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ABSTRACT Fifth generation (5G) needs to support plenty of applications and services with a wide
variety of quality of service requirements. The deployment of ultra-dense small cells’ networks as a part
of the heterogeneous networks architecture is one of the key technologies to achieve this. In such a dense
architecture, associating devices with the network is challenging. The traditional cell association algorithms
use signal-to-interference-plus-noise ratio metric. However, this is not appropriate for 5G, especially with
the reduction in the cells size and the growing number of the user equipment (UE) and the Internet-of-
Things (IoT) devices. In this paper, we propose a distributed multiclass user-driven cell association algorithm
based on the multi armed bandit game (CA-MAB) to connect devices with different requirements to the
network. Here, we focus on two classes of devices: UE devices and low-power IoT devices. The proposed
algorithm is evaluated in static and mobile environments, where the convergence and equilibrium are
achieved. Our performance results are validated against the central cell association method that is complex
and requires a huge amount of information exchange. The results show that CA-MAB throughput and energy
efficiency are within 10% of the centralized solution. These values increase by less than 5% in the case of

mobility. However, they reduce with more network densification.

INDEX TERMS 5G, ultra-dense networks, cell association, energy harvesting, game theory.

I. INTRODUCTION

Mobile data traffic continuously grew by 74% in 2015 and
is expected to multiply eight times by 2020. Only 26%
smart-phones (from global mobile devices) generate about
88% of the entire mobile data traffic [1]. Users’ continuous
changing behavior and the emerging high bandwidth-hungry
applications including, but not limited to, video streaming and
multimedia have put future wireless cellular networks under
tremendous pressure [2]. The expected increase in wireless
communications traffic volume motivates a lot of research
on the fifth generation (5G) cellular networks. Eight major
requirements of 5G systems are identified through different
industries and academic research initiatives, those require-
ments are represented in offering several Gbps data rates in
real networks, 1 ms round-trip latency, high bandwidth in unit
area, an enormous number of connected devices, 99.999%
of perceived availability, almost 100% coverage for anytime
anywhere connectivity, reduction in energy usage by almost
90% and high battery life [3]. 5G architecture is required
to break the Base Station (BS) centric network paradigm in

The associate editor coordinating the review of this manuscript and
approving it for publication was Parul Garg.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

order to achieve the sub-millisecond latency requirements
and to overcome the traditional wireless spectrum bandwidth
limitation. This can be done by moving from BS centric to a
device-centric network.

Mobile cellular networks are designed to support
data-intensive Human-Type Communications (HTC). HTC in
general, User Equipment (UE) Mobile devices traffic specif-
ically, differs than Machine-Type Communications (MTC)
traffic from its size, quality, sensitivity, and requirements.
Therefore, cell association mechanism should take communi-
cation types and classes requirements into consideration [4].
MTC as the Internet of Things (IoT) applications typically
exchange small data packets in smart environments; the
energy consumption required to transmit small data packets
over cellular communication is considered a serious obsta-
cle that faces large-scale IoT deployment. Heterogeneous
Network (HetNets) represents the major direction of 5G
network design. Cell association is a major part of 5G Het-
Nets resource management [5]. Traditional cell association is
performed depending on Signal-to-Interference-Plus-Noise
Ratio (SINR). However, the network load is not taken into
account in SINR based cell association [6]. Users and devices
are required to associate with the cell(s) (e.g., a macrocell or
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small cells) based on different criteria such as, but not limited
to, the lowest transmission power required.

Multiple emerging technologies provide the potential
to support 1000x wireless traffic volume increment in
the future wireless communication. Massive Multiple-Input
Multi-Output (MIMO) antenna emerging technology will
present a key feature to improve the spectrum efficiency [7].
Massive MIMO offers a sufficient number of antennas for
BS through the use of a linear and simple signal process-
ing techniques [8]. Network densification is also required
for the 5G networks to meet its goals [7]. Fast interfer-
ence coordination and cancellation, Software Defined Net-
working (SDN), Cognitive Radio Networks (CRNs) and Self
Organizing Networks (SONs) are promising techniques that
will enable dense network management [8]. Coordinated
multipoint (CoMP) technology is a primary element on the
Long-Term Evolution (LTE) road-map beyond Release 9 [7]
that is used to decrease inter-site interference and enhance
spectrum efficiency [9]. The full-duplex transmission will
also be used to increase spectral efficiency [10]. Cloud Radio
Access Networks (C-RAN) is an architecture envisioned for
network densification that will enable CoMP implementation
and can also be utilized for load balancing.

