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ABSTRACT In recent years, the compressed sensing theory has been widely used in sparse aperture radar
imaging. The inverse synthetic aperture radar (ISAR) imaging based on the sparse aperture echo of V-style
frequency modulation (V-FM) waveform, which can mitigate the ambiguity appeared in range and velocity,
has been proposed in this paper. After analyzing and interpreting the reason why the VFM signal pulse
compression needs to use dual channels, we built the VFM waveform sparse echo model and analyze the
causes of echo sparseness. A modified weighted compressive sensing (MWCS) algorithm is proposed to
obtain high-resolution images under strong noise environment. The innovation of this paper lies in the
new weighting method and the iterative reconstruction algorithm. The experimental results are shown to
demonstrate the validity of the proposed method.

INDEX TERMS VFM waveform, sparse signal model, ISAR imaging, low SNR condition.

I. INTRODUCTION
The inverse synthetic aperture radar (ISAR) plays an impor-
tant role in the imaging, recognition and classification
of moving targets under all-weather and all-day circum-
stance [1]–[3]. More new technologies are being used in
ISAR imaging, such as MIMO [4]–[8]. In traditional ISAR
signal processing, pulse compression techniques and large
time-width bandwidth product signals are often used to
improve range resolution and detection distance [1]. The
intra-pulse frequency modulation waveforms, including lin-
ear modulation frequency signal, frequency-stepped signal,
have been widely used in modern radar systems [9], [10].
However, a long coherent processing interval (CPI) is
required for frequency-stepped waveform to complete the
transmission and reception of each burst. Long CPI will
generate a relatively large imaging aspect angle, leading to
range cell migration. The ‘‘ridge’’ ambiguity function of
chirp signal will lead to the ambiguity in range and velocity.
The ‘‘thumbtack’’ ambiguity function of V-style frequency
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modulation (V-FM) waveform is able to eliminate the ambi-
guity appeared in range and velocity [11]. It is more con-
ducive to improving the two-dimensional resolution with
VFMwaveform used in radar system. Some researches about
VFM signal characteristic and imaging have been imple-
mented [12]–[15], including dual-channel CS-D algorithm
and two-dimensional CS algorithm. But they did not con-
sider the missing observation data in actual situation and
the proposed algorithm is sensitive at low signal-to-noise
ratio for imaging results. At the same time, few studies have
analyzed and explained the causes of the two-channel pulse
compression of VFM waveform.

With the continuous development of modern radar sys-
tems, more and more functions can be realized by each radar,
likemultifunction phased array radar, which performmultiple
tasks such as target detection, monitoring and tracking within
a time window [16], [17]. The authors proposed an adaptive
ISAR-imaging-considered task scheduling algorithm in [18],
which can allows adaptive allocation of radar resources to
the imaging without affecting the execution of other tasks
as much as possible. So the aperture of the imaging is dis-
continuous, which may affect the RD-like imaging algorithm.
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The inevitable interference and jamming in radar system are
another reason for the incomplete aperture of echo. Thus,
only obtain sparse aperture signal echo can be obtained in
a range bin. Compressed Sensing (CS) theory states that the
sparse or compressible signals are able to reconstruct exactly
from limited measurements by solving a sparsity-constrained
optimization problem with a high probability [19]–[21],
which is quite suitable to apply to radar imaging [22]–[24].
There are many researches state that sparse aperture signal
echo under different waveforms are utilized to reconstruct
2D imaging results by using CS, including LFM signal [25],
stepped-frequency waveform [26] and gapped stepped- fre-
quency waveform [27]. However there is few researches on
sparse aperture echo imaging of VFM signal.

