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ABSTRACT Motor systems are becoming more and more vital in modern manufacturing and bearings play
an important role in the performance of a motor system. Many problems that arise in motor operation are
related to bearing faults. In many cases, the accuracy of the devices for monitoring or controlling a motor
system highly depends on the dynamic properties of motor bearings. Thus, fault diagnosis of a motor system
is inseparably related to the diagnosis of the bearing assembly. The fault diagnosis of rolling bearings is
substantially a classification problem. The traditional application of random forest (RF) to fault diagnosis
methods is based on balanced data. However, in a practical situation, it is difficult to collect the fault data that
are usually unbalanced. In order to solve this problem, in the first step, we propose a two-step (TS) clustering
algorithm to enhance the original synthetic minority oversampling technique (SMOTE) algorithm for the
unbalanced data classification. Then, based on the improvement of the SMOTE algorithm, we propose the
principal component analysis (PCA) and apply it in the field of high-dimensional unbalanced fault diagnosis
data. In this paper, we apply this new method to the fault diagnosis of rolling bearings, and the experiments

conducted in the end show that the improved algorithm has a better classification performance.

INDEX TERMS Fault diagnosis of rolling bearing, high dimensional unbalanced data, random forests.

I. INTRODUCTION

Nowadays, it generates a large amount of data in the field of
finance, Internet and intelligent manufacturing. By studying
the world’s authoritative information, consulting and analysis
company IDC proposes that the data would grow 50 times
by 2020 [1]. In the era of big data, various decisions are insep-
arable from data mining and analysis. Moreover, the massive
data generated by these practical applications often have
features like imbalance and high dimensionality. How to
store and extract important information and classify data has
become a hot topic. Especially the solution of classification
has been the highlight of data digging and has been used in
broad fields such as medical imaging [2], fault detection [3],
text categorization [4] and gene selection [5], [6]. Although
traditional classification algorithms can achieve good results
in low-dimensional data, it has a bad performance under the
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high-dimensional data. For example in text classification,
data usually can hold thousands or even millions of dimen-
sions [7]. If we deal with the original data directly, it usually
comes up a model which is so complex that will easily end up
in overfitting. Furthermore, the redundancy and noise inter-
ference that high-dimension data can‘t get rid of increases
computation complexity and lengthen the training period [8].
Therefore, it is necessary to reduce the dimensionality of
high-dimensional data which will improve the performance
of the classification algorithm.

The unbalance data sample can be found in every corner of
an industry. For example, in the telecommunications industry,
the number of regular calls is far much bigger than fraud
calls [9]. And in medical issue, the consequences of misdi-
agnosing a healthy man as having a cancer is not even close
to misdiagnosing a cancer man as healthy [10]. And in case
of identifying the nature of users, the number of regular users
is larger than fraud users, and it is banks® job to find out
the fraud users to avoid potential loss [11]. Therefore, the
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identification of minority is important when handling the
unbalance data. The traditional classification algorithms
acquiescence that the numbers of samples of each category
are the same and they often take the improvement of clas-
sification accuracy as priority. But the essence of handling
the unbalance data focuses on the minority data which means
that the traditional algorithms are not suitable for handling the
unbalance data. It has been an emergency problem to improve
the accuracy of identifying the minority data of the unbalance
data.

However, the traditional classification algorithm is based
on the balance data and generally aiming at improving the
classification accuracy which often results in poor perfor-
mance of minor classes. But in the unbalanced data, minor
classes are what we should pay more attention to which
means the traditional classification algorithm based on classi-
fication accuracy is not quite applicable in the field of dealing
with unbalanced data. How to improve the recognition rate
of minor classes in unbalanced data has become an urgent
problem to be solved in data mining.

The random forest (RF) is integrated by the decision trees.
It uses the bagging sampling method which randomly extracts
the samples from the training samples. So when it meets
the unbalanced data, due to the random extraction of data,
the problem of imbalance gets more serious. It affects the per-
formance of the decision tree in the random forest algorithm.
When we train the high-dimensional data, it will contain
a large number of redundant attributes. Furthermore, high-
dimensional data sets often contain nonlinear characteristics
but the decision tree can only be used to segment the attribute
space by linear. Due to these two problems, random forest
algorithm still has rooms for improvement.

The fault diagnosis of rolling bearing [12] is essentially
a process of pattern recognition which means categorizing
the data into normal or failure operation. However, the tra-
ditional fault diagnosis method based on random forest is
under the condition of sample equalization. Although the
random forest classifier shows good results for balanced data
sets, in the condition of a high-dimensional unbalanced data
set, the accuracy would drop especially in the field of fault
diagnosis. Due to the difficulty in collecting and sorting,
the number of fault samples is far less than normal samples
which results in forming an unbalanced data set [13]. There
are multiple sets of physical quantities in the fault diagnosis
analysis [14], and for each time series data set, many fre-
quency and time domain feature quantities can be extracted.
If the classification is performed before the redundant and
interfering data is removed, it will lead to heavy calculation
and low accuracy. Above all, how to improve the classifica-
tion performance of random forest algorithm in machine fault
diagnosis has always been a main issue in research [15], [16].
In this paper, we use the high-dimensional unbalanced data of
rolling bearing as the original data of research and propose
a new fault diagnosis method. The main work is divided
into three parts: firstly, we propose a two-step clustering
algorithm (TS) to enhances the original synthetic minority
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oversampling technique (SMOTE) algorithm for the unbal-
anced data classification which can solve the shortcomings
of using SMOTE algorithm alone, and we call this combined
algorithm as TS-SMOTE algorithm. Secondly, we combine
the principle component analysis (PCA) algorithm with the
TS-SMOTE algorithm which we call it PCA-TS-SMOTE
algorithm. We use the PCA algorithm to dimensionality
reduction before the data is interpolated. Finally, this paper
proposes PCA-TS-SMOTE-RF fault diagnosis method. That
is to combine PCA-TS-SMOTE with random forest (RF) to
diagnose faults under unbalance and high-dimensional data.
The rolling bearing is used as the fault diagnosis object
for experimental verification. The study indicates that this
new fault diagnosis method, PCA-TS-SMOTE-REF, has better
performance in setting evaluating indicator like recall, speci-
ficity, accuracy, AUC and G-mean than directly categorizing
the original data by random forest algorithm or classifying
after applying TS-SMOTE or PCA.