In this work we propose a multiclass distributed Cell
association algorithm which uses Multi-Armed Bandit
(CA-MAB) to connect devices with different requirements
to the network. We argue that devices with different energy
constraints and rate requirements in a 5G Ultra-Dense Small
Cell Networks (UD-SCN) architecture will have a variety of
optimization problems that need to be formulated as a dis-
tributed decision-making problems in a multi-agent system.
For each class of devices that share a common constraint,
the solution is corresponding to the interactions of a large
number of devices under the energy uncertainty and dynamic
mobility. Our contributions are summarized as follows:

1) We derive a multiclass Cell Association method based
on Multi-Armed Bandit game in order to associate
devices with different constraints and requirements to
the network with minimum exchange of information
between devices and the network.

2) We also show that performing cell association for all
classes of devices jointly improves equilibrium and
convergence of the whole systems compared to allo-
cating specific resources for each class of devices.

3) We validate the proposed CA-MAB at environments
with mobile devices and devices with uncertain
resources (energy harvesting). We also show the attain-
able throughput gains and energy saving of CA-MAB.

The reminder of this paper is organized as follows.
In Section II, we discuss 5G cellular networks and
related emerging technologies. In Section III, we explain
non-conventional game theory types and compare their
potential applications. Section IV offers an overview
about cell association techniques and some related work.
In Section V, we present the proposed algorithm and formu-
late mathematically the system model. Section VI evaluated
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the CA-MAB using various test scenarios. Finally, the paper
is concluded in Section VII.

Il. PRIMER ON 5G

5G network design should enable the achievement of large
cellular network capacity, ultralow latency, and heteroge-
neous device support in order to fulfill the new emerging
applications. The foreseen 5G network will be composed of
different types of overlapped cells and therefore will require
an efficient cell association mechanisms. Cell association is
a major part of 5G HetNets resource management and will be
performed in conjunction with different emerging technolo-
gies in order to achieve efficient use of spectrum, capacity
maximization, and energy efficiency. Resource management
in 5G HetNets can be divided on one hand into cell associa-
tion, required to decide which of HetNet cells should provide
service to the user, and on the other hand into resources
allocation including antenna, power, and channel performed
after the user connection has been established [5]. A general
observation of the researchers has concluded that most mobile
subscribers stay outside for approximately 20% of the time
and inside for approximately 80% of the time. Performing an
inside and outside setups is a recent technique which came
into existence in order to apply the 5G cellular architecture
[11]. Such a technique will slightly reduce through walls pen-
etration loss. This technique will be supported with massive
MIMO technology, which offers a geographically dispersed
tens or hundreds of antenna units arrays deployment [12].
Both outdoor antenna arrays and indoor access points will
significantly enhance energy efficiency, data rate, cell aver-
age throughput, and spectral efficiency of the wireless cellular
system; but with additional infrastructure cost [11]. 5G net-
works will encompass a few new features and technologies
including HetNets new architecture design, UD-SCN, new
access technologies , flexible spectrum management, and
mobile cloud.

HetNets are the major direction of 5G network architec-
ture design, which consists of different types of cell points
with different technologies, capabilities, and constraints. Het-
Nets mix up current macrocells with new deployed low
power remote nodes including picocells and femtocells which
enables offloading the macrocells traffic, improving user per-
formance, indoor coverage, and enhancing spectral efficiency
through spectrum reuse [13]. HetNets will play an important
part to achieve ultra-dense networks due to their dynamicity.
Though, interference, mobility and backhauling are going to
represent new challenges that will rise due to the dense and
dynamic heterogeneous networks. User-independent algo-
rithms offer promising solutions to meet those challenges.
So future smart devices are designed to be able to learn and
take decisions on how to manage connectivity [12].

llIl. PRIMER ON GAME THEORY

Game theory is a traditional method applied to achieve effec-
tive analysis for the interactive decision making of differ-
ent players with conflict of interests. Traditional learning
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and game-theoretical models are used in different situations
including efficient resources management for different wire-
less heterogeneous networks, Machine to Machine (M2M)
communications, and sensor networks. Such models are not
suitable enough to describe and model large-scale systems
because they suffer from many pitfalls and shortcomings
including limited slow convergence, analysis capabilities, and
excessive overhead due to large information exchange. There-
fore, non-conventional models are required to handle and
model the characteristics of future wireless networks in order
to face distributed resource allocation problems in ultra-dense
IoT systems [6]. However, non-conventional models have
pros and cons that allow them to be suitable for solving spe-
cific problems more than others. Many of those games cannot
be applied to cell association problems. Evolutionary games,
for example, are unable to model the inhomogeneity of IoT
and UE mobile devices. They are also incapable of modeling
uncertainty and the stochastic nature of parameters such as
energy harvesting. Auctions games are unable to model the
inhomogeneity of devices. It also requires the existence of
a coordinator. While Minority games have a limited binary
action set which limits its selection choices [6]. In this work,
we employee the mean field multi-armed bandit model to
solve our optimization problem.

