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ABSTRACT In cloud architectures, the microservice model divides an application into a set of loosely
coupled and collaborative fine-grained services. As a lightweight virtualization technology, the container
supports the encapsulation and deployment of microservice applications. Despite a large number of solutions
and implementations, there remain open issues that have not been completely addressed in the deployment
and management of the microservice containers. An effective method for container resource scheduling
not only satisfies the service requirements of users but also reduces the running overhead and ensures
the performance of the cluster. In this paper, a multi-objective optimization model for the container-based
microservice scheduling is established, and an ant colony algorithm is proposed to solve the scheduling
problem. Our algorithm considers not only the utilization of computing and storage resources of the physical
nodes but also the number of microservice requests and the failure rate of the physical nodes. Our algorithm
uses the quality evaluation function of the feasible solutions to ensure the validity of pheromone updating
and combines multi-objective heuristic information to improve the selection probability of the optimal path.
By comparing with other related algorithms, the experimental results show that the proposed optimization
algorithm achieves better results in the optimization of cluster service reliability, cluster load balancing, and

network transmission overhead.

INDEX TERMS
multi-objective optimization.

I. INTRODUCTION

In recent years, as a new application development model,
microservices have attracted widespread attention and have
been adopted in many occasions. Based on the microser-
vice architecture, applications are designed as a set of inde-
pendent, fine-grained modular services each executing a
single business task, and among microservices there use
lightweight communication mechanism. The requirements
of the application are realized through a group of collabo-
rative microservices. Microservice applications are easy to
deploy and update, allowing for the independent updates
and redeployments of some services without restarting, and
have the characteristics of easy continuous delivery [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiping Hu.

83088

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

Ant colony algorithm, cloud computing, container scheduling, microservices,

The advantages of microservices have prompted many large
enterprises to migrate their applications to this development
framework, including Netflix [3], Amazon [4], IBM [5],
Uber [6], Alibaba [7], and so on.

Docker container [8], as a lightweight virtualization tech-
nology in the operating system layer, provides an separate
execution environment and file system for the running of
applications. Docker container image uses incremental and
hierarchical file system, containing only additional files and
dependency libraries which are not in the underlying operat-
ing system, thus Docker container instance reduces the cost of
virtualization [8]. Compared with virtual machines, container
has the advantages of lower resource consumption, easier
and faster deployment, and higher portability. As an excel-
lent tool for encapsulating, isolating and deploying microser-
vices, container is one of the most important technologies to

VOLUME 7, 2019


https://orcid.org/0000-0002-5198-1780
https://orcid.org/0000-0001-8333-7415

M. Lin et al.: Ant Colony Algorithm for Multi-Objective Optimization of Container-Based Microservice Scheduling in Cloud

IEEE Access

support microservices. Currently, the mainstream container
cluster management tools include Docker Swarm, Apache
Mesos and Google Kubernetes [4].

With the development of container technology and the
widespread use of microservice development model, some
practical container scheduling solutions are proposed, but
there are still some important problems to be solved in
container-based microservice scheduling and management.
Since entering the era of cloud computing, scheduling meth-
ods in cloud have been widely studied. However, more
research on cloud scheduling mainly focuses on resource
allocation of virtual machines to achieve performance-
oriented load balancing or energy-oriented load integra-
tion [9]. Research on container scheduling based on cloud
is still very limited. Current container cluster management
tools include Docker Swarm, Apache Mesos and Google
Kubernetes, which implement simple methods of allocating
containers to the physical machines. For example, Docker
Swarm scheduler has three strategies: Spread, Binpack and
Random. Kubernetes scheduler is divided into two stages:
Predicates stage and Priorities stage. These methods only
focus on the use of physical resources [2], and do not achieve
optimization strategies for system performance reliability,
network overhead, etc. An effective container resource allo-
cation method not only satisfies the load requirements of the
cluster, but also ensures the performance and reliability of
the cluster. There is room for improvement in performance of
microservice applications, reliability of cluster, and network
transmission overhead among microservices, and it requires
further research.

Container scheduling is a typical NP-hard problem.
At present, many researchers have adopted ant colony algo-
rithm to solve the scheduling problem of virtual machines
in cloud computing. Ant colony algorithm is a probabilistic
and uncertain global optimization algorithm, which can easily
get the global optimal solution. In addition, it is robust and
does not rely on strict mathematical optimization and the
structural characteristics of the problem itself. In this paper,
a multi-objective container scheduling optimization model
is proposed, which considers the constraints of physical
machine resources and aims at reducing network transmission
overhead, balancing cluster resource load and improving the
reliability of cluster services. An ant colony algorithm is
proposed to solve the multi-objective optimization problem
of container scheduling.

The contributions of this paper are summarized as follows.

-Firstly, this paper establishes three container-based
microservice scheduling problem models, including the net-
work transmission overhead model of microservices, the clus-
ter load model measured by the maximum value of resource
utilization rate with coefficient among the physical nodes,
and the service reliability model measured by the average
number of failures for microservice requests.

-Secondly, a multi-objective optimization model for con-
tainer scheduling is proposed. The model takes the resource
capacity of the physical nodes as constraints to optimize the
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network transmission overhead, cluster resource load, and the
average number of failures for microservice requests.

-Finally, an ant colony optimization algorithm is proposed
to solve the multi-objective optimization problem of con-
tainer scheduling. The algorithm combines multi-objective
heuristic information to improve the selection probability of
optimal path. The algorithm also evaluates and adjusts the
quality of the solution in a timely manner by using three opti-
mization objective functions. Thus the ant colony algorithm
solves the problem that the original ant colony algorithm
always falls into the local optimum.

The rest of this paper is divided into following sections.
Section II introduces the related work. Section III formalizes
the system model and optimization objectives. In Section IV,
we present our solution and the implementation of our ant
colony algorithm is also given. The experimental results and
analysis are presented in Section V. The last section is the
conclusion.