Il. REVIEW

This section gives a review of classification algorithms and
applies Random Forest algorithm to high dimensional unbal-
anced data as rolling bearing fault diagnosis method and
analyses the conclusion..

A. CLASSIFICATION ALGORITHMS

Machine learning includes supervised learning [17], [18]
and unsupervised learning [19], [20]. Classification problem
belongs to supervised learning. Specifically, given a training
sample, each sample X is used as an input, corresponding to
an explicit Y as an output. At this time, a specific model is
trained (mapping f: X —> Y), and then given an unknown
sample X', a prediction of the result Y’ is made. For example,
the demands to tell apart whether the mail is spam or whether
the user will purchase the product or whether the tumor is
malignant or benign are basically classification problems, but
when the response is a continuous variable, these demands
turn into a regression problem. The classification algorithm
is a method to solve classification problems, and is used
to assign specific categories to data objects with unknown
category. It includes training processes and testing processes:

Training Process: Training Set - Feature Selection - Train-
ing - Classifier

Test Process: Classifier - Test Set - Test - Classification
Results - Evaluation

There are various traditional data classification methods
and commonly used methods are Logistic Regression (LR)
[21], Artificial Neural Network (ANN) [22], Support Vec-
tor Machine (SVM) [23], decision tree [24] and Ensemble
Learning [25].

The LR algorithm uses sigmoid function and minimizes
the loss function for classification by nonlinear mapping.
The performance is equivalent to the decision tree and neural
network. The LR algorithm runs fast and has high accuracy,
suitable for large data sets.
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ANN is a structure that mimics the synapses of the brain,
composed of different neurons, and the network needs to be
trained. Currently there are BP Propagation, Radial Basis
Function (RBF), Generalized Regression Neural Network
(GRNN), Probabilistic Neural Network (PNN), etc.

The SVM considers the support vector, implicitly maps
the features to higher dimensional feature space by a kernel
trick, and uses all the mapped features for classification.
It constructed the hyperplane to minimize the structural risk
and maximize the classification interval. So this algorithm is
suitable for nonlinear, high-dimensional and local optimum
problems.

The decision tree is a tree structure, constructed recursively
from top root node to bottom leaves. Non-leaf nodes represent
attribute features, and leaf nodes represent categories. Several
algorithms generating such optimal trees have been proposed,
such as ID3/4/5, and CART. The algorithms are simple to
understand and interpret, and can be combined with other
decision techniques [26].

In statistics and machine learning, ensemble learning meth-
ods by using multiple learning algorithms to obtain better pre-
dictive performance than what could be obtained from any of
the constituent learning algorithms alone [27]. Bagging [28]
boosting [29] and random forest algorithms are the only two
ensemble learning algorithms which can reduce the error of
a single classifier and have higher classification accuracy.
Studies have shown that compared with ANN, regression tree
and SVM, RF algorithm has higher stability and robustness,
and proper training parameters can obtain better classification
accuracy [30].

B. APPLY RANDOM FOREST ALGORITHM TO HIGH
DIMENSIONAL UNBALANCED DATA

The first algorithm for random decision forests was created
by Tin Kam Ho using the random subspace method, and in
Ho’s formulation, it is a way to implement the “‘stochastic
discrimination” approach to classification proposed by
Kleinberg [31]. An extension of the algorithm was developed
by Leo Breiman. He clearly defined the concept of random
forest and also proved that random forests algorithm is very
good at avoiding overfitting [32]. Selecting some of the deci-
sion trees to make up an ensemble algorithm, may be not only
smaller in the size but also stronger in the generalization than
ensembles generated by non-selective algorithms. At present,
most ensemble algorithms utilize all the trained learners to
make up an ensemble. Zhou and Tang proposes GASEN-b
algorithm to show that when the learners are decision trees,
it is better to build selective ensembles [33]. It is proposed
in their paper that the combination of the KM-SMOTE algo-
rithm and the RF algorithm to process the unbalanced data
set [34]. Similarly, an algorithm combining RF and cure-
smote presents a better performance than other traditional
algorithms [35]. Zhou et al. [36] propose a feature selection
algorithm based on random forest that incorporates the fea-
ture cost into the base decision tree construction process to
produce low-cost features. For multi-class unbalanced data.
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It is shown in literature [37] that a combination of SMOTE
and Bagging with Random Forest produced the best overall
accuracy of minority class.