A. MEAN FIELD GAMES

The analysis of the interactions between players is required
to achieve equilibrium for rational devices trying to take
their best decision based on other players actions. However,
such analysis in large-scale systems as in [oT needs intensive
information exchange and leads to high complexity. Mean
Field Games (MFGs) analyze the interactions of a massive
number of rational entities and effectively model them [14].
The ability to summarize and describe the behavior of a
single massive system with only two equations represents
the most significant aspect of MFGs when modeling massive
IoT systems in order to solve resource allocation problems.
In the models where information exchange between devices
is limited, MFG is capable to execute as offline algorithms.
In fact, at the initialization phase, the devices shall gather the
required information. This feature lets MFGs even more suit-
able to overcome the backhaul/fronthaul connectivity limita-
tions. However, MFG formulations face difficulties in taking
the incompleteness of information into account [6].

B. MEAN FIELD BANDIT GAMES

Mean Field Bandit game is a canonical model used for
studying and learning in uncertain environments [15]. The
Multi-Armed Bandit (MAB) games are defined as a class
of sequential optimization problems, where a player pulls an
arm from a given group of arms in successive rounds in order
to receive a priori unknown Bernoulli reward. The player
watches only the reward of his played arm. The player select
arms according to some decision-making policy in order to
optimize some regret-based target function over the game
time. Upper Confidence Bound (UCB) is a policy which
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is developed specially to handle stochastic stationary bandit
problems and to balance between obtaining and exploiting
information in order to achieve a better reward in the future
[16]. The UCB policy, described in Algorithm 1 estimates
a fixed confidence level upper bound of the mean reward
of each arm m € M at every selection round. The high-
est estimated bound arm is then played, and its rewards
observed and bounds updated. Conventional Bayesian and
Nash equilibrium notions are infeasible to be used in models
with large number of players due to the long convergence
time and excessive complexity required. In mean-field bandit
games, every player considers the rest of the world as being
stationary and do not consider players’ individual moves an
important detail [6]. Mean-field bandit games are able to
consider the stochastic nature of the system, to overcome the
backhaul/fronthaul connectivity limitations, and to model the
inhomogeneity of IoT devices.

Algorithm 1 Upper Confidence Bound Selection Policy
[17]

Deterministic policy: UCB1;

Initialzation: Pull each arm once;

Loop;

2lnn
’Lj .
average value of the reward obtained from arm j, #/ is

the number of times arm j has been pulled so far, and n is
the overall number of pulls done so far;

- Pull arm j that maximizes ¥ + where ¥ is the

Mean field MAB game is an efficient mathematical model
used to analyze UD-SCNs. This model is suitable for 5G
HetNets as users do not need prior information about net-
work traffic or channel quality thus no massive information
exchange among players is required. The model also is not
complex for a massive number of users and does not suffer
from slow convergence. Besides all of this, it is able to
handle uncertainty and guarantee convergence to equilibrium.
In mean-field games, regeneration means that a player quits
or leaves the game and a new player enters and takes its
place. Thus, each player regenerates at a random time which
follows geometric distribution with parameter 1 — o, o €
[0, 1). At time t, the population profile is defined as ' =
[f{.fa. . fiy] where f, is the ratio of players pulling arm m
at time 7. An arbitrary player n € A has a type 6} € [0, 1M
at time ¢ sampled from distribution W. It also has a state
Z! representing the total number of successes and failures of
pulling arm m up to round 7. At regeneration, Z is reset to
zero. However, in any other trial, the type remains unchanged
and a random selection policy is used to map state Z,’l_1 to
an action a,. After each action the player status is updated
and a Bernoulli distribution random reward with success
probability Q(f%, 6}) is produced. This mean-field dynam-
ics is summarized in Algorithm 2 [10]. Achieving Mean
Field Equilibrium (MFE) in mean-field dynamics require a
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stationary system for every player through maintaining a
fixed population profile f [15].

Algorithm 2 Mean-Field Dynamics for Multi-Armed
Bandit Games [10]

if t is a regeneration trial, then
The players’ type 9,’l+] is sampled from some
distribution W.
The state Z!*! is reset to zero.

else

Use a selection policy § to map Z! to some action a/,.
The mapping & can be any standard bandit policy
such as the UCB selection policy, illustrated in
Algorithm 1. Monitor the reward. Update Z! to Z/*!.

