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ABSTRACT Compound defects commonly occur on rotating machinery under fatigue and heavy loads, and
their fault signatures are coupled and easily buried in strong unwanted vibrations and background noise. The
isolation and identification of the compound fault signatures are still a challenge especially when the transient
impulses induced from the compound defects share common resonant frequency. In this paper, a data-
driven, adaptive deep filtering technique whichmainly contains filtering and isolating procedures is proposed
for compound faults diagnosis. During the filtering procedure, an empirical wavelet transform (EWT)
based correlated kurtogram is presented to adaptively obtain the proper spectral segments for filtering the
vibration measurements, such that to enhance the signal-to-noise ratio (SNR) of compound faults in the
filtered signals. Subsequently, during the isolation procedure, windowed correlated kurtosis (WCK) which
outputs pure periodic pulses indicating the occurrence moments of interested fault impulses is presented to
isolate each interested fault mode and to determine the defects number. The performance of the proposed
technique is tested on simulated signals and validated via analyzing experimental measurements from high-
speed locomotive bearings which suffer multiple damages. The results validate that the proposed method
outperforms dyadic wavelet transform and spectral kurtogram in isolating and identifying compound faults
in rotating machinery.

INDEX TERMS Adaptive deep filtering, compound faults isolation, empirical wavelet transform, fault
diagnosis, windowed correlated kurtosis.

I. INTRODUCTION
Bearings and gears are the key parts for supporting and torque
transmitting in rotating machinery, and may suffer local dam-
ages under fatigue loads and harsh working conditions [1].
Vibrations measured from the machinery housing usually
contain the operation information of the bearings and gears,
and provide feasible approach for fault diagnosis via signal
processing methods [2]–[4].

Based on the fault mechanism, a set of periodic impulses
are induced in the vibrations when the local defect col-
lides with contacted rotating components, and different fault
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characteristic frequencies correspond to different defects
locating on different components. To date, much research
efforts have been conducted on single fault detection of rotat-
ing machinery, and numerous vibration based signal process-
ing methods have been proposed, such as dyadic wavelet
transforms [5]–[9], ensemble empirical mode decomposition
(EEMD) [10]–[12], spectral kurtosis (SK) [13]–[16], multi-
wavelet transform [17]–[19], rational dilation based wavelet
transforms [20]–[23], stochastic resonance [24] with non-
linear bistable [25]–[27] or tristable oscillators [28], [29],
and intelligent classification methods [30]–[33], etc. Most
of these methods are filtering based techniques in which
the vibration measurements are divided into several adjacent
subbands in the frequency domain and the sensitive subband
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possessing the highest SNR of the fault information is then
chosen to reveal the fault signature. The effectiveness of
these methods has been widely validated via experiment and
engineering data analysis, and some of which are found
also effective in extracting weak fault signature of rotating
machinery in the early defect stage [15].

Beside the widely concerned single defect, multiple faults
also commonly occur in rotating machinery under harsh
working conditions which are mainly twofold: multiple faults
locating in different rotating machinery parts such as rotor
damage coupled with bearing or gearbox damages; and mul-
tiple faults locating in different components of the same
rotating machinery part such as outer-race damage coupled
with inner-race or roller damage in the rolling bearings. For
multiple faults occurring in different machinery parts, either
the fault modes from different machinery parts are different,
i.e., harmonic fault feature from rotor damage and impulsive
feature from bearing or gear damages, or the compound fault
signatures from the bearing and gearbox damages locate in
different frequency ranges. Some methods have been pro-
posed for diagnosing this kind of compound faults. Filtering
based methods including Morlet wavelet filter [34], multi-
wavelets [35], DWT based statistical approach [36], flexible
analytical wavelet transform (FAWT) [37], SK [38]–[40],
and resonance based decomposition [41] were utilized for
detecting compound fault signatures locating in different
frequency ranges. Besides, self-adaptive decomposition
methods including EMD [42], [43], variational mode decom-
position (VMD) [44], and EEMD [45]–[47] methods were
also studied and successfully applied on isolating compound
faults with different fault modes.

While for the multiple faults which occur in different com-
ponents of the same rotating machinery part such as defects
on different components of the bearing, the fault signatures
are essentially several sets of periodic transient impulses.
Considering transient impulses are induced in the vibration
signals during the collision of the local defects with respect
to the contacted components which are essentially similar to
the structural impact modal test, the frequency responses of
several sets of fault impulses locate at or very close to the
natural frequency of the damaged machinery part, i.e., the
fault signatures may locate in the same frequency range.
Considering this kind of multiple faults are compound in
both the time and frequency domain, it is termed ‘com-
pound faults’ in this study. In such cases, these afore-
mentioned frequency filtering and adaptive decomposition
based methods cannot be directly applied for isolation and
identification of compound faults, and only a few attempts
have been conducted [48], [49]. There remains a critical
need for novel technique to isolate and identify the impul-
sive, compound faults which possess a common resonant
frequency.

