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ABSTRACT Interest point detection has been widely used in image analysis applications. However, some
interest points, including small structures and large angle corners, could not be effectively extracted. This
paper proposes a limiting form of median Laplacian of Gaussian (LMLG) filter, which combines the
superiority of the traditional Laplacian of Gaussian (LoG) filter and a limiting form of the weighted median
LoG filter. A detector is also proposed based on the LMLG filter. The LMLG filter aims to improve the
detection of LoG-based methods for interest points, especially small structures and large angle corners. Also,
it could detect blobs, edges, and local structures.We conduct the repeatability and discrimination experiments
on the Oxford dataset. Moreover, we conduct the recall rate experiment on the DTU dataset. The experiments
show that the proposed method achieves comparable performance with state-of-the-art methods. In order to
verify the utility of the LMLGdetector, we carry out a series of interest point detector-based applications: face
recognition, infrared-visible image registration, and image classification. The results demonstrate that the
LMLG detector performs better than the nine detectors in face recognition. The LMLG detector outperforms
the nine detectors and Hrkać’s, Han’s and Liu’s methods in infrared-visible image registration. Our method
also gives a comparable result on image classification. The source code of the proposed LMLG detector is
made publicly available at https://github.com/chenjzBUAA/LMLG-detector.

INDEX TERMS Feature extraction, image registration, interest point detection, Laplacian of Gaussian filter.

I. INTRODUCTION
In recent years, interest point detection has been widely
used in various applications [1], [2], including object recog-
nition [3], [4], object categorization [5]–[8], stereo match-
ing [9], robot localization [10], image registration [11], [12],
image retrieval [13], [14], keyframe selection [15], etc. More-
over, interest point detection is an important step in the
task of feature extraction. Interest points can also be seen
as points with robust saliency, thus can be used in saliency
detection [16]–[19]. Besides, interest point detection can
be used in multimodal image processing applications. For
example, interest point detectors are able to deal with multi-
spectral images such as hyperspectral classification [20] and
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target detection [21]. Many interest point detectors [22]–[29]
have been proposed in the past. Prevalent corner detectors
include Harris corner detector [22] and Harris-Laplace/affine
detectors [23]. Well-known blob detectors include Hessian
detector [25], Hessian-Laplace/affine detectors [23], Scale
Invariant Feature Transform (SIFT) detector [30], Speeded-
Up Robust Features (SURF) detector [26], the Accelerated
KAZE (A-KAZE) detector [31] and Learned Invariant Fea-
ture Transform (LIFT) [32]. As for region detectors, pop-
ular detectors include Maximally Stable Extremal Regions
(MSER) detector [28], edge-based region detector [27] and
intensity-based region detector [27].

Corner detectors detect points with large intensity varia-
tions in multiple directions. Interest points detected by cor-
ner detectors are robust especially with viewpoint changes
in image matching. However, corner detectors lack the
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information of regions [33]. Blob detectors aim at detect-
ing points or regions that are salient in surroundings. Com-
pared to corner detectors, blob detectors are more robust
to higher level of distortions, such as scale changes and
rotations. But the detection performance of abrupt structures
is poorer than corner detectors [33]. Region detectors are
designed especially to achieve affine transform invariance.
They provide high performance under image transforma-
tions such as shape changes and viewpoint changes. How-
ever, the shortcoming of region detectors is similar to blob
detectors.

The Harris-Affine detector is extended from Harris-
Laplace detector to deal with affine transformations. The
basic idea of Harris-Affine detector is to select the charac-
teristic scale and characteristic elliptic shape. Harris-Affine
detector performs well in illumination and scale variations.
However, the filtering operations might cause information
loss, which would lead to a performance degradation [34].
Hessian-Affine is similar to Harris-Affine detector. Hessian-
Affine detector uses a multiple scale iterative algorithm
to select scale and affine invariant points. It is robust to
the viewpoint and scale variations [34]. The widely used
SIFT detector employs the difference of Gaussian (DoG)
filter, which is a close approximation to the scale-normalized
Laplacian of Gaussian (LoG) filter, to generate a blob map.
However, SIFT detector is unstable for detecting image struc-
tures when other interference structures fall in the detection
window of the DoG filter. A-KAZE detector is a multi-scale
detector in nonlinear scale spaces. Keypoints are detected by
A-KAZE detector with nonlinear diffusion filtering, which
could reduce noise and obtain more object boundaries com-
pared to LoG based filters. However, A-KAZE might also
omits small scale keypoints. LIFT detector is trained in a
deep network architecture. The performance of LIFT detector
is limited by the training set. Rank order LoG filter [29]
(ROLG) is proposed to deal with the problems of SIFT
detector. However, there are still some problems left by
ROLG detector. Firstly, the detector fails to detect small
structures, such as small blobs. Secondly, corners with large
angles would be regarded as edges which cannot be detected
by ROLG. MSER is one of the most widely used region
detectors. Watershed based segmentation algorithms extract
regions with intensity inhomogeneities. However, the inten-
sity distribution affects the performance of the extraction.
MSER could find blob-like structures in images. It also
detects other irregularly shaped structures [2]. SURF is a
scale-invariant feature detector, which uses a blob detector
based on Hessian matrix to detect interest points. Determi-
nant of Hessian matrix is used for selecting the scale [2].
SURF is effective and convenient for interest point detec-
tion. However, missing points might be caused during
detection.