end

IV. CELL ASSOCIATION

Cell association approaches are categorized based on who
takes the association decision. In Network-Driven associa-
tion approaches [18]—[21], a network side entity takes the
decision on whether to serve/let access the new user or not.
This approach offers the operator a full network control
required to achieve particular objectives. Roche in [18], pro-
posed cell association policy for an Orthogonal Frequency
Division Multiple Access (OFDMA)-based small cell with
hybrid access mode. Cheung et al. [19] association approach
was based on users’ distance to the BS using closed and
open access modes. Niyato in [20] assumed cell association
based on resources allocation and power adaptation using
Nash game theory equilibrium. While Madan in [21] con-
sidered cell association based on channel allocation in order
to increase the average utility value for all users through
cells. On the other hand, in User-Driven cell association
approach, the user/device has the privilege to make the deci-
sion to which BS to connect. In [22], devices decide to
associate with the BS based on the highest SINR reported
from all nearby BSs. However, devices in [23] form coalitions
which decide independently on which cell to join based on
their individual up-link transmission power consumption, and
decide to switch their cell automatically if they observed
performance degradation. Rakshit in [24] used a human walk
mobility model based on 226 daily GPS traces collected from
101 volunteers in five different outdoor sites in New York
city illustrated in [25] using a user-driven cell association
described in [10]. Their work was only concentrated on repre-
senting the mobility effect for UE devices with a stable power
source. Network and User-driven association approaches can
be applied together under what is known as the Hybrid cell
association approach. In this approach users select the BS
or cell of their preference. However, the networks make the
decision of accepting or rejecting devices [5]. The authors,
in [26] used an auction process to allow devices to bid for
radio resource through sending requests to a target BS while
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the BSs collecting all bids and determining the resource
allocation for all bidders.

Cell association implementations are categorized based on
where does the association decision take place. Association
decision can be implemented either centralized, decentralized
or distributed. In the centralized implementation, a central
network entity makes a global cell association decision for all
cells and devices [5]. This implementation provides complete
information about networks and devices required to achieve
optimal network performance. However, this approach
relies on intensive information exchange and gathering [5].
In addition, it will be challenging to trace the different sys-
tem parameters including quality-of-service (QoS), energy
requirements, and interference conditions [24]. On the other
hand, the decentralized implementation divides the network
into smaller parts capable of making cell association decision
for its members using controllers. This approach aims to
achieve a network-wide objective but with limited informa-
tion exchange. While the distributed implementation differs
from the centralized and decentralized implementations as
each network entity can make it’s own decision independently
with least information exchange [5]. Maghsudi proposed in
[10] an approach based on mean-field multi-armed bandit
games in order to solve the uplink cell association problem
for energy harvesting for IoT devices in a UD-SCN. Their
work introduced a distributed cell association approach using
UCB selection policy based on received data rate. This work
is motivated by the analysis and results of their work. In [27],
Dong optimized the device association matrix through using
quantum particle swarm optimization. Similarly, in [28], two
different algorithms based on the total cost function and
access points density are proposed in order to jointly optimize
user association and BS operation in heterogeneous networks.
Cell association access modes are categorized based on how
the access to the associated cells is managed. Those modes
are open, closed, and hybrid. In the open access mode,
all users are treated equally and can access the small cell
depending on the availability of resources. Devices in the
closed access mode will receive higher access priority if
they belong to Closed Subscriber Groups (CSG) and will be
limited only to emergency calls if they do not belong to CSG.
In the hybrid access mode, part of the resources are reserved
for the small cell subscribers while also allowing access to
non-subscribers, users subscribed to the small cell may get
preferential charging compared to users not subscribed to
the cell that receive service from it. Guruacharya in [23]
introduced cell association using coalition formation game.
In this scheme, HetNets use a self-control strategy that allows
devices to decide and chose the cell to join independently
based on its individual performance and to switch to another
cell automatically if performance degradation is observed
due to any congestion. Guruacharya used a Markov chain
analysis to obtain a stable cell association of users. Cell
association is also discussed in [5] and [10]. Wang proposed
in [5] an antenna allocation and cell association algorithm
depending on the evolutionary game theory which provides
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equilibrium solutions. Wang algorithm balanced between
devices need and network need for high data rate and high
revenue, respectively; but didn’t consider IoT devices for low
power communication need.

In our work. we proposes a user-driven distributed cell
association approach that is suitable for multiclass of user
devices in an open and hybrid access modes. It relies on mean
field MAB game theory model using UCB selection policy
based on minimum required data rate or transmission power
as a reward. We show that our method is most suitable for
dense and ultra-dense networks and can be used in mobile
environments.

V. CELL ASSOCIATION USING MEAN FIELD

MAB SYSTEM MODEL

Our system model assumes a dense small cell network which
consists of M SBS, including macro cells. The network also
includes Nj IoT devices and Ny UE devices. Every device
n intends to transmit data packets in the uplink direction.
At every transmission period j, each device transmits to the
SBS selected by the device itself in which it applies a dis-
tributed cell association decision. /\/'{,m and N{]m represents
the set of IoT and UE devices associated to SBS m at round j,
respectively. In this work, we assume IoT devices depends on
energy harvesting to collect the required power for transmis-
sion. We also assume that each IoT device consumes all the
stored harvested energy during each transmission period. Due
to the opportunistic nature of energy harvesting, the amount
of harvested energy and hence transmission power, denoted
by P/I &> is unknown prior for IoT device k at round j. In

the system model, P;yk,j = 1,...,J, is assumed to be
independent identically distributed (i.i.d.) random variables.
Each of these random variable follow half-normal distribution
with parameter onz > 0 [10]. On the other hand, batteries
of UE devices offer a stable energy source compared to the
energy available through harvesting. This allows UE devices
to perform association decisions based on the highest data
rate available. The UCB policy allows devices to learn the
minimum power required for transmission and the highest
affordable data rate through both exploitation and exploration
trials. If a device quits transmission, it is replaced by another
device in order to maintain fixed population profile required
for keeping MFE. This mean-field game model regeneration
process is achieved through a stationary system and through
keeping the number of connected devices in the network
always equal to N [10].