In the same noise environment, the target echo obtained by
the receiver is limited, so the SNR of sparse echo signal is low.
Compared with other recovery methods, such as matching
pursuit (MP), OMP [28] and SAMP [29], a weighted `1
minimization method is proposed in [30]. This method out-
performs the regular `1 minimization algorithmmainly in two
situations including the required number of measurements to
recover a sparse signal is much less and the reconstruction
error in noisy environment is significantly reduced. In the
conventional weighting method, the constraint on large coef-
ficients is reduced, and the constraint on small coefficients
is also reduced. This makes noise suppression less obvious
when SNR is low.

This paper focus on sparse aperture VFM waveform
ISAR imaging under low SNR condition via modified
reweighted compressive sensing. Firstly, the properties of
VFM waveform are analyzed and the ISAR imaging using
VFM waveform model is formulated, imaging results will
become defocused since the missing measurement data.
Then, the sparse VFM waveform echo model in cross range
domain is proposed and weighted compressive sensing is
utilized to recover the signal. In order to overcome the draw-
backs of traditional weighted method, we propose a modified
weighted method that has a good performance under low
SNR condition and the iterative algorithm. Experiments are
provided to demonstrate that the framework can achieve high
resolution ISAR imaging by using sparse VFM waveform
echo under noisy environment.

The remainder of this paper is organized as follows.
In section II, the signal model and ISAR imaging processing
are introduced, and the sparse signal model and reweighted
rule and iterative algorithm are presented in section III.
In section IV, several experiments are used to validate the
effectiveness of the proposed method. Conclusions are drawn
and presented in Section V.

II. ANALYSIS OF VFM WAVEFORM
AND IAMAGING MODEL
A. ANALYSIS OF VFM WAVEFORM
V-style frequency modulation (V-FM) waveform refers to a
V-style whose frequency changes with time, and its waveform
and frequency variation are shown in Fig 1. The VFM signal

FIGURE 1. Properties of VFM waveform.

can be viewed as two adjacent chirp signals with opposite
LFM slopes.
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γ is the chirp rate, Tp is the pulse duration and bandwidth
B = γTP, t̂ represents the fast time, and f0 denotes the
frequency of carrier wave, tm and t represent the slow time
and full time respectively, t̂ = t− tm. Supposed that the pulse
repetition interval (PRI) of radar is TPRI , then tm = mTPRI .

According to the principle of standing phase, we obtain the
spectrum of the VFM signal:
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So the matched filter of VFM signal can be expressed as

H (f ) = S∗(f ) exp (−j2π ft0) (3)

After pulse compression by matching filter, there will be
two pulses at the time domain.
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Thus, in order to solve this problem, dual-channel pulse
compression has been proposed for VFM waveform. In this
section, we explain why it is necessary to use dual channels to
achieve pulse compression from the perspective of the radar
signal ambiguity function. The ambiguity function of a signal
s(t) is a two dimensional function in Doppler frequency shift
ξ and time delay τ define as:

χS (τ, ξ) =

∞∫
−∞

s(t)s∗(t − τ ) exp (j2πξ t)dt (5)

where the asterisk refers to the conjugate, a high value of the
ambiguity function indicates that it is difficult to resolve two
nearby targets whose differences in the time delay and in the
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FIGURE 2. Ambiguity diagram of VFM wavefrom.

FIGURE 3. Cutting image along the τ -axis (a) and the ξ -axis (b).

FIGURE 4. ISAR imaging geometric model.

Doppler frequency shift are τ and ξ , respectively. And the
ambiguity function of VFM waveform is shown in Fig.2.

In order to explore the traits of the ambiguity diagrammore
clearly, we cut the ambiguity diagram along the τ -axis and
the ξ -axis, shown as fig.3 (a) and (b). When ξ 6= 0, the graph
cut along the τ axis is decomposed into an approximate sinc
function that is symmetric with the ξ axis, and the graph also
has two peaks after it is cut along the ξ axis, when τ 6= 0.
It means that, when the target is moving, there will be Doppler
shift and delay, and the matched filter has no adaptability to
the frequency shift. Therefore, it is necessary to consider the
two-channel method to realize the pulse compression of the
VFM signal.