C. ROLLING BEARING FAULT DIAGNOSIS METHOD

1) OVERVIEW OF DATA-DRIVEN TROUBLESHOOTING

In general, fault diagnosis methods can be divided into three
types: experience-based monitoring and detection, analysis
based on model and data-driven fault diagnosis techniques.

To diagnose the malfunction of a large complicated system,
it‘s not an easy task for company just relying on their experi-
ence but requires a long term program to build a sophisticated
and professional knowledge base. And to diagnose the fault
by modeling and analysis, we have to obtain machine’s oper-
ation model precisely so that we can go through the whole
system to find the disability. Therefore, fault diagnosis based
on data reveals its advantages which makes up the shortage
of modeling-based and experience-based diagnosis methods.
Data-based diagnosis method only needs to process the data
under the normal and abnormal working conditions of the
machine followed by general pattern which is collecting data
first and then diagnosing the causes of fault and finally
classifying the original data. So, it draws broad attention
academically and industrially [38]. Data-based diagnosis can
be viewed as three categories: methods based on statistics,
signal features processing and artificial intelligence [39].

(1) Method based on multivariate analysis. Multivariate
analysis (MVA) is based on the statistical principle of multi-
variate statistics which is to consider the intrinsic relationship
among all variables. By using the existed ways to extract the
eigenvalue of the original data, such as mean value or vari-
ance, and setting threshold, we can monitor data fluctuation
in real-time and tell the fault of machine instantly.

(2) Principle of characteristic signal processing: Firstly,
collect the variable signal values which contain rich infor-
mation in the production, and then extract and utilize the
characteristics of these signal values, and finally the related
processing techniques are applied to diagnose the faults in
the frequency domain and the time domain. Since different
fault signals can produce different spectral characteristics,
common methods of signal processing include wavelet trans-
form [40], spectral analysis [41].

(3) Machine learning algorithm. This method conducts
artificial intelligence diagnosis by simulating the human
decision-making progress which means using the computer
to accomplish the decision-making task to the fault diagnosis
without using a certain mathematical model. The most widely
used machine learning classification algorithms are SVM,
artificial neural networks, and decision trees.

2) MACHINE TOOL FAULT DIAGNOSIS BASED ON RANDOM
FOREST ALGORITHM UNDER MACHINE LEARNING

Although support vector machine has better generalization
ability in small sample, nonlinear dataspace, etc., its classifi-
cation performance is poor under multi-dimensional and large
sample setting. The neural network can handle large samples,
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butitis easy to fall into local optimum and long learning time.
The random forest algorithm is an integrated algorithm using
unbiased estimation for generalization error, and because
its feature subset is randomly selected, it can handle high-
dimensional data for fault detection purposes. Based on the
above advantages of random forests, its application in fault
diagnosis is one of the current research hotspots.

In modern manufacturing, bearings, as necessary rolling
elements, are important parts of machinery. It is also a fre-
quent reason of equipment failures. The operation status
of the machine directly affects the overall performance of
the mechanical system, and troubleshooting can effectively
prevent major accidents. Therefore, the state monitoring and
fault diagnosis of bearings has extremely important practical
significance [42]. It is proposed in their paper [43], [44] that
most methods of fault diagnosis of bearings apply the tradi-
tional random forest algorithm, but the fault diagnosis method
proposed by the original algorithm is carried out under the
condition of high-dimensional data set without dimension
reduction processing. Meanwhile, the original random forest
algorithm is under the condition of balanced data set, but in
actual production process the fault samples are unbalanced.
Due to these reasons, when using the original random forest
algorithm for rolling bearing fault diagnosis, the recognition
rate of fault samples will drop which directly leads to poor
performance of the classification. Therefore, it is meaningful
to find a suitable classification method of fault diagnosis for
high-dimensional unbalanced data.

1iIl. BASICS CONCEPT OF RANDOM FOREST
This section describes the basics concept of random forest
Algorithm in detail.

A. CLASSIFICATION ALGORITHMS
Random forest is an Ensemble Learning algorithm in the
field of machine learning. It uses Bagging synthesis tech-
nology [28] to select m batches of samples with certain size
from original dataset and generates m decision trees to form a
random forest. The final decision is made by majority voting
to aggregate the predictions of all the decision trees. The flow
chart of random forests algorithm is shown as Figure 1.
There are two random procedures in RF. The first one
is for each tree, it will randomly and reversibly extract
N training samples from the training set. The training set for
each tree is different and contains duplicate training samples.
The second one is the method to inject randomness into the
trees, so that features to be chosen for splitting the tree node
can be random. Features are selected with non-replacement
from the total features when the nodes of the trees are split.
The size of the feature subset is usually far less than the size
of the total features. Random procedures can help to reduce
the correlation between tree classifiers in a random forests
algorithm.

B. THE PROGRESS OF ALGORITHM
The best node for splitting can be computed by three methods:
information gain, information gain rate and Gini coefficient,
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FIGURE 2. Flowchart of decision tree algorithm.

which correspond to ID3, C4.5 [45] and CART [46]. In this
paper we use the CART method, which a smaller Gini coef-
ficient indicates a better classification result. Assuming that
there are n categories in the sample T, the formula to calculate
the Gini index of the sample T is as follows:

GiniT) =Y " =1"p(-p)=1-3 pf (D

k k=1

Py is defined as the proportion of samples in Kth category.
We calculate the Gini coefficient of each feature and select
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TABLE 1. Confusion matrix of dichotomous data.