For the communication channel, we assume a zero-mean
additive white Gaussian noise with variance ag inside every
small cell as the only transmission distortion parameter in the
network. We also consider the inter-cell interference expe-
rienced by device n in SBS m denoted by I,,,, > 0 to
be fixed noise during the entire transmission period. A fre-
quency non-selective block fading channel is used in this
work where the fading channel coefficient between device
n and SBS m denoted by 4, ,, follows Rayleigh distribution
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with parameter «/ﬁ and remains constant during transmis-
sion period. We assume that £, , doesn’t change for static
devices. However, it changes at every transmission period
for mobile devices. The random channel gain g, ,, = hﬁm
then follows an exponential distribution with parameter f,,,.
For simplicity, the Gaussian noise, inter-cell interference,
and channel gain distribution are represented by one random
Snm
B m+No
(or ability in MAB games) of every device.

variable denoted by 9£,m = which represents the type

. J ]
+ . . .
Let i, = —5~Y" be the fraction of devices associated
with SBS m at round j. Ny, and Ny, . are the size of ],
and N {, > respectively. Based on Shannon Hartley theorem

formulated in [10], the achievable transmission rate r,’”n can
be expressed as:

n,m n’n,m

W, o
= —log(l1 +P.& ) 60
Nfin

where P}, is the transmission power of device n at transmis-
sion period j. We assume that UE devices share the available
spectrum equally in an orthogonal manner, but not equally
with IoT devices. In this model, cell association decision
depends on the number of IoT and UE devices connected to
each SBS and the data rate for each class of devices. There-
fore, weighing the IoT devices to the UE devices associated
with a specific cell is required based on the proportion of
the average data rate between UE devices and IoT devices.

. S G-h
This is achieved by obtaining Nj,= (N; mT %N{/ ) Where
m T .

75’_1) and F(L’,_l) represents the mean data rate at the previous
transmission period for IoT and UE devices, respectively.
Every device requires a specific QoS for data transmission
that is expressed in terms of a minimum acceptable data rate
denoted as 7y, in. Therefore, probability of success for device
n to transmit at period j iS ply.,y = Pririm = Fnminl-

The QoS can be also correlated with the available transmis-
sion power. Based on Shannon Hartley theorem [10], the min-
imum power required to guarantee r, i, can be expressed as:

1 Nf; }!n "n,min

=—( W -1 )

n,min

Considering rf.,,m > Tn,min> the probability of success p’,.hm =

Pr[P, > Piz,min] can be computed using the error function as:

p,' 1 rf[P;mm] 3
nom — 1 — € ﬁon 3)

Due to the congestion model, the probability of success for

n,m

IoT devices pj, , is directly proportional to i . However,

for UE devices, the success probability is prgportional to
the achievable rate r,,,. The success probability of every
device n when selecting SBS m at transmission round j can
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be expressed as:

R
1 — erf[—7=] ’{z,m = TI'nmin, N € IoT,

, \/Egn ,
pln,m =311- (r;,ﬂ)a "{z,m = Tn,min, N € UE, “
0, otherwise

In our model, IoT devices use the learned power in updat-
ing the UCB index while UE devices use the achieved
data rate to update the UCB index. The power which IoT
devices learn and use is actually the estimated minimum
power required for offering minimum data rate transmission
between each device and each SBS expressed in (2). How-
ever, the absence of prior information about channel gain and
SBS population require each device to estimate the minimum
power as:

P]. PL_l(ef;{;rn.nli)l _ 1)
n,min (efr{;r’é—l . 1) (5)

IoT devices in this model will transmit at a fixed mini-
mum data rate while reducing transmission power based on
learned minimum transmission power required to connect to
surrounding SBSs and therefore minimizing the probability
of successful association with undesired SBS. On the other
hand, UE devices will use a fixed transmission power and
apply UCB to increase confidence level with SBSs offering
higher data rate and therefore minimizing the probability of
successful association with undesired SBS.