In order to enhance LoG-based filters and solve the prob-
lems left by ROLG detector, we propose a limiting form of
median Laplacian of Gaussian (LMLG) filter in this paper.
LMLG reduces the size of the inner disk of ROLG filter

to a point when approaching σ to zero. The proposed filter
rlwm can effectively detect small structures and corners with
large angles in multiple scales. It also incorporates original
LoG filter to remove false alarms and improves detection
accuracy. Based on this filter, we propose a new interest
point detector named LMLG detector. The detector is able
to detect local image structures in multiple scales. The visual
comparison experiments illustrate that LMLG detector per-
forms better than ROLG, SIFT, SURF, MSER, HS-A, HR-A,
FAST, A-KAZE and LIFT detectors in both single and multi-
ple scales. The repeatability and discrimination experiments
show that LMLG detector outperforms nine state-of-the-art
detectors, which indicates that LMLG detector is more robust
to image variations compared with the nine state-of-the-
art detectors. In order to verify the practicability of LMLG
detector, we employ LMLG detector in the applications of
face recognition and infrared-visible image registration. The
results demonstrate that LMLG detector performs better than
other detectors. Our method also gives a convincing result on
image classification.

The remainder of this paper is organized as follows.
Section II introduces the traditional LoG filter. Section III-A
presents the proposed method and analyses the proper-
ties of LMLG detector. In Section IV, visual comparison
experiments are demonstrated. In addition, repeatability and
discrimination experiments are performed. In Section V,
the applications of LMLG detector for face recognition,
image registration and image classification are provided.
SectionVI evaluates the computational cost of differentmeth-
ods. Section VII gives the conclusions.

II. BACKGROUND
The 2D LoG function with Gaussian standard deviation σ has
the following form:

LoG(u, v, σ ) = −
1
πσ 4

[
1−

u2 + v2

2σ 2

]
e−

u2+v2

2σ2 . (1)

Here u and v are the coordinate of a single pixel. For
image I , I (u, v) gives the intensity of (u, v). As described
in [29], the output of LoG filter at (u, v) is calculated as
follows:

rLoG(u, v, σ )=−
∑

(p,q)∈S

LoG(p, q, σ )I (u− p, v− q)

=

∑
(p,q)∈S2

LoG−(p, q, σ )I (u− p, v− q)

−

∑
(p,q)∈S1

LoG+(p, q, σ )I (u−p, v−q), (2)

where S represents the whole mask region; S1, S2 represent
the mask region where the filter weights are positive and neg-
ative, respectively; LoG+ and LoG− represent the absolute
values of filter weights. The shape of S is a large disk whose
size is determined by σ . The shape of S1 is a surrounding ring
and the shape of S2 is an inner small disk.
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FIGURE 1. The responses and detected results of LoG filter in object
structures. (a) Corner. (b) Blob. (c) Blob with abrupt structures.

III. THE PROPOSED METHOD
A. THE PROPOSED LMLG FILTER
Performance of the LoG filter may be interfered by
strong or abrupt structures. The filtering result would be
affected by strong abrupt structures in the mask region. For
example, two high intensity blobs are near the center blob
in Fig. 1(c). Nearby blobs weaken the response of LoG filters,
which might cause the missing detection of the center blob.

In this case, it is a good idea to replace the weighted mean
values in regions S1 and S2 with the outputs of weighted rank
order filters [29].