Confusion Matrix Classified positive Classified negative
Positive TP FN
Negative FP N

the one with the smallest Gini coefficient as the segmentation
threshold point of decision tree. T represents the number of
all samples which will be divided into m parts by the smallest
Gini coefficient of feature A.
- |7
.. 1 . .
Gini(T,A) 1; ] Gini(T;) )

The CART decision tree is an unstable algorithm. The
random forest algorithm uses the Bagging algorithm to form
a random forest by generating different training sets to form
mutually independent decision trees. Flowchart of Decision
Tree algorithm is as follows:

C. PERFORMANCE EVALUATION CRITERIA

The measures of the quality of binary classification are built
using a confusion matrix. According to the literature [35],
ituses confusion matrix of dichotomous data which is showed
in table 1.

In table 1, TP represents the number of positive samples
that is classified as true by the model; TN represents the
number of negative samples that is classified as true by the
model; FP represents the number of positive samples that is
classified as false by the model; FN represents the number of
negative samples that is classified as false by the model.

The rate of recall (sensitivity) shows the classification
accuracy of model to the positive samples. The formula to
calculate the rate of recall is showed as follows:

TP
Recall = ——— (3
TP + FN
Specificity indicates the classification accuracy of model
to negative samples. Its calculation formula is showed as
follows:
N
Specificity = — 4
pecificity FPEIN 4
Precision shows the proportion of the actual true positive
samples to all the samples that model classifies as positive.
Its formula is showed as follows:

) TP
Precesion = —— (®)]
TP + FP
Accuracy indicates the general classification accuracy of

model. Its calculation formula is showed as follows:

TP +TN
Accuracy = (6)
TP+ TN + FP + FN
OBB error or out-of-bag error implies the classification per-
formance of random forest. The lower average OBB error
of n decision trees gets, means the better performance of
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FIGURE 3. ROC curve and AUC.

RF algorithm. The following formula shows how OBB error
is calculated:

nTree

> OBB error;

OBB emor = ——— @)
nTlree

Due to the imbalance of OBB error of each decision
tree, the OBB error of samples with huge amount of data
can take higher weight in the average OBB error which
lower the reliability of the result. Literature [47] proposes
an AUC-based permutation variable importance measure for
random forests. To determine the value of AUC, we have to
draw a ROC curve (Receiver Operating Characteristic curve)
which goes through the original point and point (1,1), and the
value of the area enclosed by ROC curve and axes is the value
of AUC. Figure 3 shows the relationship between ROC curve
and AUC value which the horizontal coordinate means False
Positive Rate (FPR) and the vertical coordinate means True
Positive Rate (TPR).

G-mean is another general comprehensive performance
indicator that can efficiently evaluate the imbalanced data set.
The value of G-mean depends on two factors: the rate of recall
and specificity. Only when the value of recall and specificity
both get bigger, the value of G-mean can get bigger which
means a better performance of the classifier. The following
formula shows how G-mean is calculated.

G — mean = \/Recall * Specificity ®)

IV. EXPERIMENT AND ANALYSIS
The purpose of the simulation experiment in this section is to
compare the algorithm performance between balanced data
and unbalanced data for different classifiers. The test data
is selected from the UCI data sets iris and Breast-Cancer-
Wisconsin. The iris data set contains 50 positive samples and
50 negative samples, which belong to the balanced data set.
The Breast-Cancer-Wisconsin data set contains 243 positive
samples and 459 negative samples, which belongs to the
unbalanced data set. The details of data are shown in Table 2.
The two sets of data sets are used in the algorithm of ran-
dom forest algorithm, support vector machine and artificial
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TABLE 2. UCI data set.

Number of Number of Number of
Data . . . ..
dimension positive samples positive samples
iris 4 50 50
breast-
cancer- 10 243 459
wisconsin

TABLE 3. The result comparison of each algorithm applied to iris data set.

Recall Specificity Accuracy  G-Mean  AUC

SVM 0.960 0.920 0.940 0.930 0.912
ANN 0.880 0.920 0.900 0.899 0.878
RF 0.960 0.880 0.920 0.910 0.901

TABLE 4. The result comparison of each algorithm applied to
Breast-Cancer-Wisconsin data set.

Recall Specificity Accuracy  G-Mean AUC

SVM 0.82 0.90 0.91 0.85 0.84
ANN 0.94 0.82 0.84 0.80 0.81
RF 0.89 0.92 0.93 0.87 0.87

neural network respectively. The accuracy of each algorithm
are show in table 3 and table 4.

In summary, when the data set is balanced, the SVM, ANN
and RF algorithms performs better, and the classification
advantage of the RF algorithm is not very obvious. However,
when the data set is unbalance and the number of dimensions
is too large, the performance of the classification algorithm
will be affected, but the effect of the RF algorithm is still
generally higher than other algorithms. It shows that the
RF algorithm is RF algorithm is more adaptable in high
dimensional unbalanced data.

V. CLASSIFICATION METHODS BASED ON

UNBALANCED DATA

A. DEFINITION AND IMPACT OF UNBALANCED DATA

The unbalanced classification problem begins with the
skewed distribution of data in different categories [48]. Imbal-
anced data sets generally refer to data that is distributed
unevenly among different categories where the data in the
smaller category is far less prevalent than the data in the larger
category. The Imbalance Ratio (IR) is defined as the ratio of
the number of minor class samples to the number of major
class samples.