Distributed cell association allow each device to take
its own decision independently with minimal information
exchange. In this model, devices do not have any prior knowl-
edge of channel quality, interference level, and congestion
levels. In successive rounds of the mean-field MAB, a device
(player) decide to associate to a cell (pulls an arm) from a
given set of cells (arms) in order to perform cell association
(select the best arm to exploit after exploring all the avail-
able arms) based on it’s confidence level in the cell. IoT
devices (low resources players in MAB games) associate to
cells which offer the minimum required data rate with least
transmission power; such behavior is similar to exploiting the
machine that offers a reward with highest success probability
and lowest cost or offers frequent low fixed rewards within a
small portion of time. On the other hand, UE devices (greedy
players in MAB games) associate to cells which afford the
highest data rate (highest available resources to allocate),
such cells are similar to the less crowded machines in MAB
game or machines with the reputation of offering a worthy
reward within a fixed portion of the time. Therefore, we can
imagine transmission power resources in our model as time
in MAB games and data rate in our model as the reward in
MAB games.

Each device decides to associate to a cell according to
some decision-making policy in order to optimize some
regret-based objective function over the game horizon. Each
device decision is determined through the joint action profile
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of other devices and not only through its own actions. There-
fore, the payoff of every cell association decision/selection
for every device relies on the type or ability of that specific
device and the number of devices selecting that cell. The
confidence level is built and updated through the UCB policy
which estimates an upper-bound of the mean reward of each
SBS at some fixed confidence level. This is done through
obtaining an index for every SBS m at round j, denoted by

. i i —j—1 [21n; i—1 .
index C{Lm ; Cﬂ,m =, + ;]hf{ , where T, " is the total
m

number of rounds SBS m is selected, and L_/,',I ! is the average

reward of SBS m, both up to round j-1. The % part is

J—

related to the size of the one-sided confidence interval for
the average reward within which the truly expected reward
falls with overwhelming probability [17]. As a result, SBS
with the highest estimated bound is selected for association,
and bounds are updated after observing the reward. The
selection is done by finding the arguments of the largest index
“argmax{Cy ).

Using data rate transmission as a reward to build a con-
fidence level based on UCB is practical. However, for IoT
devices, the randomly harvested energy will impact the data
rate and therefore effect the confidence level credibility.
Therefore, we propose to use the inverse of the minimum
transmission power required for minimum data rate obtained
from (5) in the UCB equation in Algorithm 1 (i), ! + %)

for IoT devices. For the rest of this work, we will refer
to CA-MAB which uses the data rate as a reward of the
UCB policy for IoT and UE as MAB,,. While we refer to
CA-MAB which uses minimum transmission power for IoT
and minimum data rate for UE as a reward of the UCB policy
as MAB,,.

VI. SYSTEM PERFORMANCE EVALUATION

In this work we apply mean field game model on devices
in Small Cell Network (SCN) using UCB selection policy
as described in Section V. We evaluate the proposed model
which consists of IoT and UE devices using various net-
work densification scenarios and the multi-class Mean Field
MAB cell association approach. We benchmark our approach
against centralized informed and random cell association
schemes. In our model, we used W, = N, 0, = 1 and
Tn,min = 0.75 for all devices. We assumed a random selection
in the first five rounds before applying the CA-MAB algo-
rithm in order to initialize statues Z, randomly. We added
regeneration following a random time over the game
horizon [10].

A. CA-MAB AND NETWORK DENSITY

In this subsection we evaluate the equilibrium of CA-MAB
dynamics. The CA-MAB (MAB,,) is applied to a network
with 1000 IoT devices, 200 UE devices, and 5 SBS. The
percentage of devices associated to each SBS is shown
in figure 1. Equilibrium in the network is observed as the
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FIGURE 1. Convergence and equilibrium of cell association in mean field
MABs dynamics for 1000 loT and 200 UE devices.

—~—uT of case A

#y® of case B

-l of case C

- of case D

Equilibrium ()
°
@

0.4

02+

0 100 200 300 400 500 600 700 800 900 1000
Network Densification (number of devices)

FIGURE 2. The affect of network densification on equilibrium. Cases A
and C represent changing the number of loT devices while fixing UE to
200 and 500 devices, respectively. Cases B and D represent changing the
number UE of devices while fixing loT to 200 and 500 devices,
respectively.

TABLE 1. BD gains.

Scenario IoT UE
A 100 - 2000 200
B 200 100 - 2000
C 100 - 2000 500
D 500 100 - 2000

fraction of devices associated to each cell changes only
marginally. However, to quantify convergence and hence
equilibrium, we measure the variance of the number of IoT
and UE devices associated to each SBS denoted as V/°T and
VUE  respectively. In figure 2, we present the mean of V,
denoted as p, for 5 SBS network and different densification
scenarios as described in table 1. CA-MAB achieves wuy
less than 0.12% for all test scenarios which means that the
number of devices associated to each SBS doesn’t change
significantly over iterations and hence equilibrium. We also
observe that w, reduces as network densification increases.
Besides, /,L{,OT decreases as number of IoT devices in the
network increases while the number of UE devices doesn’t
change as in case A and C. Similarly, ,uéjE decreases as
number of UE devices in the network increases while number
of IoT devices is fixed as in case B and D. This makes
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FIGURE 3. The affect of increasing number of SBSs and hence network
resources on equilibrium. 5000 loT and 1000 UE devises are used to
obtain uy.
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- --Scenario 4— Scenario 5 Scenario 6
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(b)
---Scenario 4—Scenario 5~ Scenario 6
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Transmission Period