To improve the performance of LoG filter, we replace the
weighted mean values with the weighted median values in
regions S1 and S2. The output of weighted median LoG filter
can be expressed as follows:

rwm(u, v, σ ) = Med(I−(u, v, σ ),LoG−, rw)

−Med(I+(u, v, σ ),LoG+, rw). (3)

Here I−(u, v, σ ) = {I (u− p, v− q)|(p, q) ∈ S2}, LoG− =
{LoG−(p, q, σ )|(p, q) ∈ S2},
I+(u, v, σ ) = {I (u− p, v− q)|(p, q) ∈ S1}, LoG+ =

{LoG+(p, q, σ )|(p, q) ∈ S1}, the weight LoG−(p, q, σ ) or
LoG+(p, q, σ ) corresponds to the input I (u− p, v− q).
Med(x,w, rw) is a weightedmedian rank order filter, where

x = {x1, x2, . . . , xn}, w = {w1,w2, . . . ,wn}, (0 ≤ wi ≤ 1,
n∑
i=1

wi = 1) and rw (0 ≤ rw ≤ 1) represent the input series,

the weights and the rank. The value of Med(x,w, rw) can be
calculated as follows [35], [36].

Firstly, the input series are sorted in increasing order.
The corresponding weights of the sorted input series x̃ =
{x̃1, x̃2, . . . , x̃n} are rearranged as w̃ = {w̃1, w̃2, . . . , w̃n}.

The output of the weightedmedian rank order filter is given
by

Med(x,w, rw) = Med(x̃, w̃, rw)

= x̃i, {i : bi−1 < rw ≤ bi} , (4)

where bi =
i∑

j=1
w̃j is the cumulative sum of the sorted weights

and b0 = 0.
Besides, the output of Med(x,w, rw) should be the

weighted median value of x, so we set rw = 0.5.
For example, here is an input series x = {7, 5, 9, 8} with

weights w = {0.1, 0.2, 0.3, 0.4}. The sorted input series x̃
and weights w̃ would be 5, 7, 8, 9, and 0.2, 0.1, 0.4, 0.3,
respectively. The accumulation weights {b0, b1, b2, b3, b4} =
{0, 0.2, 0.3, 0.7, 1}, and Med(x,w, rw) = Med(x̃, w̃, 0.5).
Given b2 < 0.5 ≤ b3, x̃3 = 8 is the weighted rank order
filter output of the input series x.
However, the filter in Eq. (3) fails to detect large structures

because the weighted median filter in the inner disk region
cannot capture small target structures. Likewise, the filter
in Eq. (3) cannot accurately locate the vertices with small
angles.

In order to address these problems and further suppress the
responses on edges of the detector, we proposed a limiting
form of the median weighted LoG filter. After the scale of the
filter is set, σ is set to approach zero. Then the limiting form
of the weighted median LoG filter in Eq. (3) can be expressed
as

rlwm(u, v) = lim
σ→0
{Med(I−(u, v, σ ),LoG−, rw)

− Med(I+(u, v, σ ),LoG+, rw)} (5)

In practice, σ cannot turn to 0 for digital image processing.
Thus, we use the center pixel of the LoG mask as the region
of S2. In this case, the proposed rlwm(u, v, σ ) is given as
follows:

rlwm(u, v, σ ) = Ĩ (u, v, σ )−Med(Ĩ (u, v, σ ),W , 0.5), (6)

where Ĩ (u, v, σ ) is the Gaussian filter output of I (u, v, σ ),
Ĩ (u, v, σ ) =

{
Ĩ (u− p, v− q, σ )|(p, q) ∈ S

}
, W ={

1
|S| , . . . ,

1
|S|

}
, S represents thewholemask region of the LoG

filter, |S| represents the cardinality of pixels in the whole
mask which is determined by the parameter σ .
According to Eq. (1), value of LoG(u, v, σ ) equals zero

when r =
√
2σ , where r =

√
u2 + v2. Here r is the radius

of S2. S2 of rlwm is a pixel which can be seen as a disk with
radius 0.5 (r = 0.5). In this case, the shape of filter rlwm is the
same as LoG(u, v, 1

2
√
2
). The difference of Eq. (5) and Eq. (6)

can be defined as:

Diff (s) =
∫ s

−s

∫ s

−s

(
lim
σ→0

(LoG(u, v, σ ))

−LoG(u, v,
1

2
√
2
)
)
dudv. (7)

Here s is the scale of the mask S. According to the property
of LoG function, Diff (s) decreases and approaches zero with
a growing s when s > 0.