Il. RELATED WORK

Resource management is very important in cloud comput-
ing, because the quality of resource management is not only
related to the needs of users, but also directly affects the load
and performance of the system. Resource management opti-
mization is a hot research topic in the field of cloud comput-
ing. The related work showed in this paper are mainly divided
into three aspects: container orchestration and resource man-
agement, multi-objective optimization method, and schedul-
ing method based on ant colony optimization (ACO)
algorithm.

Firstly, some related work on container orchestration
and resource management are showed here. For example,
Li et al. [10] proposed an optimal minimum migration algo-
rithm (OMNM) which estimates the growth trend of each
Docker container and determines which container need to
be migrated by fitting the growth rate of Docker contain-
ers in the source server. The algorithm aims to reduce the
unnecessary migration of containers, while ensuring the load
balancing of the cluster. Menouer and Cérin [12] presented
a scheduling and resource management allocation system
based on an economic model related to different classes for
SLAs (Service Level Agreements), aiming to help compa-
nies manage a private infrastructure of machines, and to
optimize the scheduling of several requests submitted online
by users. Zhang et al. [13] proposed a container placement
strategy by simultaneously taking into account the three
involved entities including container, VM and PM, aiming to
improve the physical resource utilization. Adam et al. [14]
presented two-stage Stochastic Programming Resource Allo-
cator (2SPRA), aiming to optimize resource provisioning
for containerized n-tier web services in accordance with
fluctuations of incoming workload to accommodate prede-
fined SLOs on response latency. Guan et al. [16] designed a
novel application oriented Docker container (AODC)-based
resource allocation framework to minimize the application
deployment cost in DCs, and to support automatic scaling
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while the workload of cloud applications varies. They mod-
eled the AODC resource allocation problem considering
features of Docker, various applications’ requirements, and
available resources in cloud data centers, and proposed a scal-
able algorithm for DCs with diverse and dynamic applications
and massive physical resources. Although the papers above
considered a part of factors for container resource scheduling,
there are many other factors, for example, nature of cluster
nodes including failure rate.

Secondly, in cloud resource allocation, the solutions may
involve many conflicting and influential objectives, and
researchers need to get these objectives as optimal as possi-
ble simultaneously. Therefore, multi-objective optimization
methods are widely adopted in this field. Zhang ef al. [11]
modeled the scheduling problem as an integer linear program-
ming, and proposed an adaptive scheduler in which the con-
tainer host energy conservation, the container image pulling
costs from the image registry to the container hosts, and the
workload network transition costs from the clients to the
container hosts are evaluated in combination. Kaur et al. [15]
proposed a multi-objective function by using cooperative
game theory, in order to reduce the energy consumption and
makespan by considering different constraints such as mem-
ory, CPU, and the user’s budget. Duan et al. [17] formulated
the scheduling problem as a sequential cooperative game
and proposed a communication and storage-aware multi-
objective algorithm that optimizes two user objectives (execu-
tion time and economic cost) while fulfilling two constraints
(network bandwidth and storage requirements). Panda and
Jana [18] proposed a multi-objective task scheduling algo-
rithm for heterogeneous multi-cloud environment which
takes care both minimization of the overall completion time
and that of the overall cost of the service. Zuo et al. [19] pro-
posed a self-adaptive learning particle swarm optimization
(SLPSO)-based multi-objective optimization method to max-
imize the profit of the IAAS providers, taking into account
the running time, deadline and resource utilization. Aiming at
the performance optimization of Docker container resource
scheduling, Liu et al. [20] proposed a multi-objective con-
tainer scheduling algorithm, namely Multiopt, considering
five key factors: CPU usage of every node and memory
usage of every node to balance load, the time consump-
tion transmitting images on the network to reduce network
overhead, the association between containers and nodes to
improve performance of services, the clustering of containers
to reduce response time. For each key factor, the authors
defined a metric method and established a scoring function
of objective to select the most suitable node to deploy con-
tainers. Shi et al. [21] considered container consolidation as
one multi-objective optimization problem and presented an
algorithm based on NSGA-II, with the objectives of min-
imizing the total energy consumption and minimizing the
total number of container migrations within the certain period
of time. Guerrero et al. [22] presented a approach based on
NSGA-II to optimize the deployment of microservices-based
applications using containers in multi-cloud architectures,
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considering three optimization objectives: cloud service cost,
network latency among microservices, and time to restart a
new microservice. The same authors [23] proposed a genetic
algorithm approach based on NSGA-II to optimize container
allocation and elasticity management. The algorithm consid-
ers four optimization objectives, including threshold distance
of the container workload, the balanced use of computing
resources, the reliability of the container applications, and the
intercommunication overhead among related microservices.
The work of paper [23] is the most similar one to our approach
but with significant differences. Guerrero did not considered
data transmission among microservices, neither the relation
between the number of microservice requests and the relia-
bility of the cluster services.