In this paper, a data driven, adaptive deep filtering tech-
nique is proposed for isolating each fault mode from com-
pound fault impulses even when they share the common
resonant frequency. The technique mainly contains two

steps: empirical wavelet transform (EWT) based filtering and
faults isolation. During the filtering step, an empirical wavelet
transform (EWT) based correlated kurtogram is presented
to adaptively obtain the proper spectral segments for filter-
ing the vibration measurements, such that to enhance the
signal-to-noise ratio (SNR) of compound faults in the fil-
tered signals. Subsequently, during the isolation procedure,
windowed correlated kurtosis (WCK) is proposed to isolate
each interested impulsive fault mode. WCK is inspired by
correlated kurtosis (CK). Instead of being an index as the CK
to reveal the richness of certain-period fault impulses in tested
signals, WCK is an algorithm which outputs periodic pure
pulses indicating the occurrence moments of interested fault
impulses. Accordingly, each impulsive fault mode is isolated
via WCK and the fault signature can be further captured on
the envelope spectrum.

The rest of this paper is organized as follows. EWT
is briefly introduced in Section II. Section III presents
the proposed WCK algorithm and explains the procedures
of the adaptive deep filtering technique. The performance
of the proposed method is tested on simulated signals in
Section IV, and is also compared with existing methods
including dyatic wavelet transform and spectral kurtogram
via analyzing experiment data tested from a locomotive
bearing suffing three outer race defects and two inner
race defects in Section V. Finally, conclusions are drawn
in Section VI.

FIGURE 1. Frequency partition manner of the EWT.

II. BRIEF INTRODUCTION OF EMPIRICAL WAVELET
TRANSFORM (EWT)
EWT is originally proposed by Gilles [50] for adaptively
extracting different modes of the input signals which are
assumed to possess compact support in the frequency spec-
trum. Denoting the frequency response of a time domain
signal x as f̂ (ω) which is normalized in the range [0, π],
f̂ (ω) is further divided into N2 sub-intervals 3n =

[ωn−1, ωn] (n = 1, 2, . . . ,N2) which meet UN2
n=13n =

[0, π]. ωn is the frequency boundary of the Fourier spectrum
segment 3n and satisfies ω0 = 0 and ωN2 = π , as shown
in Figure 1. Around each ωn a transition phase with width
2τn is generated where τn = γωn and 0 < γ < 1.
EWT is then defined on each 3n in the frequency domain,
generating a bank of band-pass filters. Based on Meyer’s and
Littlewood-Paley wavelets, a wavelet tight frame is proposed
in [50], in which the Fourier spectra of the scaling function
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and wavelet function are given as:

φ̂ (ω) =



1, if |ω| ≤ ωn − τn

cos
[
π

2
β

(
1
2τn

(|ω| − ωn + τn)

)]
,

if ωn − τn ≤ |ω| ≤ ωn + τn
0, otherwise

(1)

ψ̂ (ω) =



1, if ωn + τn ≤ |ω| ≤ ωn+1 − τn+1

cos
[
π

2
β

(
1

2τn+1
(|ω| − ωn+1 + τn+1)

)]
,

if ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin
[
π

2
β

(
1
2τn

(|ω| − ωn + τn)

)]
,

if ωn − τn ≤ |ω| ≤ ωn + τn
0, otherwise

(2)

where β (x) determines the shape of the transition band and
satisfies β (x) + β (1− x) = 1, x ∈ [0, 1] to avoid energy
leakage during the transition band. A widely-used function
of β (x) is proposed by Daubechies [51] and developed by
Gilles [50].

β (x) = x4
(
35− 84x + 70x2 − 20x3

)
(3)

Based on the constructed EWT frame, the vibration mea-
surements are divided into subbands. For an input signal x
whose frequency spectrum is denoted as f̂ (ω), the generated
detail and approximation coefficients are calculated via the
inner product operation:

Wf (n, t) = 〈x, ψn (t)〉 = IFT
(̂
f (ω) , ψ̂n (ω)

)
(4)

Wf (0, t) = 〈x, φ1 (t)〉 = IFT
(̂
f (ω) , φ̂1 (ω)

)
(5)

where ψn (t) and φ1 (t) are the time-domain functions of the
wavelet function ψ̂n (ω) and scaling function φ̂1 (ω), respec-
tively; 〈·〉 is the inner product operation; and IFT(·) denotes
the inverse Fourier transform.

It is clear that the key issue of EWT is the segmentation of
the Fourier spectrum. The scale-space segmentation method
has been validated to be effective in extracting the primary
harmonic components of the input signals [52]. Recalling
the input signal x whose frequency spectrum is denoted as
f̂ (ω), the continuous scale-space representation is estimated
via the convolution production of f̂ (ω) and a kernel function
g (ω; λ) = 1

√
2πλ
· e−ω

2/(2λ) where λ is the scale parameter.