Unbalanced data is ubiquitous in many applica-
tions [49], [50]. For example, in the medical records used
for disease diagnosis prediction, the number of rare but
very important disease samples is much smaller than the
number of common disease samples. The data used for
Internet intrusion detection has more normal samples than
the invasive samples. If traditional classifiers are applied to
these scenarios without any pre-treatment of unbalanced data,
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the data in the categories of larger samples will overwhelm the
data in smaller samples categories and will not achieve good
classification results. Due to the imbalanced data, the training
set for each decision tree will be imbalanced during the first
“random” procedure, and the random forest algorithm will
not become a good “expert” of the small samples. This leads
to classification with high accuracy on large samples, in con-
trast to the low accuracy on small samples [51]. Therefore,
the unbalanced data is a very important problem in data
classification.

B. TS-SMOTE ALGORITHM

Several methods [52]-[54] have existed for processing
unbalanced data, including over-sampling and under-
sampling techniques. In particular, a type of synthesis resam-
pling technique algorithm is called the synthetic minority
oversampling technique (SMOTE) [55], [56], has a positive
effect on the unbalanced data problem. The SMOTE algo-
rithm is an improved algorithm based on the random sampling
method in random forests. It is artificially synthesized by
producing new samples according to the characteristics of
a few samples in small categories. The SMOTE algorithm
proposes a hypothesis based on the idea of clustering algo-
rithms: samples that are closer to the positive class sample
are also positive class samples. Based on this assumption, for
any X1 n a minor category, the algorithm obtains the
k-—nearest neighbors of X from the whole data set, and
then selects n samples randomly with replacement from the
k-nearest neighbors, Denote these n samples by Q j (j =
1, ..., n), and the original data in minor category by X1, then
the new sample Xj1 is defined by interpolation as follows:

where U is a random number uniformly distributed within the
range (0,1). Finally, new samples are generated by iterating
formula (3) multiple times until the data become balanced.
However, some flaws exist in the SMOTE algorithm. Firstly,
the selection of a value for k is an open question, and it
needs multiple iterations, increasing the computation burden
of algorithm. Secondly, the artificial samples generated by
the minor class samples at the edges may make a fuzzy
boundaries between the positive and negative classes.

TS-SMOTE algorithm is an improved algorithm of
SMOTE. Before inserting the new samples, the first step is
to cluster the samples of the minor class by using two-step
algorithm. During the clustering process of the TS-SMOTE
algorithm, noisy points must be removed because they are far
away from the normal points and hinder the merge speed in
the corresponding class. Then, get the Cluster cores of each
cluster sample and Calculate the centroid of all cluster cores.
Finally, choose the minor class samples that is farthest from
the centroid (representative original sample) and generate
artificial samples randomly between representative original
sample and the centroid.
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Two-step cluster [57] is a hierarchical algorithm. It can
automatic determine the number of clusters and handle large
huge amount of data [58]. It is performed in two steps.

(1) Pre-clustering stage: Using hierarchical algorithms
BIRCH (Balance Iterative Reducing and Clustering using
hierarchical) algorithm, one of the hierarchical algorithm
which comes from dealing with samples of large size,
to derived into several sub-cluster.

(2) Clustering stage: Taking sub-cluster, the result of pre-
clustering, as target and apply the agglomerative hierarchical
clustering method to merge the sub-cluster until we get the
expected number of clusters.

The general idea of the TS-SMOTE algorithm is as follows:
cluster the samples of the minor class using two-step cluster,
remove the noise and outliers from the original samples, and
then, generate artificial samples randomly between represen-
tative point and the centroid. The implementation steps of the
TS-SMOTE algorithm are as follows:

(1) Use the Two-Step Cluster Algorithm to cluster a small
number of data and record its cluster cores and calculate the
centroid of all cluster cores.

(2) Go through all the original data of minor class samples
and find out the set of data which is the furthest to the
centroid.

(3) Generate a new sample according to the interpolation
formula. a; represents the centroid of Cluster cores after clus-
tering by the Two-Step Cluster algorithm. Xp,,x represents set
of data of original data which is furthest to the centroid.

X* =a; +rand(0, 1) * Xjpax —a;) i=1,...,N (10)

During the clustering process of the TS-SMOTE algorithm,
noise points must be removed because they are far away
from the normal points. For the sample points after cluster-
ing, the interpolation can effectively improve generalization
ability. In the interpolation formula, X1 is replaced by the
centroid of Cluster cores after clustering by the Two-Step
Cluster algorithm; Q j is replaced by the data of original
which is the furthest to the cluster cores. Consequently,
the samples are generated only between the representative
samples and the centroid of all cluster cores, which effectively
avoids the influence of fuzzy boundary between positive
and negative classes. The combination of the clustering and
interpolation to eliminate the noise points at the end of the
process and reduce the complexity. And this interpolation
method allows all new samples to be obtained at once, this can
also reduce the algorithm complexity. Moreover, the two-Step
Cluster Algorithm can automatic determination of number of
clusters, avoid setting the k value of the original SMOTE
algorithm and thus, reduce the instability of the proposed
algorithm.

C. EXPERIMENT AND ANALYSIS

The purpose of the simulation experiment in this section is
to compare the accuracy between the TS-SMOTE algorithm
and SMOTE algorithm. Data set uses the Breast-Cancer-
Wisconsin data which used in Section 2.3. The TS-SMOTE
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TABLE 5. The accuracy of SMOTE algorithm and TS-SMOTE algorithm.