Thirdly, the ACO algorithm has the characteristics of
positive feedback of information and heuristic search. It is
essentially a heuristic global optimization algorithm in evo-
lutionary algorithm, which is widely used in the field of
cloud computing. For example, Zuo et al. [24] proposed
an improved ACO algorithm for task scheduling, consider-
ing the makespan and the user’s budget costs as the opti-
mization objectives. Two objective functions were used to
evaluate solutions, and then the quality of the solution were
adjust in a timely manner based on feedback regarding the
evaluation. Guo [25] proposed a task scheduling algorithm
based on ACO algorithm, aiming to minimize the makespan
and the total cost of the tasks, while making the system
load more balanced. The work improved the initialization
of the pheromone, the heuristic function and the pheromone
update method in the ant colony algorithm. Zhang et al. [26]
improved the Kubernetes scheduling model by combining ant
colony algorithm and particle swarm optimization algorithm.
Compared with the original model, the algorithm additionally
takes into account the use of resource costs. Kaewkasi and
Chuenmuneewong [27] presented an ACO-based algorithm
to balance the resource usage and led to the better perfor-
mance of applications. Jiao et al. [28] proposed a resource
scheduling strategy based on the improved ACO algorithm.
Based on cluster service and user quality of service prefer-
ence, the strategy constructed an ant optimization model to
design the parameterization definition and select the prefer-
ence constraints. The fitness function of multi-dimensional
quality of service was given and then the local or global
update was performed accordingly. The algorithm imple-
mented the search for Pareto optimal set of multi-objective
problems. Chen et al. [29] proposed a resource scheduling
method of cloud computing based on QoS combining ACO
algorithm and Shuffled Frog Leading Algorithm (SFLA).
Firstly, ACO algorithm used the quality function and conver-
gence factor to ensure the efficiency of pheromone updating
and the feedback factor was set to improve the selection of
probability. Secondly, the local search efficiency of SFLA
was improved by setting crossover factor and mutation factor
in the SFLA. Finally, the local search and global search of
the SFLA were introduced for updating in each iteration of
ACO algorithm. However, except the paper [26] and [27],
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TABLE 1. Summary of parameters and their descriptions.

Microservice

Physical
node

Network

ms; EMS_SET
Calc_Regst;

Str_Regst;
CONS_SET;
Link_Thr;

Link;

Scale;
(ms;,ms;)€
MS_RELATION
Link(ms;,ms ;)
Trans(ms;,ms;)
pm;j€CLUSTER
ICLUSTER|=n
Calc_Resrc;
Str_Resrc;

Fail j
alloc(pm)

Dist(pm;j,pm ;)

Element Parameter Description
Application | MS_SET microservice set of the application
IMS_SET\=m total number of microservices in the ap-
plication
MS_RELATION |a set of consumption relationships

among the microservices

microservice with id. i

computational resources required by a
microservice request

storage resources required by a microser-
vice request

a set of microservices consumed by a
microservice ms;

threshold for number of requests for a
microservice ms;

total number of requests for microservice
ms;

number of containers for a microservice
ms; in the cluster

microservice ms; consumes microser-
vice ms;

total number of requests from microser-
vice ms; to microservice ms;

amount of data transmitted in a request
between consumer /ms; and provider ms
physical node with id. j

total number of the physical nodes in the
cluster

computational capacity of a physical
node pm;;

storage capacity of a physical node pm;;
failure rate of a physical node pm;

a set of microservices allocated in a
physical node pm;

network distance between pm; and pm;

the paper [24], [25], [28], and [29] were not aiming at con-
tainer scheduling. Although all of these work involved the
ACO algorithm, none of them had considered multi-objective
heuristic information.

Different from the previous work, we consider not only
the computing and storage resources of the cluster, but also
the number of microservice requests and the failure rate of the
physical nodes. We propose a multi-objective optimization
model, with which we implement an ant colony algorithm
to solve the microservice container scheduling problem. Our
algorithm adopts the evaluation function of the solution
to ensure the validity of pheromone updating, combining
multi-objective heuristic information to improve the selection
probability of the optimal path. This paper aims to solve the
optimization problems of network data transmission among
microservice containers, load balancing of the cluster and
reliability of cluster services in cloud simultaneously.

Ill. PROBLEM STATEMENT

This section describes the problem model and the optimiza-
tion objective models. The parameters of the models and their
descriptions are summarized in Table 1.

A. SYSTEM MODEL
We consider an application APP based on the microser-
vice architecture. APP is characterized as a tuple <MS_SET,
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MS_REILATION>, where MS_SET is the microservice set of
application APP, and the cardinality is m; MS_RELATION
is the set of consumption relationships among the microser-
vices. When a microservice consumes results generated
by other microservice, a consumption relationship between
the two microservices is established, denoted by (mScons,
MSproy) EMS_RELATION. The former microservice is the
consumer and the latter one is the provider.

Microservice ms; in MS_SET is characterized as a tuple
<Calc_Regqst;, Str_Reqst;, CONS_SET;, Link_Thr;>, where
Calc_Reqst; represents the computing resources consumed
to satisfy a request for the microservice ms;; Str_Reqst; is
the storage resources required to satisfy a request for the
microservice ms;; CONS_SET; is the set of the microser-
vices consumed by the microservice ms;, and when the con-
sumption relationship satisfies (ms;, ms;)eMS_RELATION,
there exists a microservice ms;€ CONS_SET;; and Link_Thr;
represents the threshold for number of requests for the
microservice ms;. The values of Calc_Regst;, Str_Reqst;,
and Link_Thr; depend on the implementation of the
microservice ms;.

We consider the application APP that receives ser-
vice requests from users. The number of requests from
the microservice ms; to the microservice ms; is denoted
by Link(ms;, ms;), so the total number of requests
for the microservice ms; is calculated as Link; =
sz=1 Ams ECONS_SET; Link(ms;,ms;). Trans(mscons, MSprov)
represents the amount of data need to be transmitted in a
request between the consumer msops and the provider mspyoy .
When the consumers of the microservices are clients, only the
number of microservice requests is considered, regardless of
network transmission costs. Each microservice is encapsu-
lated in a container, and a microservice in the cluster can have
multiple container instances. Scale; is the number of contain-
ers for a microservice ms; in the cluster. So according to the
threshold for number of requests for the microservice msj,
the number of containers for the microservice ms; in the clus-
ter should be calculated as Scale; = ’VLmLkL_I;Ihn
Link;, Scale;, and Link(ms;,ms;) depend on the number of user
requests.