L (ω; λ) = g (ω; λ) ∗ f̂ (ω) (6)

The local minima of L (ω; λ) is then detected and displayed
on the scale-space plane (λ, ω). With increment of the scale
parameter λ, these minima produce the ‘‘scale-space curves’’
in the plane (λ, ω). Considering the width of the kernel
function g (ω; λ) increases with increment of λ, the number
of the minima is thus a decreasing function of the parame-
ter λ. The ‘‘scale-space curves’’ are assumed to be the spec-
trum boundaries if they last for sufficiently long range of λ.

The k-means clustering algorithm is usually adopted to eval-
uate the threshold of λ for defining the long scale-space
curves, after which the boundaries of the Fourier segments are
obtained via the projection of these long scale-space curves
on the axis ω.

The scale-space segmentation has been validated to be
effective in extracting the primary harmonic modes in the
vibration signals. However, these isolated harmonic segments
could not be directly used to reveal the signature of periodic
fault impulses which is a set of sideband frequencies. Accord-
ingly, EWTbased correlated kurtogram is developed tomerge
the possible harmonics and optimize the filtering frequency
band.

III. PROPOSED ADAPTIVE DEEP FILTERING METHOD
The adaptive deep filtering technique contains two steps:
EWT based correlated kurtogram for adaptive filtering of
the raw vibration signals; and WCK for isolation and iden-
tification of the compound faults from the filtered signal.
In this section, part A presents the algorithm of EWT based
correlated kurtogram for filtering the original vibration mea-
surements; WCK is presented in part B, and tested in part
C; then the whole procedures of the proposed technique are
summarized in part D.

A. EWT BASED CORRELATED KURTOGRAM
Based on the Fourier segments obtained by the scale-space
segmentation method, the ensemble EWT subbands are
defined to generate possible coalition of these harmonic com-
ponents, and the correlated kurtogram is further estimated for
selecting the optimized filtering subband. The procedure is
composed of the following steps:

Step (i)Decomposing the vibration signals using the EWT
and reconstructing the filtered signals in each Fourier seg-
ment. Assuming that the frequency is divided into N2 Fourier
segments, the filtered signal in each segment is denoted as{
D1
k |k = 1, 2, . . . ,N2

}
. It is noted D1

k are filtered subband
signals around different primary harmonics and are orthogo-
nal with each other in the frequency domain.

Step (ii) Constructing the ensemble EWT subbands from
the orthogonal subbands using the following formula:

Dik =
∑j=k+i−1

j=k
D1
j , i = 1, 2, . . . ,N2 + 1− k (7)

where i is the level index; and k is the subband index. Figure 2
schematically show the frequency-level paving manner of the
ensemble EWT subbands.

At the level i, Dik essentially denotes the combination of
i-continuous segments starting from D1

k to D
1
k+i−1, and D

N2
1

is thus the original vibration signal. It is clear that the ensem-
ble EWT subband is a redundant partition of the Fourier
spectrum, and the frequency support for Dik is estimated to
be Un=k+i−1

n=k 3n = [ωk−1, ωk+i−1]. In Figure 2, the fre-
quency range for Dik is composed of successive subbands
which are schematically covered using the same color. Taking
the primary harmonics as the basic elements, the ensemble
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FIGURE 2. Frequency-level paving manner of the ensemble EWT
subbands.

EWT subbands provide all potential divisions of the Fourier
spectrum.

Step (iii) Calculating the correlated kurtosis of each
ensemble EWT subband in Figure 2, i.e., CKM

(
Dik ;Ts

)
via

(8) where Ts is estimated from the interested fault mode.
These estimated CK values are further shown on the
frequency-level plane (ω, i), which is termed ‘‘EWT based
correlated kurtogram’’ exhibiting the CK distribution for the
different, redundant frequency subbands.

Step (iv) Optimizing the filtering frequency band and
subsequently obtaining the corresponding filtered signals.
The CK has been found to usually output large for periodic
fault impulses. Considering the ensemble EWT subbands are
redundant and the upper lever is essentially the frequency
extension of the lower laver, the CK values of the adjacent
subbands related to the fault impulses are comparatively high
and exhibit ‘‘clustering’’ characteristic. This ‘‘clustering’’
feather could help to increase the robustness of CK index for
selecting the proper filtering band. The subband possessing
the highest CK value in the clustering zone corresponds to
the optimal filtering band, and this is an effective strategy in
analyzing engineering data.