Filter (6) can detect small structures because the center
point in the mask of this filter can capture small structures.
Moreover, filter (6) can suppress the responses of edges
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because the center point and median filter catch the same
side of edges. Due to the median filter, filter (6) may not be
interfered by strong or abrupt structures.

Although filter (6) can solve the problems of the LoG filter
and filter (3), its performance is not stable and its scope of
application is less extensive than the LoG filter because it is
a limiting form of the weighted median LoG filter. To get a
stable and precise filter, we design our filter as follows:

rLMLG =


rLoG × rlwm, if rLoG > 0, rlwm > 0
−rLoG × rlwm, if rLoG < 0, rlwm < 0
0, otherwise.

(8)

the design of rLMLG is based on the following
considerations.

Firstly, the values of Ĩ (u, v, σ ) andMed(Ĩ (u, v, σ ),W , 0.5)
are both integers. If Ĩ (u, v, σ ) 6= Med(Ĩ (u, v, σ ),W , 0.5),
rlwm(u, v, σ ) = Ĩ (u, v, σ ) − Med(Ĩ (u, v, σ ),W , 0.5) > 1.
Thus, the output of rLMLG of the interest points can be
expanded by multiplying the outputs of rLoG and rlwm.

Secondly, the output of rlwm on edges is zero. In this case,
multiplying rLoG and rlwm can make LMLG filter output zero
on edges, which preserves the insensitivity of LMLG filters
on edges.

In addition, instead of simply multiplying the two outputs,
we value the output of LMLG filter based on the sign of rLoG
and rlwm. Normally, the outputs of rLoG and rlwm should have
the same sign while detecting a blob or a corner. So, if the
outputs of rLoG and rlwm have different signs, the detected
point will not be a correct interest point and the output of
LMLG filter should be set to zero. Thus, formula (8) could
remove some false interest points.

B. ANALYSIS OF LMLG FILTER
1) RESPONSES OF LMLG FILTER ON BLOBS
LoG filter produces some spurious local extrema around
blobs. These spurious local extrema cause erroneous interest
points detected by LoG filter based detectors. The first row of
Fig. 2(b) shows that a ring is produced around the peak at the
center of the blob. The first row of Fig. 2(c) shows that four
erroneous points are detected around the blob by detecting
the peaks of LoG filter responses.

The first row of Figs. 2(f) and (g) shows that LMLG filter
produces only one peak at the center of the blob, thus only
one point is detected by detecting the peaks of LMLG filter
responses. This means that LMLG filter can avoid erroneous
points around blobs. This can be explained by the filtering
process of LMLG filter on a 1D blob shown in Fig. 3. When
the 1D-LMLG-filter mask is on one side of the 1D blob, e.g.
mask 1 in Fig. 3, inputs within mask 1 are monotonically
increasing. LMLG filter will output zero because the value
of the center point in mask 1 is equal to the output of median
filter within mask 1.When the 1D-LMLG-filter mask is at the
center of the 1D blob, e.g. mask 2 in Fig. 3, LMLG filter will
output a positive value because the value of the center point
in mask 2 is larger than the output of median filter within

FIGURE 2. The responses and detected results of different filters. Red
points are the detected interest points. (a) 2D structure. (b) Absolute
values of the LoG responses. (c) Points detected by the LoG filter.
(d) Absolute values of ROLG responses. (e) Points detected by ROLG filter.
(f) Absolute values of LMLG responses. (g) Points detected by LMLG filter.

FIGURE 3. A 1D blob and two 1D-LMLG-filter masks. In each mask,
the red line represents its center.

mask 2. Extending the 1D case to 2D case, we can know why
LMLG filter does not generate a ring around the blob.

2) RESPONSES OF LMLG FILTER ON EDGES AND CORNERS
Another problem of LoG filter is that spurious local extrema
are often produced along edges. These spurious local extrema
will cause erroneous points detected by LoG based detectors.
The second row of Fig. 2(b) shows that near the peak on the
corner, strong responses are also produced along the edge.
The second row of Fig. 2(c) shows that lots of erroneous
points are detected along the edge by detecting the peaks of
LoG filter responses.