G-mean AUC OBB error
Smote 0.82 0.90 0.91
TS-Smote 0.94 0.82 0.84

algorithm proposed in this paper can generate samples near
the center point and the representative point, avoiding the
introduction of noise, and the generated sample follows the
original distribution. The performance evaluation criteria of
the data set under different sampling methods are shown in
the table 5.

From the table we can tell that the G-mean, AUC and OOB
errors of the TS-SMOTE algorithm perform better than the
smote algorithm under different sampling methods.

V1. BASICS CONCEPT OF RANDOM FOREST

A. RESEARCH CONCERNING DIMENSIONALITY
REDUCTION

In recent years, with the rapid development of information
technology, data acquisition technology and data storage
capacity have been improved, resulting in high-dimensional
unbalanced data in fields. The classifier becomes more com-
plicate when meeting high-dimensional data. Those data
make the classifier easy to over-fit. There are also some
irrelevant or redundant attributes, which easily lead to bad
classifier performance. Jimenez and Landgrebe [59] con-
ducted an in-depth analysis of the geometric properties of
high-dimensional attribute spaces. They pointed out that as
the number of attributes increases, the data spreads in all
directions, making the central data sparse. The increase in the
dimension of data also increases the difficulty of analyzing
the data exponentially. This phenomenon is what the scholars
often call ““curse of dimensionality”.

According to the conclusion of literature [60], most of
the high-dimensional space is empty, with most of the data
lying in a low-dimensional subspace, so the high-dimensional
data can be mapped to a low dimension by some methods.
In this way, the data still maintains the original distribution.
Feature extraction is the process of deriving new features
from original features to reduce the cost of feature mea-
surement, increase the efficiency of classifiers and allow
higher accuracy. Therefore, for high-dimensional unbalanced
data, we employ this technique in combination with the
TS-SMOTE algorithm.

B. DIMENSIONALITY REDUCTION PRINCIPLE OF PCA

Principle Component Analysis (PCA) [61], [62] is one of
the most used dimensionality reduction methods [63]. The
basic idea is to apply orthogonal transformation on the high-
dimensional data that turns the correlated variables into a
new set of linearly independent variables, with descending
variance [64]. The way to reduce dimension of data is to
choose new orthogonal feature vectors with largest variances.
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As linear combinations of original features, the new variables
contain most of the information in features, due to their large
variances, and also eliminate the correlation of the original
data that affects the prediction accuracy. The following para-
graph shows the basic steps of PCA.

(1) Calculate covariance matrix. In this first step, we have
to represent each sample by a vector, and then calculate the
sample covariance matrix of these vectors. The covariance
matrix is of dimension nxn, where n is the number of features
in the original data.

(2) Get eigenvalues and eigenvectors of the covariance
matrix. In this step, we sort the eigenvalues from largest to
the smallest, A1 > A2 > A3.

(3) Find the accumulative contribution of eigenvectors and
select the principle components. The accumulative contri-
bution G(r) tells how much variation the directions of first
r eigenvectors contribute to the variation of the whole data
set. Formula 11 shows how G(r) is calculated and s repre-
sents the number of eigenvalues. Next we select the eigen-
vectors Vi,...,Vy, corresponding to the largest eigenvalues
such that accumulative contribution G(r) reaches 85% or
above.

Gry=) /Y % (.j=123..) (11)
i=1 j=1

VII. EXPERIMENT ON FAULT DIAGNOSIS OF ROLLING
BEARING BASED ON PCA-TS-SMOTE-RF

A. THE PRINCIPLE OF PCA-TS-SMOTE-RF

In chapter 3.2, we have applied TS-SMOTE algorithm to
solve the problem of unbalanced data and fuzzy boundaries
between the positive and negative classes caused by interpo-
lation and heavy computation. However, TS-SMOTE algo-
rithm interpolates data randomly in minor class, which may
affect distribution of original data and intervene the result of
prediction. Therefore, we use PCA before interpolation to
reduce the dimension of features. This step is to erase the
data from category with few samples that mixed or close
to category with many samples and thus ensure the consis-
tency between interpolated data and original data. Based on
the features of PCA and TS-SMOTE, this chapter combines
PCA-TS-SMOTE algorithm with random forest to classify
the fault data of rolling bearings.

The steps of applying PCA-TS-SMOTE-RF algorithm are
as follows:

(1) Using PCA to reduce the dimensions of eigenvectors.
PCA will select several principle components from the top
contribute rates based on accumulative contribute rate. And
we use the selected principle components as the input matrix
for TS-SMOTE algorithm.

(2) Interpolation for the class with few samples by
TS-SMOTE algorithm. Interpolation for the input matrix of
TS-SMOTE algorithm which can avoid the shortage of the
original SMOTE algorithm. This step aims to balance the
number of samples of each category and make the ratio of
79166

the number of major class samples to the number of minor
class samples.

(3) Use random forest algorithm to classify the processed
data set.

B. EXPERIMENTAL DATA

This paper uses the data downloaded from the NASA website
to bring up PCA-TS-SMOTE-RF algorithm for bearings fault
diagnosis. This series of data comes from the whole life
time experiment of rolling bearings carried out by center for
intelligent maintenance systems of Univ. of Cincinnati [65].
The experiment took samples of time domain acceleration
signal every ten minutes under 20KHz. We take one set of
this experiment data which started at ten thirty-two and thirty-
nine second a.m. on 12/2/2004 and ended at six twenty-two
and thirty-nine second a.m. on 19/2/2004. This set of data
recorded every acceleration Signals that revealed the very
stages of bearing being failure. The capacity of this set of data
is 984.