Cluster CLUSTER has n physical nodes. Each physical
node is characterized as a tuple <Calc_Resrc;j, Str_Resrcj,
Fail;j>, where Calc_Resrc; indicates the computational capac-
ity of the physical node pmj; Str_Resrc; is the storage
capacity of the physical node pmj;; and Fail; is the fail-
ure rate of the physical node pm;. The physical node
“failure” mentioned in this paper refers to any exception
caused by hardware or software defects, incorrect design,
unstable environment, or operator errors that render ser-
vice or computing nodes unavailable [31]. The physical
nodes are interconnected with network, and the network path
between nodes pm; and pm; is characterized by their network
distance Dist(pm;, pmy ).

Figure 1 shows a simple application example in the cluster
from Alibaba Cluster Trace V2018 cluster data set [30].
The application includes five interoperable microservices,

-| . The values of
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FIGURE 1. A simple application example in the cluster.

and each microservice has different number of container
instances according to the requests from users or consumer
microservices.

B. OBJECTIVE MODEL

The purpose of this paper is to achieve three improvements by
studying the resource allocation method of microservice con-
tainers, including reducing the network transmission over-
head among microservices, balancing the load of the cluster,
and improving the reliability of cluster services. In order
to achieve these three objectives, we establish the objective
models as follows.

1) NETWORK TRANSMISSION OVERHEAD AMONG
MICROSERVICES

The network transmission overhead among microservices is
related to three key factors: the network distance between
the physical nodes where the two interoperable microservice
containers are allocated, the number of requests between
the two microservices, and the amount of data transmission.
Considering that both the consumer microservice and the
provider microservice may have multiple container instances
running at the same time, this paper uses the average net-
work distance of all the container pairs between consumer
microservice and provider microservice to calculate the data
transmission overhead between two microservice containers.
This is formalized in (1).

Xij
Z Z Scclz;ei

j=1 i=1

> X

I=1Al3j ms; €CON_SET;

COMM (X) =

—Lmk(ms,, msy)Trans(ms;, msy)Dist(pm;, pmy)
Scaley,
()
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2) MAXIMUM VALUE OF RESOURCE UTILIZATION RATE
WITH COEFFICIENT AMONG THE PHYSICAL NODES

The scheduling model in this paper involves computing
resources and storage resources, so load balancing of the clus-
ter is a Multi-Resource Load Balancing (MRLB) problem.
In paper [32], Wang et al. tackled the MRLB problem in
Network Function Virtualization (NFV) by first proposing
dominant load-the load of the most stressed resource on a
server-as the load balancing metric, and then formulating
the MRLB problem as an optimization problem to minimize
the maximum dominant load of all NFV servers given the
demand. Based on the paper [32], we present a improvement,
adding load distribution of each resource in the cluster. For
each resource in the cluster, we calculate the standard devi-
ation of the utilization rate of the resource in the nodes and
use its proportion as coefficient value for the utilization rate of
corresponding resource in each node. Similar to paper [32],
the maximum value of resource utilization rate with coeffi-
cient among the physical nodes reflects the worst-case load
about load balancing of the cluster. The maximum value of
resource utilization rate with coefficient among the physical
nodes is formalized in (2).

1
RESRC_CONS(X) = ——— max max
o1 + 07 1<j<n
m

(Z Link; x Cal_Reqst;

Xij o
; Scale; x Cal_Resrc;
=

m
Link; x Str_Reqst;
Y : o) (2)

X
— " Scale; x Str_Resrc;

Here o}, oy are the standard deviation values of utiliza-
tion rate of computing resources and storage resources of
the physical nodes in the cluster respectively. Equation (2)
indicates that the worst-load of the cluster is not necessarily
the case of maximum resource utilization rate with relatively
balanced resource load, but the case of high resource utiliza-
tion rate with relatively unbalanced resource load.

3) AVERAGE NUMBER OF FAILURES FOR MICROSERVICE
REQUESTS

Considering that each physical node in the cluster has a
certain probability of failure due to various reasons. Microser-
vice containers are distributed among these nodes, and there
is the possibility of request failure. In this paper, the average
number of request failures is indicator to measure the reliabil-
ity of cluster services, which is mainly related to the number
of microservice requests and the failure rate of the nodes. This
is modeled in (3).

Link;
LINK _FAIL(X) = Z Z Fail; x xljSlee 3)

j=1 i=1

In the three equations above, x;; is an decision variable,
1, if ms; € alloc(pmy)

subjecting to x; ; =
RO T N0, if sy ¢ allocomy)

, Yms;Npm;.
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alloc(pm;) represents the set of microservices allocated in a
physical node pm;. x; ; = 1 indicates that the microservices
ms; is allocated to the physical node pm;.

C. MULTI-OBJECTIVE OPTIMIZATION MODEL

According to the three objective models mentioned above,
a multi-objective optimization model for container schedul-
ing is established in order to optimize the three objective
simultaneously under the constraints of resource capacity and
microservice deployment requirements.

minimize COMM (X) “4)
minimize RESRC_CONS(X) (@)
minimize LINK_FAIL(X) 6)
-~ Link;
s.t. Z ’]S ale: Cal_Rest; < Cal_Resrcj, Vpm;
l‘_
(7
Z l]S ale: Str _Rest; < Str_Resrcj, Vpm;
=
®
1. i ) .
U lf ms; € alloc(pm;) . Vmsivpm;.
0, if ms; & alloc(pmy)
)]
n
Zx,-’j = Scale;, Vms; (10)
j=1
m
D xij=1. Vpm (11)
i=1

Equation (4)-(6) represent the optimization of the three
objectives respectively: minimizing the network transmission
overhead among microservices, minimizing the maximum
value of resource utilization rate with coefficient among the
physical nodes, and minimizing the average number of fail-
ures for microservice requests.