B. DEFINITION OF THE WINDOWED
CORRELATED KURTOSIS (WCK)
Though the SNR of the fault signature is enhanced in the
filtered signal, certain-level noise still exists and the multiple
faults are still compound in the filtered signal. WCK is thus
proposed for further enhance the SNR and isolate each fault
mode from the filtered signal. The WCK is developed from
the correlated kurtosis (CK) which was firstly proposed by
McDonald et al. [39]. For an input signal sequence yn where
n = 1, 2, 3, . . .N , the CK ofM -shift for is defined as [40]:

CKM (yn;Ts) =

∑N
n=1 (

∏M
m=0 yn−mTs )

2(∑N
n=1 y

2
n

)M+1 (8)

in which,M is the order of shift; Ts is the sampling points of
the interested period of fault impulses and is estimated via

Ts = round [fs · T ] (9)

where fs is the sampling frequency; T denotes the period of
interested fault impulseswhich is determined by the geometry
parameters of the rotating machinery parts and the rotating
speed; and round represents the rounding operation to obtain
the closest integer. It could be found that CK outputs large if
periodic impulses with period T exist in the tested signal yn.
Thus, CK has been validated as an effective index to reveal
the richness of periodic fault impulses with interested period
in the tested signals. However, recalling (8) which takes all
the signal points into consideration, CK exhibits the overall
characteristic of the input signal and is thus unable to uncover
the exact occurrence moments of interested fault impulses in
the tested signals.

Inspired by the short-time Fourier transform (STFT) in
which the windowing operation enables the capture of the
instantaneous time-frequency information during the window
interval, the WCK is defined as the CK of windowed signals
in which the window width is set asM · Ts.

WCKM (n,Ts) =

(∏M
m=0 yn−mTs

)2
(∑n

k=n−MTs y
2
k

)M+1 (10)

From (10), WCK essentially calculates the inner product
of signal points with interval Ts during the limited window
width, and outputs large when yn locates at one peak of the
interested fault impulses. Accordingly, WCK is supposed to
output large indicating the occurrence moments of interested
fault impulses, and the fault signature can be captured on its
envelope spectrum. Moreover, the difference between WCK
and CK is noted here: CK outputs a single value for inputted
signals and is usually utilized as an index for filtering subband
selection; while WCK outputs a sequence sharing the same
length with the inputs and is here an algorithm to isolate
interested fault mode from compound-fault signals.

C. PERFORMANCE OF WCK AGAINST THE NOISE
From (10), WCK is a time domain processing method, and
its performance against the background noise is tested in this
section.

Considering a simulated signal x1 consisting of a series of
periodic impulses x11 to approximately simulate the vibration
measurements from defected outer race of a rolling bearing,
and background Gaussian noise n(t), the expressions are
given as

x1(t) = x11(t)+ n(t) (11a)

x11 (t) =
∑

i=1,2,...

e−300(t−i/15) ·cos [2π · 500 · (t − i/15)]

(11b)

The period of the periodic fault impulses is T = 1/15s.
Adopting the sampling frequency fs = 9000Hz, an example
of the simulated signal is shown in Figure 1(a) in which the
SNR is set as −9dB. Take the CK as the index for estimating
the shift order, M is evaluated to be 1 since the largest CK
is obtained at M = 1. Recalling Ts = fs · T = 600,
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FIGURE 3. Example of WCK algorithm in extracting periodic fault
impulses from the noisy signals, in which (a) is simulated signal;
(b) is WCK outputs; and (c) envelope spectrum of (b).

theWCK of the noisy signal x1 (t) is calculated and displayed
in Figure 3(b). It is revealed that WCK outputs periodic
pulses indicating the occurrence moments of the interested
fault impulses, in which the noise is effectively depressed.
Figure 3(c) is the envelope spectrum of the WCK outputs
in Figure 3(b), of which the primary components are the
fundamental and harmonic components of 1X = 14.98Hz
corresponding to the period of the fault impulses with
T = 1/15s.

To test the performance of WCK against the background
noise, an index R (X) is defined here to quantify the perfor-
mance of WCK in extracting the impulsive fault signature
from noisy signals. Denoting the envelope spectrum of the
WCK signals as pn, n = 1, 2, . . . ,N1 where the data length
satisfies N1 = N

/
2, R (X) is defined as

R (X) =

∑
i=1,2,...

[
pn
∣∣pn==iX ]2∑N1

n=1 p
2
n

(12)

in which, X is the repeated frequency of the interested
periodic fault impulses. R (X) is essentially the normalized
energy of the fundamental fault frequency and its harmonics
in the envelope spectrum, and is thus high when the fault
signature is successfully captured in the envelope spectrum.
Here the performance of WCK is tested on the signal x11
polluted by Gaussian white noise with the SNR varying in
the range [-20, 0]dB with the interval of 1dB, and R(X ) is
estimated under each noise strength and shown in Figure 4.

It is revealed that R(X ) gradually decreases with increment
of the noise strength. Combined with the inserted figures,
it is concluded that the performance of the WCK is gradually
weakened, and finally fails to isolate interested fault impulses
when the SNR is relatively low which is found to be lower
than −15dB in the study case.