C. FEATURE EXTRACTION AND PCA DIMENSIONALITY
REDUCTION
Due to the huge amount of monitoring data of rolling bearings
and the noise interference, we need to extract the eigenvalue
of original data. The amplitude parameters of time domain
signal are often used in condition monitoring and fault diag-
nosis for motor systems. We establish the connection between
input and output of fault diagnosis for motor spindle based
on TS-SMOTE-RF algorithm. Those formula below presents
the amplitude parameters this paper extracts. N represents
the total number of monitoring data samples, x; represents
the value of each sample.

Kurtosis factor:

| ¥ —\4
N . 1(|xi| —X)
C, = —= 12
T X ”
Peak factor:
X
I, ==L 13
P Xoms ()
Pulse factor:
X
Cr=2 (14)
Skewness factor:
| 3
N Z (Ixi] —x)
i=1
Cp=— Xi (15)
Kurtosis:
N
By = lZ(|x-|—az)“ (16)
17N i
i=1
Skewness:
N
B =~ 3 (il — 7 (17)
N
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The original data of every set comes from samples taken
by every ten minutes, thus, we can get 984 sets of data
totally. After calculating the parameters, we select the value
of parameter as vertical coordinate and samples* serial num-
ber as horizontal coordinate (at range from 1 to 984 in
chronological order) to make line charts (Figure 4). It is
not difficult to tell that some of the parameters have similar
trend from the line charts. So to reduce the redundancy and
improve the accuracy of prediction, we use PCA to decrease
the covariates‘ dimensions that will generate new covariates
which are linear combination of old covariates. The total
contribution of variance of selected components reaches 85%.
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TABLE 6. Contribution rates and eigenvalues of feature components.

Component] Component2 Component3 Component4

Total
contribution 56.196 13.562 10.837 9.264
rate ( % )
the total of
initial 5.058 1.221 0.975 0.834
eigenvalue

TABLE 7. Component matrix.

Component

Bearing No. 1 1 2 3 4
Kurtosis
factor .888 -237 -.031 313
Root mean
square 948 .098 -.074 -119
Peak
factor 399 -.257 .668 -394
Pulse
factor 599 421 491 161
Skewness
factor .685 -.384 -.034 571
Kurtosis 832 .100 -.398 -.300
Skewness 904 .089 -.302 -.275
The average
value .070 .864 .020 221
Peak 931 .007 175 -.014

In this study, we choose first four parameters of which total
contribution reaches 89.859%. Table 6 shows the contribution
rates and eigenvalue of feature components and table 7 shows
the component matrix.

After determining four principle components, we also need
to identify the expression of every principle component to
display the linear relationship between each eigenvalue and
principle components. Formula 21 presents the calculate
method of every element in coefficient matrix of princi-
ple components and formula 22 shows what the coefficient
matrix looks like. In formula 16, Cj; represents the effect
factor (component matrix) of eigenvalue i to the principle
component j and T j represents the total of initial eigenvalue of
principle component j. Formula 23-26 indicates expressions
of every four principle components.

Xp= L Gj=1,234..) @1
VT
Xu Xu Xu o ... X
X2 X»n Xn ... X
X3 X3 Xz ... Xi (22)
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Formula 23:

F1 =0.394-x1 +0.421 - x0 + 0.177 - x3 + 0.266 - x4
+0.304 - x5 4+ 0.369 - xg + 0.401 - x7 4+ 0.031 - xg
+0.413 - x9

Formula 24:

Fr = —0.214 - x; +0.088 - x; — 0.232 - x3 + 0.380 - x4
—0.347 - x5 + 0.090 - x¢ + 0.080 - x7
+0.781 - xg + 0.006 - x9

Formula 25:

F3 = —0.031 - x; — 0.074 - x5 + 0.676 - x3 + 0.497 - x4
—0.034 - x5 — 0.403 - xg — 0.305 - x7
+0.020 - xg + 0.177 - xo

Formula 26:

F4 =0342-x1 —0.130 - xp — 0.431 - x3 4+ 0.176 - x4
4+0.625 - x5 — 0.328 - x6 — 0.301 - x7 + 0.241 - xg
—0.015 - x9

D. EXPERIMENT ON FAULT DIAGNOSIS OF ROLLING
BEARING BASED ON PCA-TS-SMOTE-RF

Though analyzing the line charts (Figure 4) of every time
domain feature parameters, we can first define every stage
of motor spindle‘s working condition from good to failure.
The indicator value remains stable until the 694th data, where
there is a sudden increase. After 694, there is some fluctua-
tion, followed by a sharp increase and drop. Therefore, 694 is
chosen as the initial failure point of rolling bearing. There
are 290 fault samples in the whole original sample, which is
much smaller than the normal samples.

Considering huge data set and various parameters in diag-
nosing fault of rolling bearings, we prefer to combine the
more universal PCA algorithm with TS-SMOTE algorithm
which has strong variability and then apply random forest
algorithm as classifier to fault diagnosis of rolling bearings.
The components matrix we get in chapter VI is used as
the input of TS-SMOTE algorithm to balance the unequal
quantity of each category of original data. For the categories
with minor class samples after data point 649, the point
when bearing begins to failure, we expand this category by
interpolation so that the number of categories with little data
(Tr-) can be close to those with lots of data set (Tr+). And
next, we build random forest model to diagnose the fault
based on new generated data and set the traditional value with
fixed parameters.

