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ABSTRACT Capsule network (CapsNet) can recognize the objects by encoding the part–whole relationships
in a way similar to our human perceptual system and has already shown its great potential in image
classification tasks. However, it is limited to the real domain while the complex numbers having much
richer representational capacity and facilitating the noise-robust memory retrieval mechanisms. There-
fore, we propose two architectures: Complex-valued Dense CapsNet (Cv-CapsNet) and Complex-valued
Diverse CapsNet (Cv-CapsNet++), each of them consists of three stages. In the first stage, multi-scale
complex-valued features are obtained by the restricted dense complex-valued subnetwork. Particularly,
Cv-CapsNet++ utilizes a three-level Cv-CapsNet hierarchical model to extract the multi-scale high-level
complex-valued features in order to adapt to the complicated datasets. In the second stage, these complex-
valued features are encoded into the complex-valued primary capsules, Particularly, Cv-CapsNet++ encodes
the complex-valued features from different hierarchies into the multi-dimensional complex-valued primary
capsules. In the third stage, we generalize the dynamic routing algorithm to the complex-valued domain
and employ it to fuse the real- and imaginary-valued information of complex-valued primary capsules.
The experimental results show that the proposed architectures lead to fewer trainable parameters, better
performance, and fewer iterations during training than Real-valued CapsNets (Rv-CapsNets) with similar
structure and original CapsNet on FashionMNIST and CIFAR10 datasets.

INDEX TERMS Capsule network, complex-valued capsule network, CNNs, deep learning.

I. INTRODUCTION
Convolution Neural Networks (CNNs) [1] have extensive
learning capacity and can infer the attributes of input images
without prior knowledge, which makes them the state-of-the-
art architectures in many image classification tasks. How-
ever, CNNs have several drawbacks specially related to the
sub-sampling layers. Sub-sampling layers often give a small
amount of translation invariance but lose the location and
pose information, which leads to the fact that their parameters
obtained from data training are more inclined to memorize
and reproduce features rather than understand them, in partic-
ular, ignoring spatial relationships between them which can
be valuable for image classification.

To address the drawbacks of CNNs, a novel architecture:
CapsNet [2] abandons sub-sampling layers to preserve loca-
tion and pose information, encodes the features and spatial
relationships of features with capsules and transformation
matrices and achieves translation equivariance. A CapsNet is
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more robust to attacks of samples with misled location and
pose information than CNNs. However the original CapsNet
also has its shortcomings, as it uses a shallow network to
extract features, which makes it unsuitable for complicated
datasets and its large convolutional kernels also increases its
trainable parameters.

Furthermore, inspired by densely connected convolution
networks [3], the dense capsule network [4] replaces the
first convolutuion layer of original CapsNet with a 8-level
dense convolution subnetwok to better adapt to complicated
datasets and a 2-level dense convolution subnetwork is shown
in Fig.1. The dense convolution subnetwork utilizes smaller
convolution kernels and dense connections, which makes it
capable of extracting multi-scale features including struc-
ture features and semantic features, and greatly decreases
the number of trainable parameters and iterations during
training. Recently, Trabelsi et al. [5] demonstrate that the
deep complex-value networks are competitive with real-value
networks. Because complex numbers exhibit a richer rep-
resentational capacity [6], better generalization characteris-
tic [7], and could also facilitate noise-robust memory retrieval
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FIGURE 1. Dense convolution subnetwork.

mechanisms [8]. Experiments on image classification have
shown that the real-valued networks and complex-valued
networks are comparable. Further experiments have revealed
that a complex-valuedmodel with a real-valued batch normal-
ization increases the accuracy, while a real-valuedmodel with
a complex-valued batch normalization will also increases the
accuracy. We will conduct some expanded experiments on
our models in this paper.