B. IMAGING MODEL
Supposed that the target’s translation motion has been com-
pensated previously, the geometry of monostatic ISAR imag-
ing is illustrated in Fig.4, which is regarded as a turntable
imaging model. We set the moving target point o as the origin
and give the local coordinate system xoy of moving target.
To simplify the process, the y axis is chosen as radar line
of light (LOS). Suppose the target makes a circular motion

at a fixed angular velocity of w rad/s and the distance from
radar to target scatter point o is R0. The dash line represents
the initial position of target, and the solid line represents the
position after a rotation angle 1θ (t).

In the case where the observation time (the imaging coher-
ent accumulation time) is short, it can be assumed that the
target scattering point moves at a uniform speed in the radar
line of sight with respect to the reference point. Suppose the
target is located in the far field of the radar field, the instan-
taneous range from the scattering point i(x, y) to radar during
a short CPI can be expressed as

R (tm) = R0 + x sin1θ (tm)+ y cos1θ (tm)

= R0 + x1θ (tm)+ y

= R0 + xwtm + y (6)

Supposed that σi is the scattering coefficient of a scattering
point i(x, y) on the moving target. Assume that the target
contains I strongest scattering points, the radar echo can be
approximated as the following
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where Ri represents the distance from i-th scattering center to
the radar, and c is the speed of the electromagnetic wave.

Dual-Dechirping in [14] is used to achieve pulse compres-
sion, we use two LFM signals with opposite slopes as refer-
ence signals. Each channel is mixed and the remaining video
phase is removed. Fourier transform is performed to obtain
high range resolution profile (HRRP). One of the channels is
flipped and added to the other channel to synthesize HRRP.

s(r, tm)=
I∑
i=1

Tpσi sin c
(
γTp
c
(r − R1)

)
× exp

(
−
j4π foR1

c

)
(8)

where r represents down-range domain, and R1 = Ri−Rref ,
when Rref = R0, substituting (6) into (8), after neglecting
the constant phase term, we have the signal in the range cell
corresponding to r = R1 as follows [31]:

s(tm) =
I∑
i=1

Tpσi × exp
(
j2π fdi tm

)
(9)

where fdi = 2xiw/λ represents the Doppler frequency
of i-th scattering point, and λ represents the wavelength.
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Applying azimuth FT to (9), we have cross range compres-
sion by neglecting the constant phase term

s(fm) = TpTa
I∑
i=1

σi · sin c
(
Ta
(
fm − fdi

))
(10)

where fm ∈ [−fr/2, fr/2] is the Doppler extent, and fr is
the PRF. The target is resolved in the rang-Doppler (RD)
domain, because the cross-range coordinate is proportional
to the Doppler frequency. For traditional Fourier Transform
method, the RD imaging may defocus when the measured
data is too limited to provide sufficient time-spectrum infor-
mation. In the turntable imaging model, the cross-range res-
olution is proportional to coherent accumulation time, so a
long time observation is necessary. Nevertheless, because the
target is uncooperative and maneuvering, it is difficult to
collect long-time data. It is most critical that multifunction
radar serves different tasks simultaneously, there are very few
schedulable resources for imaging, so getting a long-time and
complete observation is impossible. This motivates the study
of high resolution with limited data.

III. SPARSE SIGNAL MODEL AND
RECONSTRUCTION ALGORITHM
A. SPARSE SIGNAL MODEL
Compressed Sensing theory can reconstruct sparse signals
with high probability from limited measurement data, which
greatly reduce the need for measurement data and cost.
Before performing signal sparse representation and recon-
struction, we first briefly review the theory of compressed
sensing. Let y ∈ CM denote a finite signal of interest and
a basis matrix 8 = {ϕ1, ϕ2, . . . , ϕM }. The initial signal can
be sparsely represented by a basic matrix, which satisfies

y =
M∑
i=1
ϕiθi = 8θ , where θ is a vector. If there are only K

non-zero values in the vector θ , then the sparsity of the signal
y in the base 8 is K. The measurement signal vector can be
reduced from M to M̄ by the measurement matrix, s = Ay,
where A ∈ CM̄×M (M̄ < M ) is the measurement matrix. The
number of measurements must satisfy M̄ ≥ O (K · logM) to
achieve optimal recovery for y. So the compression dictionary
can be expressed as 9 = A8, which satisfies the restricted
isometry constant(RIC) δK ∈ (0, 1).