Equation (7)-(11) are the constraint conditions of the opti-
mization model. Equation (7) and (8) are the computing
and storage resource constraints of physical nodes, respec-
tively. Equation (9)-(11) are decision variable constraints.
Equation (10) indicates that the allocation number of
microservices must satisfies the number of their container
instances; Equation (11) indicates that the container instances
of the same microservice at each node are exclusive, and this
constraint guarantees that in any physical node there can be at
most one container instance from the same microservice, thus
avoiding resource conflicts among the container instances of
the same microservice.

It is difficult to solve the multi-objective optimization
problem directly, especially to find the optimal solution. Ant
colony algorithm has been widely used in various scheduling
problems and achieved good results. It has certain advan-
tages to solve such combinatorial optimization problems.
Therefore, this paper proposes an ant colony optimization
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algorithm, which uses an evaluation function to estimate the
quality of the solution, and feedback the quality ratio between
the solution and the current optimal solution in each iteration
to the next iteration through pheromone to improve the qual-
ity of the solutions to be generated, Combing multi-objective
heuristic information and the feedback mechanism, the algo-
rithm can improve the speed of finding the optimal solution
and avoid falling into the local optimal solution.

IV. PROPOSED ANT COLONY OPTIMIZATION
ALGORITHM

A. ALGORITHM OVERVIEW

The ant colony optimization algorithm simulates the feeding
process of the ants to complete the scheduling of microser-
vices. The algorithm is summarized as follows.

(1)Ant Anty, is randomly placed to a microservice mis;.

(2)Anty, selects a path path; ; with a certain probability pf ;
to reach the physical node pm;, which is one of the nodes
satisfying the constraint conditions of the model. Scale; is the
number of containers for the microservice ms; in the cluster,
indicating that the microservice ms; needs to be allocated
Scale; times, and the selected nodes must be different every
time. In other words, only when Ant; completes the path
selection from all the containers of microservice ms; to dif-
ferent physical nodes, the job of container allocation for the
microservice ms; is truely completed. Then microservice mus;
can be put into tabu list Tabuy of Anty.

(3) Anty returns to the next microservice, and makes the
next allocation, repeating the process of step (2).

(4) That all the ants complete the container allocation of all
the microservices once, can be regarded as one iteration. The
algorithm terminates until the maximum number of iterations
is reached.

B. HEURISTIC INFORMATION

nf.f ; is the heuristic information which represents the expec-
tation of Ant; to allocate the container of the microservice
ms; to the physical node pm;, and it is also the expectation of
Anty, to select path path; ;. Heuristic information 775-{, ; is defined
as follows, according to the three objective models proposed
above.

The first optimization objective is to minimize the network
transmission overhead among microservices, so the heuristic
information about the network transmission overhead can be
formulated as:

kl kll k(1)(2)\—

Here £ is a very small posmve number.

> ¥

q=1q#j msj€alloc(pmy)
X [Link(ms;, ms;)Trans((ms;, ms;)

Dist(pmygy, pm;)
Scale; x Scale;

k(l)(l)

+Link(ms;, ms;)Trans((ms;, ms;)]

nfﬁl)(l) is the network transmission overhead between

the microservice ms; allocated to the node pm; and the
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microservices already allocated to the other nodes. If the
microservice ms; does not consume the microservice msj,
then Link(ms;, ms;) = 0 and Trans(ms;, ms;) = 0

nk(l)(z) Z Medl’l_Dl.Sl‘j
i.j ;
ms; ¢Tabuy Scalel
X [Link(ms;, ms;)Trans((ms;, ms;)
+Link(ms;, ms;)Trans((ms;, ms;)]

nf(l)(z) is the average network transmission overhead

between the microservice ms; allocated to the node pm; and
the microservices not yet allocated to the nodes; Mean_Dist;
is the average network distance between the physical node
pm; and all the other nodes.

The second optimization objective is to balance the load
of the cluster. The heuristic information about the second
optimization objective can be formulated as:

iy

|: > Linki cal Regst;+E% Cal_Regst;
max(

ms; €alloc(pm;) Scale; Scale;

Cal_Resrc;

ms; €alloc(pm;) Scale; Scale;

)

> Linki_ gy, _Reqst;+ Lf”ki_Str_Reqsti -
Str_Resrc; )

The third optimization objective is to minimize the average
number of failures for microservice requests. The heuris-
tic information about the average number of failures for
microservice requests can be formulated as:

k(3 . Lll’lk
771(/ : - (Fall./

le,)

By synthesizing the above heurlstlc information of the
three objectives, the expectation of Ant; to allocate the con-
tainer of the microservice ms; to the physical node pm; can be
formulated as:

nj = n,;l) x n,jz) x 775‘53). (12)
C. THE EVALUATION FUNCTION OF SOLUTION

Once Anty has traversed all the microservices, the paths it has
traveled generates a feasible solution to the multi-objective
optimization problem. In order to ensure the quality of the
solution and achieve the optimal solution as far as possible,
it is necessary to evaluate the feasible solution. According
to the optimization problem model established in this paper,
the evaluation function of the solution can be formulated
as (13).

1 COMM (X) — mincomm

3 maxcomm — mincomm
1

+§RESRC_CONS(X )
1 LINK _FAIL(X)

3 mMaxpINk_FAIL — MIRLINK_FAIL
Equation (13) normalizes the tow objective functions with
different dimension. maxcomy, mincoym are the maxi-
mum and minimum values of the first optimization objective

Eval(X) =

— MINLINK_FAIL

(13)
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function respectively; MAaxpINK _FAIL» minLINK_FAIL are the
maximum and minimum values of the third optimization
objective function respectively. These values can be obtained
by Greedy Algorithm. As a feasible solution of the problem
model, the smaller the value of Eval(X) is, the closer X is to
the optimum.

D. PHEROMONE UPDATING

In reality, ants leave behind pheromone every time they go
along a path. The more ants go along a path per unit time,
the more pheromone accumulates along the path. At the
same time, due to the volatility of pheromone, pheromone on
the path attenuates with time. The ACO algorithm simulates
the real feeding process of ant colony. After each iteration
of the algorithm, the pheromone on each path needs to be
updated. Pheromone is updated as (14).