Inspired by these observations, we propose two archi-
tectures Cv-CapsNet and Cv-CapsNet++. In these frame-
works, we propose the restricted dense complex-valued
convolution subnetwork and complex-valued capsule encod-
ing unit. Firstly the restricted dense complex-valued convo-
lution subnetwork is applied to extract multi-scale features
from input images. Particularly, Cv-CapsNet++ utilizes a
3-level Cv-CapsNet hierarchical model to extract multi-scale
high-level complex-valued features to adapt to complicated
datasets such as CIFAR10. Secondly, these complex-
valued features are encoded into the complex-valued pri-
mary capsule, while in Cv-CapsNet++ complex-valued
features extracted at different hierarchies are encoded into
complex-valued primary capsules of different dimensions.
Notably, low-level complex-valued features are encoded by
high-dimensional complex-valued primary capsules, while
high-level complex-valued features are encoded by low-
dimensional complex-valued primary capsules. Thirdly,
we generalize the dynamic routing algorithm to complex-
valued domain and employ it to fuse the real-valued and
imaginary-valued information of complex-valued primary
capsules. The Cv-CapsNet++ fuses the features of low-level
digital capsules and the high-level digital capsules into the
final digital capsules to represent information of instantiation
and the probability that an entity exists.

In summary, this paper has following contributions:
(i) We propose restricted complex-valued dense network and
complex-valued capsule encoding unit. (ii) We generalize the
dynamic routing algorithm to complex-valued domain and
employ it to fuse the real-valued and imaginary-valued infor-
mation of complex-valued primary capsules, which greatly
decreases the number of trainable parameters of complex-
valued routing models than real-valued routing models with
same dimension capsules. (iii) We propose Cv-CapsNet and
Cv-CapsNet++, which leads to fewer trainable parameters,

better performance, and fewer iterations during training than
Rv-CapsNets with similar structure and original CapsNet on
FashionMNIST and CIFAR10 datasets.

II. RELATED WORK
Since the CapsNet [2] was published, its great potential in
image classification has received a lot of attention, as the
CapsNet can encode relationships between local parts and
the whole object with transformation matrices, which enables
the CapsNet to understand the whole object through the part-
whole relationships. Soon afterwards, Hinton et al. [9] pro-
pose another matrix capsule network, and this matrix capsule
network can encode relationships between the entities and
the viewers with transformation matrices, which equips the
model with the property of viewpoint equivariance. To adapt
it further for high dimension datasets, Xi et al. [10] give a lot
of advice on improving the CapsNet and explore the effects of
a variety of modified models. Experiments demonstrate that
stacking more convolution layers and ensemble averaging
make significant improvements. Reference [11] formulates
the routing strategy of dynamic routing and proposes another
routing strategy that works well but is sensitive to a dynamic
hyper-parameter which makes the model training very hard.
Inspired by inception block [12]–[15], [16]–[18] all utilize
inception blocks to modify convolution layers of CapsNet,
as the inception block can extract multi-scale information
from images. However, all these improvements are limited
in real-valued domain.

Moreover, the capsule network has been applied in many
fields such as agricultural, transportation, industry and medi-
cal diagnosis etc. Li et al. [19] adopt the CapsNet to recognize
the rice images captured by unmanned aerial vehicle for
monitoring the growth of rice and preventing the diseases and
pests. Kim et al. [20] incorporate the CapsNet for vehicular
spatio-tempora characteristics prediction of traffic flow in
complex road networks, Paoletti et al. [21] develop a CNN
model extension that redefines the concept of capsule units
to become spectral-spatial units specialized in classifying
remotely sensed image data. Zhu et al [16] use it to diag-
nosis bearing fault for rotating machine health monitoring.
Xu et al. [22] find an effective model based on capsule
network to capture more discriminative features and promote
gait recognition performance. Wang et al. [23] explore a Cap-
sule network for protein post-translational modification site
prediction. References [24], [25] successfully introduce the
CapsNet to diagnose of lung cancer and brain tumor, which
takes advantage of an important property of the CapsNet as
it can perform well on small datasets while medical images
database are scarce and precious.