FIGURE 4. Performance of WCK against the noise in which (a) is the
envelope spectrum of the output WCK signals with the SNR set at
(a1) −5dB; (a2) −15dB; (a3) −16dB; (a4) −19dB; and (b) is the R(X ) with
respect to different noise strengths.

Accordingly, to apply the WCK on analyzing engineering
measurements which contain strong unwanted vibrations and
noise, a filtering operation is required as the pre-treatment
to enhance the SNR of the compound fault signatures. This
is also the reason that EWT based correlated kurtosis is pro-
posed as a prior-processing step in the adaptive deep filtering
technique.

D. PROCEDURES OF THE ADAPTIVE DEEP
FILTERING TECHNIQUE
The purpose of the adaptive deep filtering technique is to
qualitatively isolate and identify each fault mode from the
vibration measurements, and to also quantitively determine
the defects number. Though the key steps are explained in
detail in above, to be more illustrative, the whole procedures
of the proposed compound faults isolation and identification
method are summarized in the flow char shown in Figure 5.

Overall, the procedures are mainly divided into two steps:
first, the EWT based correlated kurtogram is performed on
the frequency spectrum of the original vibration signals to
adaptively determine the optimal filtering frequency band,
such that to enhance the SNR of the compound fault sig-
natures in the frequency filtered signal; second, based on
the assumption that different-component faults usually corre-
spond to different fault characteristic frequencies, the WCK
algorithm is iteratively conducted on the filtered signals to
isolate each interested fault mode with prior predicted fault
characteristic frequency. The WCK outputs are pure pulses
indicating the occurrence moments of the interested fault
mode with the noise further eliminated, based on which the
fault signature is captured via identifying the fault character-
istic frequency on the Hilbert envelope spectrum of the WCK
signal and the defects number is determined via picking up
the sets number of the interested periodic pulses.

IV. SIMULATION SIGNAL ANALYSIS
To validate the effectiveness and performance of the proposed
method, a numerically simulated signal is generated and
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FIGURE 5. Flowchart of the proposed method for compound faults
isolation and identification.

analyzed via the proposed method in this section. Accord-
ing to the fault mechanism of the rolling element bearings,
the vibration signals induced from damaged bearings are sim-
ulated via a series of successive impulses. Considering a roller
bearing suffering a local defect on the inner race or roller
surface and two local defects on the outer race, a generated
signal simulating compound faults is expressed as:

x2 = sig1+ sig2+ n (t) (13a)

sig1 =
∑

j=1,2,...

(cos (2π fr t)+ 1)

·

[
a1e−ζ (t−jT1) · cos (2π fn1 (t − jT1))

]
(13b)

sig2 =
∑
k=1,2

[
∑

j=1,2,...

(a2ke−ζ (t−jT2−1T2k )

· cos(2π fn2(t − jT2 −1T2k )))] (13c)

in which, sig1 is an amplitude-modulated fault signal describ-
ing the vibration induced from damaged inner race or roller;
sig2 is amplitude-constant fault modewhich contains two sets
of periodic fault impulses with the occurrence time differ-
ences denoted as 1T2k ; a1 is the peak amplitude of periodic
impulses sig1 whose period is T1 and oscillating frequency
is fn1; fr is the modulation frequency of the impulse amplitude
in sig1; a2k is the peak amplitude of sig2 the whose period

TABLE 1. Parameters of the simulated signal x2.

FIGURE 6. The simulated signal and its frequency spectrum, in which
(a) is the simulated signal and (b) is the Fourier spectrum segmented via
the scale-space method.

is T2 and oscillating frequency is fn2; all the fault impulses
decay upon the same damping coefficient ζ , and n (t) is the
background noise. The selected parameters of the simulated
signal x2 are listed in Table 1.
n (t) is Gaussian white noise. With the SNR of the com-

pound fault signals set as −11dB, Figure 6(a) displays the
waveform of the simulated signal in which the sampling
frequency is set as 9kHz. It is clear that the tested signal
contains two fault modes, i.e., sig1 and sig2, which are totally
three sets of periodic fault impulses. Adopting the scale-
space segmentation method, the Fourier spectrum is divided
into 52 segments corresponding to the primary harmonic
components, as shown in Figure 6(b).

Based on the estimated Fourier segments, the tested noisy
signal is divided into the Fourier subbands. The ensemble
EWT subbands are further constructed based on (11) which
represent all potential filtering subbands. Recalling T1 =
1/18s and T2 = 1/25s, the periodic sampling points Ts of
the two interested fault modes are estimated to be Ts1 = 500
and Ts2 = 360. It is found the CK value of x2 reaches highest
at M = 1, and M = 1 is thus selected in estimating the
CK values of subband signals. The EWT based correlated
kurtogram for the two fault modes are then evaluated and
shown in Figure 7.