5t + 1) = (1 - p)7j(t) + Aty (19

Here 7; j(1) is the pheromone on path path; ; at time t; 7; j(1+1)
is the updated pheromone. The initial value of the pheromone
can be set to 7; j(1) = 1. To avoid the unrestricted accumu-
lation of the pheromone, the volatile factor of pheromone is
denoted by p satisfying p € (0, 1). (1 — p) is the volatility of
pheromone.

ArT; jis the increment of the pheromone on path path; ; after
one iteration. It is calculated as (15).

K
At = Zmi’jj (15)

Here K is the size of the ant colony; At is the pheromone
left behind by Ant; on the path path; ;. Tt is related to the
evaluation function of the solution. It is calculated as (16).
0 ok
. — k —1q
adk = Basy 1

L (16)
> k
0, if x5=0

Here Q is the evaluation value of the current optimal solution;
X* is the current solution generated by the complete path
traveled by Ant;. If Ant; went along the path path; j, it will
contribute to the increment of the pheromone on the path.
The above equation shows that the better solution has lower
evaluation value, and more pheromone on the corresponding
path.

E. TRANSITION PROBABILITY

Anty, tends to select the next path with more pheromone and
higher expectation from the current path, so the transition
probability is related to pheromone and expectation. RESRCy
represents a set of the available nodes for Anty satisfying the
constraint conditions. The transition probability for Anty to
select the path path; j can be calculated as (17).

[z, (01 L} ;1P
> reresrc, ([T r (] [nf-f,]f‘)

0, otherwisw

, j € RESRCy,
= f

17)
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Here «, B are regulators for pheromone and heuristic infor-
mation respectively.

F. ALGORITHM IMPLEMENTATION

In this paper, we propose an Ant Colony Optimization algo-
rithm for Multi-objective of Container-based Microservice
Scheduling (ACO_MCMS for short). The implementation
of the ant colony optimization algorithm is shown as the
pseudo-code of Algorithm 1.

G. COMPLEXITY ANALYSIS

The ACO_MCMS algorithm involves three optimization
objectives and some constraint conditions. The complexity is
mainly reflected in optimization of the network transmission
overhead of microservice scheduling, which is a Quadratic
Assignment Problem. An ant constructs a complete schedul-
ing sequence, requiring O(n®> x Y, Scale;) operations. K
ants require O(K x n? x Y| Scale;) operations in one itera-
tion. Updating pheromone matrix after one iteration requires
O(n x Y, Scale;) operations. Considering the maximum
iteration number Ny, , the total time complexity of the algo-
rithm is O(Npax x K x n? x 31| Scale;).

V. EXPERIMENTAL EVALUATION

A. EXPERIMENT SETUP

The first step of experimental evaluation is to select test data
set and set up the parameters of our model.

1) TEST DATA

Based on the analysis of the real data from Alibaba Cluster
Trace V2018 cluster data set [30], the test data set for this
paper is shown in Table 2 and Table 3. The test data set
contains an application with 17 microservices.

Table 2 shows the number of requests and the volume
of data transmission among microservices when the appli-
cation receives a unit of user service requests (repre-
sented as x1.0 times user requests). For convenience,
it uses (ms;ms;) to denote the consumption relationship
(MScons,MSproy) between microservices; (0, ms;) to denote that
the clients or users consume a microservice ms;; Link; j to
denote the number of requests Link(imscons,Msprov) between
MIiCroServices mscons and mspoy; and Trans;j to denote the
volume of data transmission Trans(mscons, MSprov)-

Table 3 shows the parameters of microservices in the appli-
cation. Link; is the number of requests for microservice ms;
within x1.0 times user requests, which is calculated from the
data in Table 1 above; Scale; is the number of containers of a
microservice ms; in the cluster.

2) PARAMETERS SETTING
We consider a heterogeneous cluster CLUSTER as follows:
(1)Number of the physical nodes in the cluster:
ICLSTER|= 100;
(2)Physical nodes have three types which differ in the
computational capacities:
Calc_Resrcj=[100.0,200.0,400.01;
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Algorithm 1 Ant Colony Optimization Algorithm for Multi-
Objective of Container-Based Microservice Scheduling

Input:
MS_SET = {ms;li=1,2,...,m};
CLUSTER = {pmj|j = 1,2,...,n};
SCALE = {Scalejli=1,2,...,m};
LINK = {Link;li=1,2,...,m};
DIST = {Dist(pmj, pm;)};
TRANS = {Trans(ms;, ms;)};
MAxXcoMm > MINCOMM > MAXLINK _FAIL> MUIRLINK _FAIL}
K, Nyax;
Output:
PATH = {path(i, j)|ms; € MS_SET , pm; € CLUSTERY};
I: t < 1;
2: Initialize pheromone matrix 7; j();
3: while do
4: K ants are randomly placed to m microservices;
for each Ant; do
for each ms; € MS_SET do
for each pm; € CLUSTER do
Calculate the heuristic information nf.f ; by
Equation (12) according to the constraints;
9: end for

5
6:
7:
8

10: for s =1;s < Scale;; s + + do
11: for each pm; € CLUSTER do
12: Calculate the transition probability pﬁ ; by
Equation (17) according to the constraints;
13: end for
14: According to the calculated probability, select
anode pmj, and add path(i, j) to PATHy;
15: xffj <= 1;
16: end for
17: Put microservice ms; into Tabuy;
18: end for
19:  end for
20:  for each Ant; do
21: Calculate the evaluation value Eval(X*) for the
complete path PATH}. by Equation (13);
22: Update the optimal solution PATH found so far;

23:  end for
24 t<t+1;
25:  ift < Ny then

26: for each path(i, j) do

27: Calculate pheromone increment At;; by Equa-
tion (15);

28: Update pheromone matrix 7;;(t) by Equa-
tion (14);

29: end for

30: for each Ant;, do

31 Empty PATH};

32: Empty Tabuy;

33: end for

34:  else

35: return PATH,

36:  end if

37: end while
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TABLE 2. Number of microservice requests and volume of data
transmission per unit user requests (x1.0 times).

