two
bus services: 466 and 608. For Bus 641 plan, it includes
walking 4 min to the departure station and 6 min to the
destination from the arrival station. Bus 333 service includes
10 min walking to the departure station and later 1 min to
the destination. The third plan requires 11 min walking to
the departure station and later 7 min to the destination. For
the fourth plan, it requires 5 min walking to the departure
station of Bus 466, then 1 min walking to transfer to Bus
608, waiting 9 min for Bus 608 arrival and finally 1 min
walking to the destination. To evaluate the accuracy of the
reference spot detection based on JS divergence, we use a
ground truth synthetic data depicted in Fig.5. These data
simulate movement on hourly basis in 200 × 200 area of
study and with well-established behavior: two reference spots
with same period: T = 24. We deliberately set the traces as
follows: between 0:00AMand 8AM, themovement occurs at
Reference Spot 2 while it occurs at Reference Spot 1 between
5:00 PM and 0:00 AM. In between, the movement randomly
occurs in the area of study.

B. REFERENCE SPOTS DETECTION
First, we assess the performance of the reference spot detec-
tion based on JS against the ground truth dataset. Next,
we analyze the periodic behavior of users using the Geolife
dataset traces.

1) PERFORMANCE EVALUATION
Fig. 6 depicts the reference spots associated to the synthetic
ground truth data. The JS-based reference spot algorithm is

FIGURE 6. Two reference spots are detected.

FIGURE 7. Contours of the density estimate.

FIGURE 8. Circular autocorrelation of the synthetic movement.

able to detect both two reference spots. We illustrate in Fig. 7
the density estimate of the movement. The circular auto-
correlation shown in Fig. 8 reveals a pick that corresponds
to a period T = 24. The JS based periodic behavior is
depicted in Fig. 9. For the first 8 hours, the movement is
essentially located at Reference spot 1 with high probability:
p(Ii in rf2 at time tk ) > 0.95 (1 ≤ tk ≤ 8, i ∈ [1, 8]).
We notice no activity that occurs at Reference spot 1. During
the last 8 hours of the day, the activity occurs in Reference
spot 2 with high probability (> 0.98). We notice no activity
during this time at Reference spot 2. During the rest of the
day, the activity occurs in unknown places. This behavior
perfectly coincides with the simulated behavior deliberately
established in the synthetic data.

We further evaluate the time complexity of the refer-
ence spot detection based on both KL and JS approaches.
Fig. 10 depicts the execution time variation with respect to the
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FIGURE 9. Periodic behavior during the period T = 24.

FIGURE 10. Execution time with respect to the number of points.

number of points in the synthetic data. The JS based approach
requires less time compared to theKL based one thanks to the
symmetry of the divergence measure.

2) GEOLIFE DATA ANALYSIS
We randomly choose two traces for analysis and identifica-
tion of reference spots and the potential periods of visiting.
We illustrate in Fig. 11 the walk traces of user #105. A visual
inspection reveals that we have four potential reference spots
since there are four dense areas of traces. Fig. 12 illustrates
the reference spots detected. In fact, based on his pattern,
user #105 frequently visits spots 1 and 3. An investigation
of the map shows that reference spot 1 corresponds to an
area within Renmin University of China in Haidian District
of Beijing. Thus, it is very likely that these traces correspond
to a university student. The periodicity of this spot is equal to
49 hours, i.e. user #105 participates in this experiment while
walking every 2 days. Reference spot 3 corresponds to a busi-
ness district of shopping malls and attractions around CBD
Historical and Cultural Park. User #105 visits this area every
162 h i.e. on a weekly basis. Fig. 13 shows the probability
of availability with respect to reference spot 1. We notice
that in time interval [1, 10], user is located in reference spot
1 with a probability ≈ 0.45. This probability gets lower
and lower till t = 40. The ’Unknown’ probability reflects

FIGURE 11. Walking traces of user #105.

FIGURE 12. Reference spots of user #105. Points are normalized.

FIGURE 13. Behavior of user #105 during the period of T = 49.

the availability in other reference spots (reference spot 3 for
instance.). The behavior with respect to reference spot 3 is
depicted in Fig. 14. We notice that most of the activities at
reference spot 3 occur at the end of the period.