From Figure 7, the comparatively high CK values in the
EWT based correlated kurtogram exhibit ‘‘clustering’’ fea-
ture, among which the subband and level indexes correspond-
ing to the maxima, i.e., (k, i) = (6, 1) for the first fault
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FIGURE 7. EWT based correlated kurtogram for the two fault modes
including (a) CK1

(
Di

k ; Ts1
)

; and (b) CK1
(

Di
k ; Ts2

)
.

FIGURE 8. Isolation and identification of the first fault mode, in which
(a) is the filtered signal; (b) is the WCK signal; and (c) is the envelope
spectrum of (b).

mode Ts1 = 500 and (k, i) = (6, 2) for the second fault
mode Ts2 = 360, are selected for determining the optimized
filtering band. Accordingly, the ensemble EWT subbands
D1
6 and D2

6 are selected as the filtered signals for detecting
the two fault signatures, respectively.

For the first fault mode, the filtered signal D1
6 is displayed

in Figure 8(a). It is noted that the filtered signal contains the
compound fault information. To isolate the first fault mode,
the WCK algorithm is performed on the filtered signal and
the outputs are displayed in Figure 8(b). It reveals that the
outputs of the WCK are pure pulses corresponding to the
occurrencemoments of the primary fault impulses of the sig1.

FIGURE 9. Isolation and identification of the second fault mode, in which
(a) is the filtered signal; (b) is the WCK signal; and (c) is the envelope
spectrum of (b).

The fault signature is also clearly captured from the Hilbert
envelope spectrum in Figure 8(c) whose primary components
are the fundamental and harmonic components of the fault
characteristic frequency 1/T1 = 18Hz.
On the other hand, the filtered signal D2

6 for detecting the
second fault mode is displayed in Figure 9(a), and its WCK
outputs are given in Figure 9(b). Two sets of periodic pulses
are clearly observed in the WCK signals whose period is
found to be T2. The fault signature is also validated from
the envelope spectrum of which the primary components
are the fundamental and harmonic components of the fault
characteristic frequency 1/T2 = 25Hz.
From Figures 8 and 9, the two different fault modes, i.e.,

sig1 and sig2, are successfully isolated, and the number
of defects are also effectively estimated via the proposed
method. It is thus concluded that for different impulsive
fault modes possessing different fault characteristic frequen-
cies (corresponding to compound faults occurred in different
components of the rotating machinery), the proposed WCK
method is effective in isolating each fault mode; while for
compound impulsive faults with the same characteristic fre-
quency (corresponding to compound faults occurred in the
same component of the rotating machinery), the WCK out-
puts are pure pulses in which the unrelated vibration and noise
signals are eliminated, and the defects number could be effec-
tively estimated via picking up the sets number of periodic
fault impulses. Additionally, the period of the transient fault
impulses corresponds to the fault characteristic frequency
which is the indicator of the fault signature. It is noted that the
fault characteristic frequency highly depends on the geometry
parameters, shaft rotating speed and sampling frequency, and
is always predicted in prior when analyzing experimental
data.
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V. EXPERIMENT VALIDATION
A. EXPERIMENTAL TARPED BEARINGS
Experiments are conducted on a double-row tarped roller
bearing mounted on the bearing house of the wheelset which
is the supporting and braking component in high-speed loco-
motives, as shown in Figure 10.

FIGURE 10. Experiments were conducted on a double-row tarped bearing
mounted the wheelset of the high-speed locomotive.

The wheelset is fixed on the test rig on which the shaft
rotating speed could be exactly controlled such that to sim-
ulate the running conditions. A piezoelectric accelerometer
typed ZW9609A-18SN7068 was mounted on the bearing
house to measure the vibration accelerations in the vertical
direction. Multiple local defects are manually prefabricated
on the tarped bearing via surface ablation, including three
outer race defects and two roller defects. The three outer race
defects locate with the central angle of each two was 120◦.
also, the size of the three defects is 1mm in depth, 1mm,
3mm, and 5mm in width, respectively. The two defected
rollers are separated by four healthy rollers (totally 19 rollers
in each row), and the size of the defects is 1mm in width
and 1mm in depth. It is also noted that the damaged rollers
and outer race are in the same row of the double-row tarped
bearing.

During the experiments, the locomotive speed is set con-
stantly at 150km/h corresponding to which the rotating
frequency of the shaft connected with the inner race is
found to be 15.422Hz. Based on the geometry and rotat-
ing parameters of the tarped bearing, the fault characteris-
tic frequencies of each component are calculated and listed
in Table 2.

TABLE 2. Fault characteristic frequencies of the tested tarped bearing.

FIGURE 11. Prefabricated multiple defects on the locomotive bearing and
their locations and size illustration: (a1) three outer race defects;
(a2) locations and size of the outer race defects; (b1) roller defects; and
(b2) size of the roller defects.