E. RESULTS AND ANALYSIS

In order to verify PCA-TS-SMOTE-RF classification per-
formance, this paper compare the performance evaluation
criteria of random forest (RF), PCA-RF, TS-SMOTE-RF
with PCA-TS-SMOTE-RF algorithms. The result are shown
in Table 8.
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FIGURE 6. Experiment results of different algorithms based on PCA-TS-SMOTE.

From the classification results obtained by the
different sampling algorithms discussed in Table 4,
the Specificity, Accuracy, G-mean and AUC achieved by
PCA-TS-SMOTE-RF are superior to the other sampling
algorithms, and its Recall is slightly lower. The best
value of every performance evaluation criteria obtained by
the algorithms are marked in boldface. At the meantime,
to prove the excellence of random forest algorithm, we apply
PCA-TS-SMOTE on both SVM and ANN algorithm, and
Table 9 shows the value of each indicator of these three
algorithms.

In order to show the results of different algorithms clearly,
we use bar chart, as Figure 6, to present the value of each
indicator between different algorithm.

VOLUME 7, 2019

TABLE 8. Experiment results of different algorithms.

Recall  Specificity ~Accuracy  G-Mean  AUC

RF 0.979 0.629 0.809 0.784 0.62

PCA-RF 0.981 0.701 0.841 0.829 0.74
TS-

SMOTE- 0.973 0.735 0.837 0.845 0.81
RF

PCA-TS-

SMOTE- 0.965 0.903 0.934 0.933 0.92
RF

In conclusion, the classification results of the PCA-TS-
SMOTE-REF algorithm as measured by the Specificity, Accu-
racy, G-means and AUC are substantially enhanced, whereas
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TABLE 9. The results of different algorithms based on PCA-TS-SMOTE.

Recall Specificity ~ Accuracy  G-Mean AUC

SVM 0.930 0.859 0.894 0.894 0.860
ANN 0.905 0.934 0.919 0.920 0.890
RF 0.965 0.903 0.934 0.933 0.920

the results using TS-SMOTE-RF or PCA-RF alone are not
particularly stable. Thus, the PCA-TS-SMOTE-RF algorithm
combined with RF has a substantial effect on classification.
At meanwhile, through table 9 and Figure 6, it can tell
that PCA-TS-SMOTE has better comprehensive performance
than the improved SVM and ANN. In addition, Random
Forrest algorithm can also calculate the prediction error from
OOB (Out of Bag) data. Each tree in the Random Forrest
is extracted randomly from original data by Bagging algo-
rithm. Every extraction there will be one third of original
data won‘t be extracted and these data are called OOB data.
To each feature, apply OOB data to every tree to calculate
the prediction error and then add interference noise which
means to randomly alter its Eigenvalues to calculate the noise
error. The average error of all kind which we calculate before
and after adding the interference noise is the estimated value
of the importance of this certain characteristic variable. The
bigger the estimated value is, the deeper this characteristic
variable can affect the evaluation process. Figure 7 shows the
estimated value of the importance of characteristic variables
by OOB. The horizon axis presents the average of prediction
error of variables; and we can tell from the figure that three
variables which has the biggest average of error are peak,
skewness and root mean square.

VIIl. CONCLUSION

In the era of big data, data tends to be characterized by high
dimensionality and imbalance. If the traditional classification
algorithm is used to classify it directly, the performance
of the classifier will behave bad. And among the domes-
tic and foreign research, these two characteristics are often
studied separately, considering the imbalance in the high
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dimension, or directly studying the imbalance to ignore the
high dimension. This paper combines the improved SMOTE
algorithm and PCA dimension reduction to solve the problem
of high dimension and imbalance of data in the model. Ran-
dom forests are superior to other classification algorithms in
processing classification performance. However, in the face
of high-dimensional unbalanced big data, traditional random
forest algorithms will have shortcomings such as long time
to modeling and sensitive to unbalance data. Therefore, it is
necessary to improve random forests to suitable for classi-
fication of high dimensional unbalanced data. Based on the
rolling bearing data, this paper proposes a PCA-TS-SMOTE-
RF algorithm to improve the classification accuracy of fault
diagnosis. The experimental data of the rolling bearing life
cycle provided by the Intelligent System Maintenance Center
of the University of Cincinnati was used to verify the classi-
fication and prediction, and the superiority of the algorithm
was proved. The steps of algorithms this paper proposes to
solve the high dimensional unbalanced data are showed as
follows:

(1) To classify the unbalanced data set, TS-SMOTE
algorithm shows its excellent classification performance in
balancing the data set than SMOTE algorithm. And the clas-
sification performance can be move on further when combine
with PCA algorithm.

(2) PCA-TS-SMOTE algorithm efficiently avoids chang-
ing the data distribution pattern after interpolation by the path
that using PCA to decrease data dimension first and then
interpolation to balance the data of each category.

(3) During the classification experiment of fault diagno-
sis data, it is showed apparently that PCA-TS-SMOTE-RF
algorithm achieves a much better result in every evaluation
for fault diagnosis by comparing with using random for-
est directly, classifying by TS-SMOTE algorithm and only
applying PCA. And it is also better than the SVM and ANN
algorithm after applying PCA-TS-SMOTE.
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