(1− δK ) ‖θ‖22 ≤ ‖9θ‖
2
2 ≤ (1+ δK ) ‖θ‖

2
2 (11)

Solving the `0 norm is an NP problem, which has been
proved to be equivalent to a convex optimization process.

min (‖θ‖1) , s.t. ‖s−9θ‖2 ≤ ε (12)

where ‖‖1 and ‖‖2 represent the `1, `2 norm, respectively.
min () denotes the minimization, and ε is the noise level.
In the actual scene, the ISAR image occupies only a small
portion of the entire imaging plane, so the image is sparse.
Measurement noise and environmental noise are present dur-
ing the measurement, so the measured echo data includes the

FIGURE 5. Sparse aperture signal vector geometry in the n-th range bin.

target reflected signal and noise. Therefore the signal in a
range cell can be expressed as:

s =
I∑
i=1

Tpσi × exp
(
j2π fdi tm

)
+ n (13)

where n is the additive noise in a range cell, and time sequence
is tm = [1 : M ]T1t , and [·]T denotes vector or matrix trans-
pose, the pulse number and time interval can be calculated by
M = Ta/1t and 1t = 1/fr , respectively. Discrete Doppler
sequence can be expressed as fd = [1 : Q]T1fd ,Q = fr/1fd ,
so the dense dictionary is shown as:

9 =
{
ϕ1, ϕ2, . . . , ϕq . . . , ϕQ

}
ϕq = exp [−j2π · fd (q) · t] , 0 ≤ q ≤ Q (14)

Finally, (9) can be rewritten as s = 9θ + n.
The full aperture data should contain a total of M-bursts

with indices from 0 to M-1 in the dataset. However, a multi-
function radar system has to switch among different targets
and serves different activities (some of them have higher
priority) [18], some segments of the received echo signal
are missing. On the other hand, undesirable interference or
jamming signals also are the reasons for the sparse signal in
cross-range domain. As shown in Fig.4, we assume that P
sparse aperture signal vectors for a single target, which are
extracted from the full aperture data. Zp bursts fromMp+1to
Mp + Zp are included in the n-th sparse aperture data in the
n-th range bin. So the p-th sparse signal vector of n-th range
bin can be expressed as [32]:

sp,n =
[
sn
(
Mp + 1

)
sn
(
Mp + 2

)
. . . sn

(
Mp + Zp

)]
(15)

The P sparse aperture signal vector in the n-th range bin is

s̄n =
[
s1,ns2,n . . . sp,n . . . sP,n

]T (16)

where s1,n, s2,n, . . . , sP,n are sub-vectors of s̄n, whose lengths
are Z1,,Z2, . . . ,ZP respectively, with Z1+Z2+· · ·+ZK = M̄ .
Therefore the discrete sparse echo model can be expressed as

s̄n = 9̄nθn + nn (17)

where the length of the measurement P sparse signal vector
s̄n is M̄ , 9̄n (M̄ × M ) is a partial sensing dictionary matrix
that extracts from original sensing matrix 9 with the size of
M ×M .
We can use method in (12) to solve the optimization

problem in (17) by greedy algorithms or orthogonal match-
ing pursuit. In [30], a novel method for sparse signal recovery
through weighted `1 norm optimization is proposed, this
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adaptive adjustment mechanism makes the weighted `1 norm
constraint model accurately approximate the `0 norm model.