III. COMPLEX-VALUED CAPSULE NETWORKS
To design a Cv-CapsNet, we first present restricted dense
complex-valued convolution subnetwork, complex-valued
capsule encoding unit and complex-valued dynamic routing
properties.
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A. RESTRICTED DENSE COMPLEX-VALUED
CONVOLUTION SUBNETWORK
This paper [5] presents a method to simulate complex-valued
convolution with real-valued convolution, If a complex-
valued filter matrix is W = A + iB, and a complex-valued
vector h = x + iy then

W ∗ h = (A+ iB) ∗ (x + iy) (1)

We can use real-valued matrices to present the real and imag-
inary parts [

<(W ∗ h)
=(W ∗ h)

]
=

[
A −B
B A

]
∗

[
x
y

]
(2)

Since the real part and imaginary part of output of complex-
valued convolution are two separate parts, in the complex-
valued dense subnetwork, as the Fig.2 shows, the real part
and imaginary part of every complex-valued convolution
layer are separated and simulated by two real-valued parts.
The real part and imaginary part of every complex-valued
convolution layer are separately concatenated in generation
order to the real part and imaginary part of the next complex-
valued convolution layer in a feed-forward manner, and then
add up to make a final complex-valued convolution layer.
Only in this way can we guarantee the sustainability of
complex-valued convolution operations and the correctness
of complex-valued feature encoding, thus we call this sub-
network a restricted dense complex-valued convolution sub-
network. And we employ it to extract multi-scale feature
including original feature, structure features and semantic
features.

FIGURE 2. Restricted dense complex-valued convolution subnetwork.

Define CReLU as

CReLU (Z ) = ReLU (<(Z ))+ iReLU (=(Z ))

which outperforms other complex-valued activation [5].
In this paper, we select CReLU as the activation function.

B. COMPLEX-VALUED CAPSULE ENCODING UNIT AND
COMPLEX-VALUED DYNAMIC ROUTING SUBNETWORK
In the Cv-CapsNet, a complex-valued capsule is a group
of complex-valued neurons and the activity vector of these
neurons are denoted as complex-valued vectors uj

uj = [<(uj0)+i=(uj0),<(uj1)+i=(uj1), . . .<(ujn)+i=(ujn)],

in which

<(uj) = [<(uj0), . . .<(ujn)]

=(uj) = [=(uj0), . . .=(ujn)]

The length of uj represents the probability that the entity
exists, which we actually use a real-valued vector

−→uj = concat(<(uj),=(uj)) = [<(uj),=(uj)]

to simulate for
∥∥−→uj ∥∥ = ∥∥uj∥∥. The concat() function concate-

nates the real part and imaginary part.
The complex-valued capsule encoding unit takes the out-

puts of feature extracting stage as inputs. The outputs of the
same complex-valued convolution kernels will be encoded
into same component complex-valued capsules. As illustrated
in Fig.3, the real part and imaginary part of features are evenly
sorted into several components in order. Concatenating one
real component and one imaginary component corresponding
to the real component forms a component complex-valued
primary capsules.

FIGURE 3. Complex-valued Capsule Encoding Unit. Twelve
complex-valued features are encoded into three components 8D
complex-valued primary capsule.

FIGURE 4. In a complex-valued dynamic routing subnetwork, all the
complex-valued vectors are simulated by a twice length real-valued
vectors.

In the complex-valued dynamic routing, lower-level
complex-valued capsules route their information to higher-
level complex-valued capsules, that agree the most with
their predictions via the mechanism named complex-valued
dynamic routing. Fig.4 shows two lower-level complex-
valued capsules sending their outputs to the proper higher-
level complex-valued capsule, as uj represents lower-level
complex-valued capsules, ûj|i represents the predictive
complex-valued vectors obtained via Eq(3), where the real
part and imaginary part from the same complex-valued
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FIGURE 5. Cv-CapNet for FashionMINST.

primary capsule are fused by the same transformation
matrix Wij, which fuses the real-valued and imaginary-
valued information of complex-valued primary capsules,
and decreases a half of the number of trainable parameters
in complex-valued routing models than real-valued routing
models with same dimension capsules. In this way, it speeds
up training and reduces computation.

ûj|i = concat(Wij · <(uj), Wij · =(uj)) = Wij ·
−→uj (3)

Then two types of predictive complex-valued vectors are
weighted by cij to sum up via Eq(4), the coefficients cij
are iteratively tuned by complex-valued dynamic routing
via Eq(5), where the bij initial value is 0.