FIGURE 12. (a) Vibration measurements; and (b) Fourier spectrum and its
segmentation via the scale-space method.

B. EXPERIMENT DATA ANALYSIS
For healthy bearings, the contacts between the rollers and the
inner or outer race are slight in the amplitude and exhibit
noise characteristic in the frequency domain. While for the
damaged bearings, the collision between the local defect and
contacted rotating components are much stronger than that in
the healthy case and exhibits periodicity characteristic. The
period corresponds to the fault characteristic frequency and
is predicted based on the geometry parameters and operating
conditions. Considering totally five local defects exist on
the tested bearing, it is supposed that five sets of periodic
impulses exist in the vibration signals. With the sampling fre-
quency set at 10kHz, the vibration accelerations of the bear-
ing house are measured and shown in Figure 12(a). However,
the transient, periodic fault impulses are buried in the strong
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background noise and unwanted vibrations, and couldn’t be
directly observed. Thus, the proposed adaptive deep filtering
method is then applied on analyzing the vibration signal
to extract the fault modes and determine the defects num-
ber. Adopting the scale-space method, the Fourier spectrum
in Figure 12(b) is segmented into 42 subbands corresponding
to the primary harmonic components.

Based on the determined Fourier boundaries, the EWT is
constructed upon which the vibration signal is divided into
42 subband signals denoted as D1

k , k = 1, 2, . . . , 42. The
ensemble EWT subbands Dik at each level i = 1, 2, . . . , 42
are then evaluated via (11). Recalling the fault characteristic
frequencies (BPFO and BPF) and the sampling frequency,
the sampling points of the fault periods are thus Ts1 = 80 for
the outer race and Ts2 = 99 for the roller elements. During the
calculation of the CK values of the original vibration signal
with respect to different values of M , it is found the CK for
both the two fault modes reaches the maxima at M = 1. The
EWT based correlated kurtogram for the two fault modes is
then separately estimated via calculating CK1

(
Dik ,Ts1

)
and

CK1
(
Dik ,Ts2

)
of each ensemble EWT subband signal Dik

and is shown in Figure 13. It reveals that the comparatively
large CK values generate the ‘‘clusters’’ in which the maxima
are found at D24

3 and D5
13 for detecting the two fault modes,

respectively. Accordingly, the filtered signals are D24
3 and

D5
13, and the corresponding filtering frequency bands are

found to be [273.33, 3061.1]Hz and [1341.1, 1842.2]Hz,
respectively. The overlapping of the filtering bands indicates
that the compound faults are still coexisted in the filtered
signals, and the WCK method is further adopted to isolate
and identify each fault mode.

FIGURE 13. EWT based correlated kurtogram for optimizing the filtering
band of the two fault modes: (a) outer race defects with Ts1 = 80; and
(b) roller defects with Ts2 = 99.

For the outer race defects mode with Ts1 = 80, the filtered
signal D14

3 is shown in Figure 14(a) in which the periodicity
of fault impulses and defects number could not be directly

FIGURE 14. Isolation and identification of the outer race defects, in which
(a) is the filtered signal; (b) is the WCK outputs; (c) is the zoom-in view of
the WCK signal; and (d) is the envelope spectrum of (b).

observed. Then the WCK is performed on the filtered signal
and the outputs are displayed in Figure 14(b). Figure 14(c)
provides a zoom-in view of the WCK signal. It reveals that
the WCK outputs are pure impulses where the noise and
unwanted vibrations are effectively eliminated. The WCK
outputs also exhibit periodicity and three sets of periodic
pulses with the time interval 1t ≈ 0.008s (very close to the
reciprocal value of BPFO) are clearly observed, indicating
there exists three local defects on the outer race of the locomo-
tive bearing. The fault signature is also exhibited on the enve-
lope spectrum of the WCK signal as shown in Figure 14(d)
in which the primary components are the fundamental and
harmonic components of the BPFO.

On the other hand, for detecting the roller defects mode
with Ts2 = 99, the filtered signal D5

13 is shown in
Figure 15(a). the WCK output WCK1 (t, 99) and its zoom-
in view are shown in Figs. 15(b) and (c), respectively. The
WCK outputs are periodic pulses, and the period is found
very close to the BPF and is validated via the envelope spec-
trum in which the primary components are the fundamen-
tal and harmonic components of the BPF. Moreover, there
are totally two sets of periodic pulses with the period of
1t ≈ 0.01s which are clearly captured in the WCK outputs,
indicating the existence of two local defects on the roller
elements.