min (‖wθ‖1) s.t. ‖s−9θ‖2 ≤ ε (18)

wherew is the vector of weighted coefficients, andwhose ele-
ments correspond to positive weightwi for the i-th component
of θ . The weight for the recovery signal can be calculated as

wi =
1

(|θ i| + ξ)
(19)

where ξ stands for a very small positive, which prevent wi
from appearing singular values. When θ i is small, the cor-
responding weight wi is constrained to be large, and the
component is further constrained in the corresponding recon-
struction process (For the noise component, it is equivalent
to applying a certain degree of noise suppression). When θ i
is large, the corresponding weight is small (For the signal
to be reconstructed, this constraint effectively guarantees the
fidelity of signal reconstruction). This way narrows the gap
between large and small coefficients in the contribution of
the objective function. Therefore, the weighting process is
equivalent to achieving a balanced penalty for large and small
coefficients in the optimization process. In the noisy mode,
the model is easier to obtain the optimal sparse solution of the
object to be optimized than the conventional `1 norm model.
The weighted `1 norm has a good sparse approximation

effect, but the adjustment of the parameter ξ causes the
weights of the large and small coefficients in the recon-
structed signal to change in the same direction. Themaximum
value of the weight changes greatly due to the difference
of ξ , which makes the penalty for the small coefficient
change drastically, and the reconstruction result lack stability.
To solve the above problems, in next subsection, we propose
a new weighting scheme and a novel updating rule to obtain
the final results based on [33].

B. MODIFIED WEIGHTED RULE AND
RECONGSTRUCTION ALGORITHM
Suppose θ∗ is a k-sparse solution vector whose support set
is T0. In [33], they proposed the following weighting scheme
to define w:

wi =

{
w if i ∈ T0
1 if i ∈ T c0

(20)

where Tc0 denotes the complementary set of T0 in
{1, 2, . . . ,M} and 0 ≤ w ≤ 1. We adopt the popular
reweighted `1 approach to solve (18):

θ l=argmin
θ

f
(
θ;µl,wl

)
=1/2‖9θ−s‖2+µl‖wθ‖1 (21)

where µl > 0 denotes the penalty parameter and wl is the lth
iteration weight vector. θ l and θ l+1 are two solution vectors
that have been solved. At the same time, we update µl+1 by

µl+1 =

{
α0µl, if βl > 1
βlµl, if βl ≤ 1

with βl =
∥∥wlθ l∥∥1∥∥wl+1θ l∥∥1 . This useful

tool YALL1 solver (available at http://yall1.blogs.rice.edu/)
is used to solve the optimal problem of(21) in each iteration.

FIGURE 6. The framework of imaging processing.

The size of the θ l is obtained by kl :=
∣∣supp (θ l)∣∣. Then we

set dl = θ l − θ l−1 and sort dl in decreasing order according
to absolute values of its elements:∣∣∣d ljl1

∣∣∣ ≥ ∣∣∣d ljl2
∣∣∣ ≥ . . . ≥ ∣∣∣∣d ljlkl

∣∣∣∣ ≥ ∣∣∣∣d ljlkl+1
∣∣∣∣ ≥ . . . ≥ ∣∣∣d ljM ∣∣∣ (22)

We use matrix N to represent the null space of 9, and
define the `1-unit sphere in the null space as following:

B1 =

{
d ∈ CM

∣∣∣d ∈ N, ‖d‖1 = 1
}

(23)

We define I(k)as following:

I(k) = {S ⊂ {1, 2, . . . ,M} ||S| ≤ k } (24)

Then we can get T0 and T1 from the following optimiza-
tion problem:(

T0, d̂
)
= argmax

T∈I(k),d∈B1

‖dT‖1 (25)(
T1, d̃

)
= argmax

T∈I(k)\{T0},d∈B1

‖dT‖1 (26)

Corresponding toT0 in (25) andT1 in (26), we further need
to define two index sets:

Tl0 =
{
jl1, j

l
2, . . . , j

l
kl

}
, Tl1 =

{
jl2, j

l
3, . . . , j

l
kl+1

}
(27)

A quantity is defined as follow by using the ratio of optimal
objectives mentioned above.