−→sj =
∑
i

cij · ûj|i (4)

cij =
exp(bij)∑
k exp(bik )

, bij = bij + ûj|i ·
−→vj (5)

Define sj = [<(sj0)+ i=(sj0), . . .<(sjn)+ i=(sjn)], in which

<(sj) = [<(sj0), . . .<(sjn)]

=(sj) = [=(sj0), . . .=(sjn)]

−→sj = [<(sj),=(sj)],
−→vj = squash(−→sj ), vj = squash(sj).

Since we have

−→vj =

∥∥−→sj ∥∥2
1+

∥∥−→sj ∥∥2 · [<(sj),=(sj)]∥∥−→sj ∥∥ (6)

vj =

∥∥sj∥∥2
1+

∥∥sj∥∥2 · [<(sj0)+ i=(sj0), . . .<(sjn)+ i=(sjn)]∥∥sj∥∥
(7)∥∥−→sj ∥∥ = ∥∥sj∥∥ (8)

we can use the real-valued vector −→sj to simulate the process
of a complex-valued vector sj passing through the sqaush
activation, which prevents the length of output vectors from
exceeding 1. After that we shall achieve the final output of
parent complex-valued capsules vj.

C. DESIGN COMPLEX-VALUED CAPSULE NETWORKS
The Cv-CapsNet consists three stages. In first stage,
we obtain the complex-valued input by concatenating the
real component input and initial imaginary component input,
and the initial imaginary components of input can learn by
performing the operations presented with a single real-valued
residual block [5].

BN → ReLU → Conv→ BN → ReLU → Conv

And these complex-valued samples will be fed to a restricted
dense complex-valued convolution subnetwork, which con-
tains 8 levels of complex-valued convolutions and each of
those convolution levels generates 16 complex-valued fea-
tures, followed by a complex-valued convolution of 9 × 9
with stride of 2, which results in 128 complex-valued fea-
tures. In the second stage, the outputs of first stage will
be inputs of complex-valued primary capsule encoding unit,
and we will get 30 component complex-valued primary cap-
sules with dimensions of 8. In the third stage, the complex-
valued dynamic routing fuses the information of real part
and imaginary part of complex-valued primary capsules and
finally we shall get 10 16D complex-valued digit capsules.
Fig.5 shows the detailed pipeline of the proposed architecture
for FashionMINST.

We also designed a Cv-CapsNet++, which can extract
various scales high-level information from raw images.
It is a 3-level Cv-CapsNet hierarchical model, in which
a Cv-CapsNet model is created and its intermediate out-
put is used as an input to the second Cv-CapsNet which
in turn generates a output fed to the third Cv-CapsNet,
There is one complex-valued capsule encoding unit in each
Cv-CapsNet, which results in 10 component complex-valued
primary capsules. Complex-valued features extracted at dif-
ferent hierarchies are encoded into complex-valued primary
capsules of different dimensions, low-level complex-valued
features will be encoded by high-dimensional complex-
valued primary capsules, high-level complex-valued features
will be encoded by low-dimensional complex-valued pri-
mary capsules. we will obtain 16D, 12D, 8D complex-
valued primary capsules respectively from the low-level to
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FIGURE 6. Cv-CapsNet++ for FashionMINST.

the high-level. there are two reasons for doing so. The
reason one: just like the human perceptual system, the super-
ficial cognition extracted from low-level is more diversi-
fied and expressive and the deep cognition extracted from
high-level is more simple and discriminative. The sec-
ond reason is that we will fuse the low-level digital cap-
sules and the high-level digital capsules into the final
digital capsules to represent the instantiation the prob-
ability that the entity exists, elements of the high-level
capsules have a higher weight which means that dimension
of high-level capsules should be lower. And we have do
some comparison experiments to prove this encoding makes
structure more robust. A complex-valued convolution of
5× 5 with stride of 2 is applied to previous two Cv-CapsNets
to reduce the size of features fed to the next layer, while
in the third Cv-CapsNet a complex-valued convolution of
3 × 3 with stride of 1 is applied. 3 complex-valued primary
capsule layers are fused into 8D, 6D, 4D complex-valued
digit capsules respectively by complex-valued dynamic rout-
ing. Finally, we concatenate these 3 complex-valued digit
capsule layers to fuse into 10 18D complex-valued capsules.