(ms;,ms;) Link; j | Trans; ; |(ms;,ms;) Link; ; | Trans; ;
(0, msy) 50 (ms7,ms14) 10 4.1
(0, ms3) 70 0 (msg,ms14) 15 4.2
(0, msg) 8 0 (msg,mss) 20 3.6
(0, ms7) 30 0 (msg,ms11) 20 4.7
(0, ms10) 100 0 (ms10,mss) 20 3.4
(0, ms13) 30 0 (ms10,msg) 25 4.4
(ms1, ms2) 20 4.6 (ms10,ms11) |20 49
(ms1, msyq) 10 3.1 (ms11,ms2) 20 3.2
(ms1, msg) 20 4.0 (ms12,msg) 45 6.4
(msa,msy4) 10 3.5 (ms13,ms2) 20 4.5
(ms2,ms12) 15 59 (ms13,msg) 45 6.1
(mss,ms13) |60 1.8 (ms13,ms16) |8 55
(msq,ms15) |30 5.6 (ms13,ms17) |30 2.4
(msq,ms16) |8 57 (ms15,ms16) |8 52
(mss,ms15) |30 5.3 (ms16,ms14) |15 43
(ms7,ms2) 20 4.8 (ms17,ms12) |15 6.2

TABLE 3. Microservices in the application.

ms; | CONS_SET; | Cal_Regst;| Str_Reqst; | Link_Thr; | Link; | Scale;
ms1 | {msa,msy, 2.1 1.4 10 50 5
msg }
mso | {msq,ms12} |0.5 3.2 8 80 10
ms3 | {ms13} 3.1 1.6 8 70 9
ms4 | {ms15,ms16} | 4.7 0.2 5 20 4
mss | {ms15} 1.8 3.1 8 40 10
mse | {} 2.5 5.1 4 8 2
msy | {msa,ms14} |6.2 0.6 4 30 8
msg | {ms14} 0.8 6.2 4 90 23
msg | {mss,ms11} |3.9 2.3 5 45 9
ms1o| {mss,msg, 0.2 4.8 4 100 |25
ms11}
ms11| {ms2} 2.8 2.6 8 40 5
msy2| {msg} 53 0.9 4 30
ms13| {ms2,mss, 0.6 4.8 5 90 18
ms16,Mms17 }
ms14| {} 6.1 2.5 4 40 10
ms15| {ms16} 1.2 4.2 5 60 12
msi6| {ms14} 5.4 1.6 4 24 6
ms17| {ms12} 3.7 2.2 6 30 5
TABLE 4. Parameter setup of ACO_MCMS algorithm.
Parameter K Nmazx « 5 p
Value 20 100 2 3 0.05

(3)Three types of different storage capacities correspond-
ing to the computational capacities:

Str_Resrc;=[100.0, 200.0, 400.0];

(4)Failure rate of the physical nodes:

Fail; is a random number between 0.01 and 0.03;

(5)Network distance among the physical nodes:

Dist(pmj, pm;)=[1.0, 4.0].

The parameter setup of the ACO_MCMS algorithm are
shown in Table 4.

B. RELATED ALGORITHMS FOR COMPARISONS

This paper studies container-based microservice scheduling,
which is different from traditional virtual machine-based
task or job scheduling. To validate the effectiveness of
the ACO_MCMS algorithm, the experiment compares the
ACO_MCMS algorithm with the Multiopt algorithm from the
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FIGURE 2. Comparative results of network transmission overhead.

paper [20] (mentioned in related work), the GA_MOCA algo-
rithm (GA-based Multi-objective Optimization of Container
Allocation) from the paper [23] (mentioned in related work),
and the Spread algorithm implemented in Docker Swarm.

-Multiopt algorithm adopts a multi-objective container
scheduling method. According the work of this paper,
we only consider four related key factors in the Multiopt algo-
rithm, including CPU usage of every node, memory usage
of every node, the association between containers and nodes,
and the clustering of containers.

-GA_MOCA algorithm is a multi-objective optimization
approach based on NSGA-II. The GA_MOCA algorithm
considers four optimization objectives, including threshold
distance of the container workload, the balanced use of
computing resources, the reliability of the container applica-
tions, and the intercommunication overhead among related
microservices.

-Spread algorithm selects the node with the least number
of microservice container instances to place new containers.

C. EXPERIMENTAL RESULTS AND ANALYSIS

The performance comparisons of the four algorithms are
performed in three aspects: network transmission overhead,
cluster load balancing and reliability of cluster services.
We set up nine experimental configurations to analyze and
compare the experimental results of four algorithms in the
above three aspects. The number of user requests of the nine
experimental configurations vary between x1.0 times and
x5.0 times, and 0.5 times user requests is a span.

1) NETWORK TRANSMISSION OVERHEAD
Network transmission overhead is one of the indicators
to evaluate and verify the scheduling effect of the four
algorithms.