20 40 60 80 100 120 140 160 180 200
Transmission Period

FIGURE 4. Scenarios 4, 5, and 6 for UE devices representing .y for
(a) SAD (b) HD (c) ED.

the proposed cell association approach suitable for hetero-
geneous IoT and 5G networks. In addition to that we notice
that ul°T is greater than uYF which is justified due to the
uncertainty associated with energy harvesting of IoT devices.
Increasing the number of SBSs and hence increasing the
available resources in the network improves equilibrium of
CA-MAB as shown in figure 3. The abundance of network
resources in this case enabled devices including discon-
nected IoT (due to low harvested power) to reconnect to the
same SBS.

B. CA-MAB DYNAMICS AND MOBILITY EFFECT

In this subsection, we evaluate the equilibrium of CA-MAB
(MAB;,;-) dynamics in presence of mobile UE devices. Mobil-
ity affect is introduced in the CA-MAB model by varying the
channel gain g@ m atevery iteration. In this work, we assumed
only a fraction of UE devices (20% to 40%) are outdoor
and hence mobile [11]. At every iteration, fraction of devices
remain connected to the same SBS, we refer to these as stable
cell association devices (SAD). Other devices which move
to a new SBS as a result of handover, we refer to them as
handed over devices (HD). The remaining devices enter into
exploring SBSs mode following a regeneration trial, we refer
to them as regenerating devices (ED). In table 2, we present
the mean (1) and variance (¢2) for IoT and UE devices at
these three modes considering six test scenarios. We argue
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FIGURE 5. Scenarios 4, 5, and 6 for loT devices representing y,,7 for
(a) SAD (b) HD (c) ED.
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FIGURE 6. Throughput performance of UE devices. CA-MAB throughput is
within 10% and 15% of central association for static and mobile
environments, respectively.

that increasing x with small o2 of SAD lead to more stability
in the network.

In some of the test scenarios, CA-MAB is applied to IoT
and UE devices jointly in the same system (merged). In other
scenarios CA-MAB is applied to each type of these devices
independently (isolated) where resources are split between
IoT (y) and UE (1-y) devices. CA-MAB achieves more
stability in merged scenarios as more devices tend to remain
connected with the same SBS (higher 1T and uyg) in SAC.
We also vary the percentage of mobile UE with and without
regeneration trials. Devices in scenarios with regeneration
perform handover to new SBS less frequently (less uior
and puyg in HD) and thus system attains better stability.
As expected, mobility of UE as in scenarios 5 and 6 reduces
stability. However, increasing the fraction of mobile UE has
marginal affect on stability of IoT devices. Equilibrium in
the presence of UE mobility can be observed in figure 4 and
figure 5 for UE and IoT devices, respectively. It is evident
in figure 4 that wyg of SAD converges within 20% and
reduces as the number of mobile devices increases. On the
contrary, uyg of HD and ED increases with mobility.

C. CA-MAB THROUGHPUT PERFORMANCE
AND ENERGY SAVING

In this subsection, we evaluate the throughput and energy
saving of CA-MAB through measuring the ratio of
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FIGURE 7. Throughput performance of loT devices. CA-MAB throughput is
within 10% of central association. It improves to within 5% when the
confidence bounds are updated based on the minimum transmission
power.
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FIGURE 8. Average aggregated wasted energy of loT devices. CA-MAB
results are within 10% of central association. The wasted energy reduces
to within 1% of central association when the confidence bounds are
updated based on the minimum transmission power.

successful transmissions to total trials and the energy con-
sumed over unsuccessful transmissions (wasted energy).
In here, we assume a system with 1000 IoT and 1000 UE
devices and 5 SBSs. The throughput and energy savings
of CA-MAB are compared to centralized and random cell
association. The centralized association scenario offers the
optimum performance despite the fact of its complexity
and huge amount of information exchange. This scenario
relies on a central unit with complete information about the
system and thus offers the highest successful transmission
probability. On the other hand, random association scenario
does not rely on such complexity or exhaustive searching
overhead. In this scenario, each device associates with an
SBS randomly without any prior information about channel
gain or SBSs population. As can be observed for UE devices
in figure 6, the throughput performance of CA-MAB is within
10% and 15% as compared to the centralized association
for the scenarios of static and mobile UE devices, respec-
tively. Similar throughput performance is attained for IoT
devices as presented in figure 7. In term of energy savings,
the average aggregate wasted energy is shown in figures 8.
At the beginning of transmission (first few iterations of MAB
where bounds are random), the amount of wasted energy
is similar to random association. However, after few trail
periods the confidence bounds are updated using MAB,,
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TABLE 2. Stability, handover, and exploring of loT and UE devices in different scenarios 1oT devices N; = 5000 and UE Mobile devices N, = 1000.