We further provide analysis for user #125. Fig. 15 illus-
trates the GPS traces. The algorithm reveals two reference
spots as illustrated in Fig. 16. By investigating these spots
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FIGURE 14. Behavior of user #105 during the period of T = 162.

FIGURE 15. Walking traces of user #125.

on a map, we discover that spot 1 corresponds to Tsinghua
University located in Haidian District, Beijing China, specif-
ically Tsinghua Park. Thus, it is very likely that these traces
correspond to a university student. User #125 frequently
visits and walks across this reference spot every 296 hours
or 12 days and 8 hours. Reference spot 2 corresponds to
a residential area. User #125 visits and share his informa-
tion in this area with a period of 91 hours or 3 days and
19 hours.

C. OPTIMAL JOURNEY PLANNING
In the following, we conduct the scenario under which,
we have a request to travel from China Academy of Sciences
Institute of Automation to Peking University as detailed in
section VI-A. Four potential linear plans are found. Ignoring
the desire for WiFi access, one would automatically pick
the first plan as it requires less travel time. For simulation
purposes, we set Rc = 3m, Rs = 10m and the constant
k = 0.5. We sample the capacity of each crowdsourced
service from uniform distribution. To determine the inter-
sected reference spots by the linear plan, we define for each
reference spot its boundary obtained by its convex hull. The
convex hull is the smallest convex set containing all points
in the reference spots. Thus, finding the intersecting lines
become a simple geometrical problem. We assume that the

FIGURE 16. Reference spots of user #125. Points are normalized.

FIGURE 17. Quality of WiFi coverage of the candidate linear plans.

crowdsourced service is located at the center of its reference
spot which enables the calculation of the coverage quality
cov. We also set equal contribution of qualities of a group
i.e. wi = 1 for i = 1 . . . 5 (Eq. 5).
Our algorithm findings are illustrated in Fig. 17. Results

show that although the journey plan involving both Bus
466 and Bus 608 requires a transit between two vehi-
cles, it exhibits the best quality in terms of WiFi cover-
age. Bus 641 service, although has the less travel time,
exhibits the least WiFi connectivity. We further evaluate
the time complexity of the proposed algorithm. Fig. 18
shows that for all available linear plans, the algorithm
requires 10 ms to calculate the WiFi quality of each linear
plan which includes finding the intersecting reference spots,
the groups of crowdsourced services and the corresponding
quality.

D. DISCUSSION
The proposed framework builds a second service layer on top
of the journey plan service to provide connectivity during the
journey. The framework can be characterized as best effort
as it does not ensure connectivity all time. Indeed, the linear
plan should intersect at least one reference spot associated to
a crowdsourced service. However, with higher participation
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FIGURE 18. Execution time versus number of linear plans.

from the crowd, the area of study can be fully covered by the
crowdsourced services. In addition, one may include static
WiFi services such as the ones provided in public areas,
coffee shops, etc. From periodic behavior perspective, the
JS-based approach is able to accurately mine the periodicity
of the movement as confirmed by the synthetic data exper-
iment with less time complexity compared to the original
approach. One downside of this approach is the requirement
of mining continuously sampled time stamped locations.
In addition, with presence of sparse data, mining periodicity
becomes a challenging task. As shown by the Geolife exper-
iments, the probability of availability at a given reference
spot in some cases is neither high nor low which introduces
uncertainty about the availability of crowdsourced services.
This is explained by the complexity of human behavior as it
is much more complex to model in comparison to animals for
example whose behavior is easier to capture.

VII. CONCLUSION
This paper proposed a probabilistic framework to select the
optimal journey plan based on the quality of WiFi offered
by crowdsourced services along the journey. The proba-
bilistic model uses the periodic movement behaviors of ser-
vices to derive the availability of crowdsourced services.
This model is based on Jensen-Shannon divergence rather
than Kullback-Leiber to reduce the computational cost as
Jensen-Shannon is symmetric. Experimental results on syn-
thetic data demonstrated the accuracy of the Jensen-Shannon-
based approach in mining the periodic behavior. We also
established a scenario using real-world GPS traces and pub-
lic transport scenario. In future work, we will augment the
proposed framework to take into account static WiFi services
such as the ones available in public attractions areas and
coffee shops. We will also study the case of sparse GPS trace
data for mining the periodic movement behaviors.
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