γ l9 =

∥∥∥∥d̃lTl1
∥∥∥∥
1∥∥∥∥d̂lTl0
∥∥∥∥
1

(28)

Obviously,0 ≤ γ l9 ≤ 1, and γl = ξ1+ϑlγ l9 , where ξ1 < 1
is a small positive value and ϑl = α1ϑl−1 with α1 > 1
and ϑ0 > 0 being given. This quantity definition is very
clear because there are only two optimization issues involved.
We can update the weight vector w by following rule:

wl+1i =


γl, if i ∈ Tl0
ξ1 + ϑl +

1∣∣θ li + ξ2∣∣ , if i /∈ Tl0
(29)

where 0 < ξ2 ≤ 1. So, let’s summarize the whole imaging
framework shown as Fig.6. The receiver receives sparse target
echo information and obtains HRRP after pulse compression
and motion compensation. High resolution image can be
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obtained by using MWCS algorithm to reconstruct HRRP
under the condition of low SNR. In MWCS algorithm, after
parameters initialization, YALL1 solver is firstly used to cal-
culate the solution vector. Calculate the error of the solution
vector, and then determine whether it meets the requirements,
if not, find the support set according to (22) - (27). The
weighting coefficient is obtained through (29), and the new
solution vector is obtained by using YALL1 solver again.
Until the solution vector reaches the error requirement or
the maximum iteration number, the final solution vector is
obtained. It can be seen from the above derivation and calcu-
lation that the support set is closer to the real value after each
iteration.

Another concern is the complexity of the algorithm.
As shown in [34], for a signal with k nonzero ele-
ments, the computational cost of the YALL1 algorithm and
l1-regularized least squares algorithm (l1_ls) both are about
O(k ·MM̄ ), whereMM̄ is the dimension of the measurement
matrix. However, the computational complexity of MWCS
algorithm is related to the reconstructed signal. The cal-
culation to find the support set is approximately O(M ),
and the calculation to update the weighted coefficient is
approximately O(M ). Therefore, the calculation of updating
weighting coefficient is approximately O(M ). Finally, the
computational complexity of the entire MWCS algorithm is
approximately O

(
kM2M̄

)
, which is higher than other algo-

rithms. But the fast GPU parallel implementation would be
used to reduce the computation time.

IV. EXPERIMENTS AND ANALYSIS
A. RECONSTRUCTION ALGORITHM
PERFORMANCE COMPRESSION
In this subsection, the signal of interest is Gaussian sparse
signal with length of M = 256, we set the measurement
number M̄ = 128, then we can obtain the partial random
Gaussian sensing operator. This experiment investigates the
probability of accurate reconstruction of signals with differ-
ent signal sparsity K under a fixed number of measurements
M̄ . The signal sparsity in this experiment is set fromK= 10 to
K = 70, for each K, each algorithm simulates 1000 times to
calculate the probability of an exact reconstruction.

Another experimental study investigates the probability
of accurate reconstruction of signals with different signal
measurements for a given signal sparsity K = 20, and we
set M ∈ (50, 55, . . . , 95, 100). For each K, 1000 experi-
ments were repeated to calculate the probability of accurate
reconstruction of the signal. The data measurement number
M̄ is represented by the x-axis and the probability of signal
reconstruction is represented by the y-axis.