In this study case, there exists two different fault modes,
and totally 5 sets of periodic fault impulses in the vibration
measurements. It is concluded that the WCK is effective
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FIGURE 15. Isolation and identification of the roller defects, in which
(a) is the filtered signal; (b) is the WCK outputs; (c) is the zoom-in view of
the WCK signal; and (d) is the envelope spectrum of (b).

in isolating each fault mode from the filtered signals, and
the defects number of the same fault mode is estimated via
evaluating the sets number of interested periodic pulses in the
WCK signals.

Moreover, to validate the effectiveness of the proposed
adaptive deep filtering technique, the experimental data
shown in Figure 12(a) are also analyzed via traditional sig-
nal processing methods including dual-tree complex wavelet
transform (DTCWT) which is a typical dyadic wavelet trans-
form [9] as well as spectral kurtosis [13].

FIGURE 16. Results from the DTCWT including (a) filtered signal by
DTCWT; and (b) envelope spectrum of the filtered signal in (a).

Figure 16(a) shows the filtered signal decomposed by
the DTCWT, and Figure 16(b) is the envelope spectrum of

the filtered signal. Compared with the pure pulses shown
in Figure 14(c) and Figure 15(c) which are obtained by
the proposed adaptive deep filtering technique, the filtered
signals via the DTCWT is still noise contained and exhibit no
signature of the defects number. From the envelope spectrum,
both the fault characteristic frequencies of the outer race
and the roller are observed, meaning the existence of defects
on the outer race and the roller. However, compared with
the proposed method, the DTCWT possesses weakness in
twofold: first, the compound faults are not isolated in the
filtered signal, such that the weaker fault signature is easy to
be busied in the stronger faults; second, only the fault modes
are qualitatively detected, the defects number including three
outer race defects and two roller defects could not be success-
fully identified via the DTCWT.

FIGURE 17. Results from the spectral kurtosis method, in which (a) is the
SK distribution; (b) is the filtered signal corresponding to the maximal SK
value; and (c) is the envelope spectrum of the filtered signal in (b).

Figure 17 shows the analysis result from the spectral kurto-
sis (SK) method, in which (a) is the SK distribution revealing
the kurtosis values of the subband signals decomposed in the
frequency-level plane. Based on the kurtosis maximization
principle, the maximum is found when the central frequency
and the level are 1041.67Hz and 3.5, respectively, and the
corresponding filtered signal is displayed in the Figure 17(b).
The envelope spectrum of the filtered signal is then esti-
mated and shown in Figure 17(c), of which the primary
components are the BPFO and its harmonics. Thus, the SK
method only qualitatively detects the outer race defect, while
fails to find the roller defect. Compared to the proposed
adaptive deep filtering technique, the SK method adopted the
kurtosis as the indicator with which the weaker faults are
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easily to be ignored in the detection. Additionally, the SK
method also fails to estimate the number of the bearing
defects.

VI. CONCLUSION
This paper proposed a data driven, adaptive deep filtering
technique for isolating and identifying compound fault sig-
natures of the rotating machinery from the noisy vibration
signals. The proposed technique mainly consists of filter-
ing and isolation steps. During the route of the proposed
technique, the empirical wavelet transform (EWT) based
correlated kurtogram is presented for adaptively optimizing
the filtering frequency band. The boundaries of the Fourier
segments are determined via the scale-space representation
with k-means algorithm, upon which the EWT is constructed
and the vibration measurements are divided into subband
signals corresponding to the primary harmonic components.
The ensemble EWT subbands are then constructed which
present the potential frequency divisions. The correlated kur-
tosis of each ensemble EWT subband is calculated, gener-
ating the EWT based correlated kurtogram. It is found the
CK values of the subbands containing the fault signature are
comparatively high and exhibit unique ‘‘cluster’’ characteris-
tic on the correlated kurtogram. This unique property helps
to enhance the robustness of searching the optimized filter-
ing subband via maximizing the CK index in the ‘‘cluster’’
zone. The windowed correlated kurtosis (WCK) algorithm is
further adopted for isolating the interested impulsive faults
from the filtered signals. Different from CK which is used
as an index for revealing the richness of interested fault
impulses in the tested signal, the WCK is an algorithm for
isolating the interested fault mode. It is found the WCK
outputs pure pulses indicating the occurrence moments of
interested fault impulses while the noise and unwanted vibra-
tions are eliminated. Via the proposed method, the com-
pound faults are qualitatively isolated and detected, and the
defects number of each fault mode is quantitively identified.
Moreover, the effectiveness of the proposed method has been
tested via simulation signal analysis and validated via exper-
iments on a locomotive tarped bearing suffering three outer
race defects and two roller defects. The proposed method
has also been compared with existing methods including
DTCWT and SK method via analyzing the experiment data.
The results show that the proposed method is effective and
outperforms DTCWT and SK methods in isolating differ-
ent fault modes sharing different fault characteristic fre-
quencies. While for compound faults sharing the same fault
mode, the defects number could be identified via estimat-
ing the sets number of periodic fault impulses in the WCK
signals.
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