Scenario Description SAD HD ED
Scenario o Mobility ~ Merged  Regeneration ‘ KUIoT nfoT HUE 0(2/5 | KUIoT rr?oT HUE n?/E | KUIoT 0%0T HUE H?/E
20% No No No 56.23% 291% 93.05%  0.06% 9.22% 049% 297%  0.05% 0.00% 0.00% 0.00% 0.00%
25% No No No 88.62% 0.43%  95.07%  0.02% 11.38% 0.43% 4.93% 0.02% 0.00% 0.00% 0.00% 0.00%
Scenario 1 30% No No No 88.96% 0.27%  95.18%  0.02% 11.04% 027% 4.82% 0.02% 0.00% 0.00% 0.00% 0.00%
35% No No No 91.19%  0.02% 94.88%  0.02% 8.81% 0.02%  5.12%  0.02% 0.00% 0.00%  0.00%  0.00%
40% No No No 94.46%  0.02%  95.99%  0.02% 5.54% 0.02% 4.01%  0.02% 0.00% 0.00%  0.00%  0.00%
20% No No Yes 58.03% 2.67% 93.00%  0.07% 9.34% 049%  2.76%  0.05% 32.62% 539% 4.24%  0.08%
25% No No Yes 63.25% 1.58% 92.69%  0.07% 9.31% 041% 2.86%  0.05% 2744%  345% 4.45%  0.09%
Scenario2  30% No No Yes 68.05% 1.64% 93.36%  0.07% 8.96% 028% 2.86%  0.05% 22.98% 2.85% 3.78%  0.07%
35% No No Yes 81.35% 021% 92.98%  0.08% 8.13% 0.04%  3.04%  0.06% 10.52%  0.28%  3.98%  0.08%
40% No No Yes 86.91% 0.11% 93.63%  0.06% 5.24% 0.02%  2.34%  0.05% 7.85% 0.14%  4.03%  0.07%
Scenario 3 - No Yes No \ 92.67%  0.02%  95.15%  0.02% | 7.33% 0.02% 4.85%  0.02% | 0.00% 0.00%  0.00%  0.00%
Scenario 4 - No Yes Yes \ 84.99% 021% 93.43% 0.07% | 6.94% 0.02%  2.56%  0.04% | 8.06% 027% 4.01% 0.08%
Scenario 5 - 20% Yes Yes ‘ 80.60% 0.24% 90.57%  0.08% | 7.48% 0.01% 339% 0.03% | 1192% 0.31% 6.04% 0.10%
Scenario 6 - 40% Yes Yes \ 80.49%  0.16%  87.70%  0.12% | 7.59% 0.01% 4.35% \0,02% | 11.92% 021% 795% 0.13%
025 B} S . .. .
x-MAB, - MAB, (mobile) -Central-a-Random that considering constraints of all classes jointly in a merged
s 5 o oag e AL R n scenario leads to better equilibrium. The CA-MAB has also
D 02 1w AR pf g ot g 1 ' B P . ; :
2T A e T VA I N "v\dl been evaluated in the presence of mobile devices where
s 8 eyl e . .
Emﬁ equilibrium, throughput, and energy savings are marginally
2 affected by mobility. We have also leveraged on the proposed
g . .
g algorithm such that the UCB policy is updated based on
< . . . . .
8 transmission power requirements. This achieved some sav-
Zo. ings in the wasted energy on the expense of some reductions
. in throughput.
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Transmission Period

FIGURE 9. Average aggregated wasted energy of UE devices. CA-MAB
wasted energy converge to that of the central cell association method
after few transmission periods. However, using minimum transmission
power in CA-MAB results is an increase in the wasted energy within 7%
of central association.

and the wasted energy reduces and converges within 10% of
central association. Further reductions in the wasted energy
(5% of central) can be achieved using MAB,,, as bounds
are updated based on the minimum transmission power for
IoT devices. This improvement will be on the expense of
reduction in throughput as shown in figure 7. In figure 9,
energy savings are evaluated in the presence of mobility for
UEs. Although, the wasted energy can’t but eliminated, it is
kept within 7% of the centralized association.

VIi. CONCLUSION

We present a distributed multiclass user-driven cell associ-
ation method based on the Mean Field Bandit game. Given
that our method considers different constraints for each class
of devices, it is well suited for HetNets such as the 5G cellular
networks. Our method is also appropriate for system models
with uncertainty such as energy harvesting of IoT devices.
In this work, we presented a mathematical formulation for our
method followed by extensive performance evaluation of the
proposed CA-MAB algorithm at different scenarios. Equilib-
rium and fast convergence for dense networks are attained
using CA-MAB without any prior information about channel
status or SBS population. CA-MAB evaluation results show
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