In the Cv-CapsNets, the Loss function is defined as:

Lk=Tkmax(0,m+−
∥∥−→vk ∥∥)2+λ(1−Tk )max(0, ∥∥−→vk ∥∥−m−)2

where Lk is loss function for a complex-valued capsule k and
Tk = 1 if a class k is present and 0 otherwise, Termsm+,m−,
λ are hyper parameters to be indicated before the training.

IV. EXPERIMENTS
A. DATASETS
To test our proposed approach, we have used the
FashionMNIST and CIFAR10 datasets, FashionMNIST
includes 70K examples in size of 28x28x1, 60K examples
and 10K examples are assigned into the training and test-
ing set, which are associated with a label from 10 classes.
CIFAR10 includes 60K examples in size of 28x28x3, 50K

examples and 10K examples are assigned into the training and
testing set, which are associated with a label from 10 classes.

B. SYSTEM SETUP
We implement the Cv-CapsNet and Cv-CapsNet++ using
the Tensorflow and Keras. All the experiments were per-
formed using GeForce GTX1080 TI with 11GB RAM. In all
the experiments the mini-batch size is 128, we did not use
any data augmentation scheme and repeated the experiment
3 times, the learning rate is 0.001 and decay rate 0.9 with
Adam as optimizer. we set different hyper-parameters for
training FashionMNIST and CIFAR10: the number of iter-
ations is 25 and 50 in order to quickly converge to optimal
solution.

The baseline model is original CapsNet with 30 channels
of primary capsules. The architecture we are trying to propose
here requires a trade-off between the number of trainable
parameters and width (number of convolutional filters in
each layer) given a higher accuracy expectation. Specifically,
our complex-valued architecture for a complex-valued dense
convolution subnetwork starts with 16 complex filters (32 real
filters) per convolution layer in the initial stage. In the real-
valued counterpart, its dense convolution subnetwork also
starts with 16 real filters per convolutional layer. Dimensions
of capsules of the Cv-CapsNets are the same as Rv-CapsNets.

C. RESULTS
The accuracy is defined as:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
in which, TP means the number of true positive samples,
TN means the number of true negative samples, FP means
the number of false positive samples, FN means the number
of false negative samples, and we use it to evaluate models
in this paper. Fig.7 shows the accuracy curves of predictions
provided by the Cv-CapsNets and Rv-CapsNets with sim-
ilar structure and original CapsNet on FashionMNIST and
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FIGURE 7. The test prediction accuracy curves on FashionMNIST and CIFAR10.

TABLE 1. Comparisons on FashionMNIST and CIFAR10. NR-No Reconstruction SubNetwork, E-Epochs.

CIFAR10 datasets. The FashionMNIST is a relatively simple
dataset, as it has been normalized and each sample is a single
channel image. This regularization alleviates the complexity
of dataset, making it easy to learn. In contrast to FashionM-
NIST, CIFAR10 is a more complicated dataset, and there are
a lot of complicated spatial features and noises. The experi-
ment results show that the Rv-CapsNet and Rv-CapsNet++
performs better than Cv-CapsNet and Cv-CapsNet++ with
similar structure and original CapsNet on two datasets and
have a greater improvement onCIFAR10 dataset.Meanwhile,
the CapsNet++ achieves a faster convergence rate than the
CapsNet. The results reveal that the CapsNet++ is more
expressive than the CapsNet because of its multi-hierarchy
structure, which has rich feature extraction and coding capa-
bility.

Table 1 shows the comparison of the best accuracy and
the number of trainable parameters. The performance of the
Rv-CapsNet is better than that of the original CapsNet on
two datasets. The best accuracy of Rv-CapsNet is higher than
that of Cv-CapsNet by -0.42% and 2.89% on FashionMNIST
and CIFAR10 datasets respectively. The best accuracy of
Rv-CapsNet++ is higher than that of Cv-CapsNet++ by
0.21% and 1.43% on FashionMNIST and CIFAR10 datasets
respectively. The best accuracy of Cv-CapsNet is higher than
that of original CapsNet by 2.28% and 3.68%on FashionM-
NIST dataset and CIFAR10 datasets respectively. The best
accuracy of Cv-CapsNet++ is higher than that of original
CapsNet by 2.35% and 12.65% on FashionMNIST datasets
and CIFAR10 datasets respectively.