Figure 2 shows the comparative results of the network
transmission overhead for the four algorithms with different
number of user requests. The Spread algorithm only
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considered the resource utilization of the physical nodes, and
distributed the microservice containers to each physical node
as evenly as possible. The Spread algorithm increased the
probability of cross-network transmission among microser-
vices, thus increasing the network transmission overhead
between microservices. To reduce network transmission
overhead among containers, the Multiopt algorithm allocated
the interrelated containers to the same node as much as pos-
sible by the clustering of microservice containers. However,
the clustering of containers was accomplished by the oper-
ation of feature set relation among containers in the nodes,
and the algorithm adopted a sequential container scheduling
method, in which scheduling sequence of containers has a
great influence on the effect of scheduling. Similar to the
Multiopt algorithm, the GA_MOCA algorithm just allocated
interrelated microservice containers to the physical nodes
with short network distances. Neither of the three algorithms
above considered the network data transmission among con-
tainers. From Figure 2, we can see that the Spread algorithm
performed the worst; the performance of the Multiopt algo-
rithm and the GA_MOCA algorithm took the second place;
the ACO_MCMS algorithm was the best. It is because the
ACO_MCMS algorithm took full account of the network
data transmission among microservices and the network dis-
tance among the physical nodes where the microservices
were allocated, and optimized the scheduling by ant colony
optimization method.

2) RESOURCE LOAD OF THE CLUSTER
Standard deviation o; and o, are used to evaluate the
load imbalance degree of computing resources and storage
resources among the physical nodes, respectively. ocster
captures the load imbalance degree of cluster. Formula for
Ocluster 18 as follows.

1 1,

2
Ocluster = 501 + 502

The experimental results are shown in Figure 3, 4, and 5.
The standard deviation of computing resource usage fluctu-
ated between 0.13 and 0.25 using the GA_MOCA algorithm
as scheduling strategy for microservice containers and that
of storage resource usage was between 0.3 and 0.35. For the
ACO_MCMS algorithm, they were between 0.14 and 0.27,
between 0.17 and 0.25, respectively. For the Spread algo-
rithm, they were between 0.21 and 0.31, between 0.23 and
0.3, respectively. For the Multiopt algorithm, they were
between 0.17 and 0.32, between 0.22 and 0.31, respectively.
The results show that the GA_MOCA algorithm had the best
performance in the load distribution of computing resources
but the worst performance in the load distribution of storage
resources. It is because the GA_MOCA algorithm only con-
sidered the optimization of computing resource usage. For
the Spread algorithm and the Multiopt algorithm, in each
round of sequential scheduling process, the most suitable
node was selected, according to the resource requirements
of the microservice container to be deployed and the number
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of deployed containers or resource utilization of the physical
nodes in the cluster. However, the ACO_MCMS algorithm
considered both the resource utilization rate of the nodes and
load distribution of each resource in the cluster through the
maximum value of resource utilization rate with coefficient
among the physical nodes, and achieved the optimal solution
by ACO. From Figure 5, we can see that the ACO_MCMS
performed the best in the load balancing of the cluster overall
under the various settings of user requests, respectively.

3) RELIABILITY OF CLUSTER SERVICES
The reliability of cluster services is measured by the average
number of failures for microservice requests.

Figure 6 shows the average number of failures for
microservice requests for four algorithms with different num-
ber of user requests. The experimental results of the Spread
algorithm and the Multiopt algorithm show an approximate
linear growth with the increase of user requests, while that of
the GA_MOCA algorithm and the ACO_MCMS algorithm
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show a slow growth when user requests were low (below
% 3.0 times user requests), which were better than the Spread
algorithm and the Multiopt algorithm. It is because the Spread
algorithm and the Multiopt algorithm did not consider the
failure rate of nodes, focusing on load balancing among
nodes. The GA_MOCA algorithm considered the failure
rate of nodes and microservices, but still did not consider
the impact of the number of requests for microservices on the
reliability of cluster services. The ACO_MCMS used the
average number of failures for microservice requests to mea-
sure the reliability of services, and allocated the microser-
vice containers with more requests to the nodes with lower
failure rate, so as to reduce the average number of failures
for microservice requests and improved the reliability of the
cluster services overall. Figure 6 shows that our algorithm
performed the best.

4) THREE-DIMENSIONAL COMPARISON OF

MULTIPLE INDICATORS

From Figure 7, we can see that the ACO_MCMS algorithm
outperformed the Multiopt algorithm, the GA_MOCA algo-
rithm and the Spread algorithm overall by comparing the
three performance indicators at the same time. It is because
the ACO_MCMS algorithm proposed in this paper is based
on the scheduling problem model to optimize the three objec-
tives, so that the three objectives can be optimal simulta-
neously. However, Spread algorithm only focused on load
balancing among the nodes, lacking other optimization strat-
egy. The Multiopt algorithm and the GA_MOCA algorithm
ignored the impact of the network data transmission among
microservices and the number of microservice requests on
scheduling.

VI. CONCLUSION

In this paper, we propose three optimization objectives
and establish a multi-objective optimization model, includ-
ing reducing the network transmission overhead among
microservices, balancing the load of the physical nodes in the
cluster, and improving reliability of cluster services. A multi-
objective optimization method based on ant colony algorithm
is proposed to solve the scheduling problem of microservice
containers in cloud. In order to prevent ant colony algorithm
from falling into local optimal solution and obtain global opti-
mal solution as soon as possible, our method firstly constructs
heuristic information to improve the selection probability
of the optimal path, by using three optimization objective
models. Secondly, it evaluates the quality of solution by using
three objective functions in combination, and feeds back the
quality ratio between the solution and the current optimal
solution to pheromone updating. The quality of the solution in
next generation can be improved as much as possible through
the mechanisms of evaluation and feedback. Compared with
other related algorithms, the proposed optimization algorithm
has obvious advantages in reducing network transmission
overhead, balancing the load of clusters and improving the
reliability of microservices in clusters.
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In future work, we plan to apply our scheduling algorithm
in a real cloud container cluster and try to reduce the time
complexity of the algorithm. In addition, it can also include
other optimization objectives, as well as other intelligent
optimization algorithms, such as genetic algorithm. Finally,

we

can study the consumption relationship and resource

usage among microservice containers, and use group schedul-
ing instead of single container scheduling.
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