The stopping criterion of the proposed algorithm is Error=∥∥∥θ l−θ l+1∥∥∥
max

{
1,
∥∥θ l∥∥} ≤ 10−2, and set tol = 10−4 the stopping criterion

for YALL1 solver. For initialization, the algorithm set θ0 = 0
and w1

= (1, 1, . . . ., 1)T , and the other parameters are set
as ξ1 = 10−10, ϑ0 = 0.1µ1M̄/M , α1 = 1.005, α0 = 0.2,
µ1 = 0.01

∥∥9T s
∥∥
∞
. For θ l , its components are sorted in

decreasing magnitude
∣∣∣θ lj1 ∣∣∣ ≥ ∣∣∣θ lj2 ∣∣∣ ≥ . . . ≥

∣∣∣θ ljM ∣∣∣. Instead
of fixing ξ2 in updating w in (30), we use ξ2 as suggested
by [30]: ξ l2 = max

{
10−3,

∣∣∣θ lj0 ∣∣∣} and j0 =
⌈

M̄
4 log(M/M̄)

⌉
.

The definitionTl0 represents the number of non-zero elements
in the vector θ l . In order to avoid including too many such
elements since there are many elements of small magnitude

in θ l , we define kl(r) = min
{
η :

η∑
i=1

∣∣∣θ lji ∣∣∣ ≥ r ∥∥θ l∥∥1}, where
r ∈ (0, 1) to control the total percentage of the contribution
of the first η largest elements (in terms of the magnitude) in
θ l to its `1-norm

∥∥θ l∥∥. Via calculation, r is chosen by [33]

r0 =


1

ln
(
M/M̄

) , ln
(
M/M̄

)
> 1

0.7, otherwise.

FIGURE 7. The probability of exact reconstruction under different signal
sparsity.

FIGURE 8. The probability of exact reconstruction under different number
of measurement.

Fig.7 and Fig.8 demonstrate the results for Gaussian
sparse signal under different sparsity and number of mea-
surement. As can be seen, performance of the algorithm
we proposed far exceeds other reconstruction algorithm,
including the weighted compressive sensing proposed by
Emmanuel J. Candes. In Fig.7, while all other algorithms
start to fail when sparsity K > 50, the MWCS still can afford
until sparsity K > 70—nearly equal a half of the number of
measurements, and have a stable reconstruction performance
than WCS. In Fig.8, it is also obvious to observe that MWCS
algorithm has better reconstruction performance with fewer
measurements. When the measurement quantity exceeds 55,
the MWCS method can carry out signal reconstruction with
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FIGURE 9. Aircraft model.

FIGURE 10. Sparse signal.

high probability. In addition, it can be seen from the figure
that the signal reconstruction effect of WCS and CS is better
than other methods.

B. ISAR IMAGING PERFORMANCE
To verify the performance of proposed method in VFM
ISAR imaging, a Yak-42 plane model of 330 point scattering

centers are adopted in the following simulations as shown
in Fig.9. The VFM ISAR works at the X-band with a car-
rier frequency of 10GHz and bandwidth of 300MHz. The
pulse-band is 100 µs and the pulse repetition frequency
is 1 KHz. The length of down range is 256, and length
of cross range is 128. The rotary angular velocity of the
turntable is 0.05rad/s. We obtain the sparse raw echo data
shown in Fig.10. As shown in images, some data are missing
in cross range domain, where the number of sampled data
is 100.

In order to verify the robustness of the proposed algorithm
in sparse aperture echo imaging, different numbers of burst
are set in the simulation experiment. Synthetic HRRP through
dechirping range compression and compensation are utilized
to make a preprocessing, the final ISAR imaging results are
shown in Fig.11, where the number of sampled data are 100,
64 and 32 in Fig.11 (1), (2) and (3), respectively. In Fig.11(1),
FFT is used to achieve azimuthal pulse compression to obtain
two-dimensional images. 2D images are obtained by using
the traditional compression sensing reconstruction method
(l1_ls) in Fig.11(2). Fig.11(3) and (4) are reconstructed by
WCS and MWCS respectively. It is obvious that the pro-
posed method has a better performance than other methods
with a same SNR level (20dB); even in a few measure-
ment data condition, we also can get a high-quality imaging
result and complete details. Conversely, the imaging result
achieved by conventional Fourier transform is severely blur-
ring in azimuth because of missing data in azimuth domain.