In the Cv-CapsNet and Cv-CapsNet++, lots of small con-
volution kernels are utilized by means of dense complex-
valued convolution subnetwork instead of large convolution
kernels, and the modified the Complex-valued Dynamic
Routing is applied. All of these help reduce the number
of parameters and promote the capacity of the model to
extract deep features. The number of parameters of original
CapsNet is 1.78 times and 1.93 times of Cv-CapsNet on
FashionMNIST dataset and CIFAR10 datasets respectively,
the number of parameters of original CapsNet is nearly
2.5 times and 3 times of Cv-CapsNet++ on FashionMNIST
dataset and CIFAR10 datasets respectively, and the test per-
formance of original CapsNet is inferior to Cv-CapsNet and
Cv-CapsNet++.

Ablation studies were performed in order to compare
real-valued batch normalization and complex-valued batch
normalization on our models. On FashionMNIST and
CIFAR10 datasets, the real-valued representation performs
slightly better than its complex counterpart. In general,
the obtained results for both representation are quite com-
parable. We can observe from the Table 2 and Table 3 that
replacing a complex-valued batch normalization by a regular
one increased the accuracy of the complex-valued convo-
lutional models and replacing a real-valued batch normal-
ization by a complex-valued one increased the accuracy of
the real-valued convolutional models, Table 2 and Table 3
outline the comparisons between obtained accuracies of
Cv-CapsNets, Rv-CapsNets with similar structure on Fash-
ionMNIST and CIFAR10 datasets,
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TABLE 2. Comparsions on FashionMNIST. BN-Batch Normalization, NR-No Reconstruction SubNetwork, E-Epochs.

TABLE 3. Comparsions on CIFAR10. BN-Batch Normalization, NR-No Reconstruction SubNetwork, E-Epochs.

Table 2 shows the comparison of the best test accu-
racy and the number of trainable parameters on Fashion-
MNIST dataset. In general, the obtained results from both
propositions are quite comparable. The performance of the
Cv-CapsNet with complex-valued batch normalization is
slightly better than that of Rv-CapsNet, while the number
of parameters of Rv-CapsNet is 1.78 times of Cv-CapsNet.
The best accuracy of Cv-CapsNet++ with real-valued batch
normalization is slightly higher than that of Rv-CapsNet++,
while the number of parameters of Rv-CapsNet is 1.62 times
of Cv-CapsNet++.
Table 3 shows the comparison of the best test accuracy

and the number of trainable parameters on CIFAR10 dataset.
The performance of the Rv-CapsNet with real-valued batch
normalization is better than that of Cv-CapsNet, while
the number of parameters of Rv-CapsNet is 2.0 times of
Cv-CapsNet. The best accuracy of Cv-CapsNet++ with
real-valued batch normalization is higher than that of
Rv-CapsNet++ by 1.06%, while the number of parameters
of Rv-CapsNet++ is 1.8 times of Cv-CapsNet++.
Based on the results of all these experiments, and taking

number of the parameter of the models into consideration,
we believe that the complex-valued capsule model is bet-
ter, Cv-CapsNets outperform Rv-CapNets with same struc-
ture and original CapsNet, and Cv-CapsNet++s outperform
Rv-CapNet++s with same structure and Cv-CapsNets, par-
ticularly, a Cv-CapsNet++ model with real-valued batch

normalization has a higher accuracy and fewer iterations
during training and fewer trainable parameters.

V. CONCLUSION
In this work, we propose restricted complex-valued dense
network and complex-valued capsule encoding unit. We gen-
eralize the dynamic routing algorithm to complex-valued
domain. We propose Cv-CapsNet and Cv-CapsNet++, both
leading to fewer trainable parameters, better performance,
fewer iterations during training than Rv-CapsNets with
similar structure and original CapsNet on FashionMNIST
and CIFAR10 datasets. we have investigated and tested
Cv-CapsNets, and demonstrated that the Cv-CapsNets out-
performs Rv-CapNets with same structure and original
CapsNet. In the future work, we plan to reduce the compu-
tational complexity of these current models.
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