FIGURE 11. ISAR imaging results (a) FT, (b) conventional compressive sensing, (c) WCS (d) MWCS.
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FIGURE 12. ISAR imaging results (a) FT, (b) conventional compressive sensing, (c) WCS (d) MWCS.

Different numbers of sampled signals will result in differ-
ent imaging effects. When the signal noise ratio is high,
the compressed sensing reconstruction methods can obtain
high resolution imaging results. Although theMWCSmethod
does not produce defocus in the azimuth direction, the image
also loses a lot of detail information, like Fig.11(3) d.

In this experiment, we characterize the performance
of ISAR imaging based on MWCS in case of different
SNRs. To provide a quantitative evaluation for imaging per-
formance, we establish two indexes related to radar target
recognition. The first index is the normalized root mean
square error (RMSE) between the reconstructed image and
the target model, such as

RMSE =

√√√√ 1
MN

M∑
m=1

N∑
n=1

(I1(m, n)− I2(m, n))2 (30)

where I1, I2 denote reference ISAR image and the recon-
structed ISAR image with different SNRs.

The another evaluation index is the correlation coefficient
(CC) [34], which can be represented by

CC =
Cov (I1, I2)
√
D(I1) ·

√
D(I2)

(31)

where Cov () and D () represent the covariance and variance
coefficient between two matrices respectively.

To confirm the effectiveness of our proposed algorithm,
we perform experiments under different conditions of signal-
to-noise (SNR). MWCS method can obtain better quality
images at lower SNR, even SNR= −10dB. Different powers
of complex Gaussian noise are added to the waveform echo.
Consider that the sparsity of echo is sat as 100, we get the
imaging results when SNR= 0 and−10dB, shown in Fig.12.
Compared with Fig.11 (1), we note that the proposed

method has a more stable anti-noise performance. But at the
same time the imaging resolution will also be affected, like
Fig.12 (2)d, because the support set changes in the weighting

FIGURE 13. Curves of imaging performance under different SNRs.
(a) RMSE versus SNR. (b) CC versus SNR.

process as the noise level increases, which causes some weak
scattering point echo signals to be suppressed. As a result,
the number of scattered points of imaging is reduced and
some details are ignored.

To characterize the performance quantitatively, the cor-
responding curves of RMSE and CC are shown in Fig.13.
In Fig.13(a), the SNR is varied from −20 to 20dB. Note that
the performance of four methods degrades apparently with
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the decrease in SNR just as expected. However, compared
with FFT, another three methods generate better images qual-
ity with a much smaller quantity of reference image under the
condition of related high SNRs. In the case of lower SNR,
the image quality obtained by MWCS reconstruction is the
highest, followed by WCS reconstruction. From Fig.13(b),
we can come to a similar conclusion. And we find that when
the SNR is higher than 10 dB, the reconstructed images with
MWCS, WCS and CS are very close reference image of full
aperture. On the other hand, the reconstruction performance
of MWCS algorithm is better than other algorithms in the
cases of low SNR. It can also be seen from the figure that
there is little difference between the imaging effects of CS
and WCS, although the WCS algorithm is better under the
condition of low SNR.

V. CONCLUSION
VFM waveform avoids the ambiguity appeared in range and
velocity, which can improve the resolution of ISAR imaging.
But due to the frequency shift and delay, it is necessary to
implement pulse compression using dual channels formoving
target. Based on previous researches, we establish the sparse
VFMwaveform echomodel in this paper, and propose amod-
ified weighted rule in compressive sensing and the iterative
algorithm to get a high-quality recovery image under low
SNR condition. The reconstruction algorithm has a better per-
formance than other previous algorithms, through the com-
putational complexity is acceptably increased. The proposed
method obtain high resolution ISAR images in experiments
with sparse VFM signal under noisy environment.
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