The second row of Figs. 2(f) and (g) shows that LMLG
filter produces only one peak on the corner and detects only
one point by detecting the peaks of LMLG filter responses.
This means that LMLG filter can avoid detecting erroneous
points along edges. This can be explained by the filtering
process of LMLG filter on a 1D edge shown in Fig. 4. When
the 1D-LMLG-filter mask is on the edge, inputs within the
mask are monotonically increasing. LMLG filter will output
zero because the value of the center point in the mask is
equal to the output of the median filter within the mask.
Extending the 1D case to 2D case, LMLG filter does not
generate spurious local extrema along edges.
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FIGURE 4. A 1D edge and a 1D-LMLG-filter mask. In the mask, the red
line represents its center.

FIGURE 5. (a) A 2D small blob and a 2D-LoG-filter mask. In this mask,
the blue region represents its inner part and the grey region represents
its surrounding part. (b) A 2D small blob and a 2D-LMLG-filter mask.
In this mask, the grey region represents its whole region and the red
point represents its center point.

FIGURE 6. A comparison of interest points detected by two filters. (a) LoG
filter. (b) LMLG filter. The red points are the detected interest points.

3) RESPONSES OF LMLG FILTER ON LOCAL STRUCTURES
Through above analysis, we find that LMLG filter has
some advantages. LMLG filter can avoid erroneous points
around blobs and suppress the responses of edges. Moreover,
LMLGfilter is able to detect small structures and corners with
large angles.

Firstly, the third row of Figs. 2(f) and (g) shows that
LMLG filter outputs a peak on the small blob and detects a
point. This can be explained by the filtering process shown
in Figs. 5(a) and (b). Fig. 5(b) shows that the center point
in the mask of LMLG filter can always capture small blobs.
Likewise, as shown in Fig. 6, LMLG filter can detect thin
endpoints.

In addition, the last row of Figs. 2(f) and (g) shows that
LMLG filter outputs a peak on the corner and detects a
point. This can be explained by the filtering process shown
in Figs. 7(a) and (b). Fig. 7(a) shows that the output condition
cannot be satisfied when a significant majority of pixels
(60% is used) in the inner disk are brighter than a significant
majority of pixels (60% is used) in the surrounding ring.
But Fig. 7(b) shows that the value of the center point in

FIGURE 7. (a) A 2D corner and a 2D-LoG-filter mask. In this mask,
the blue region represents its inner part and the grey region represents
its surrounding part. (b) A 2D corner and a 2D-LMLG-filter mask. In this
mask, the grey region represents its whole region and the red point
represents its center point.

LMLG filter mask is always larger than the median value
within the mask which satisfies the output condition of
LMLG filter.

Based on the above three statements, we illustrated that
LMLG can detect common interest points such as blobs,
edges, corners and local structures.

C. PROPERTY ANALYSIS
From (8), four properties are given below.

Property 1. LMLG filter represent multi-scale interest
points.

Since Gaussian kernel is a transformation kernel to achieve
scale-space representation of signal, LMLG filter could rep-
resent multi-scale interest points through changing σ .

Property 2. Scales in LMLG filter are discretely
continuous.

As for the number of image intervals s and constant factor
k = 21/s, there are s + 2 images in LoG scale space. Their
scales are σ, kσ, k2σ, k3σ, . . . , ksσ, ks+1σ . Similarly to the
scale of SIFT [30], these s scales kσ, k2σ, k3σ, . . . , ksσ in the
middle are chosen as the scales in the first octave. The images
in the next octave is obtained by downsampling of the image
in its previous octave. Then the scales in the second octave are
2σ, 2kσ, 2k2σ, 2k3σ, . . . , 2ksσ, 2ks+1σ . Likewise, the scales
2kσ, 2k2σ, 2k3σ, . . . , 2ksσ in the middle are chosen as the
scales in the second octave. Obviously, the first scale 2kσ
in the second octave is continuous with the last scale ksσ in
the first octave. In the same way, the first scale in the current
octave is continuous with the last scale in the previous octave.
Thus, scales in LMLG detector are discretely continuous.

Property 3. LMLG filter is able to detect small structures,
such as blobs and thin endpoints with single pixel width,
in the smallest scale.

Since the mask of LMLG filter in the center is a point and
can catch small interest structures, LMLG filter is able to
detect blobs and thin endpoints with single pixel width. The
single-pixel-width blobs detected by LMLG filter is shown
in the third row of Fig. 2(g). The single-pixel-width thin
endpoints detected by LMLG filter is shown in Fig. 6(b).

Property 4.LMLGfilter is able to detect cornerswith large
angles in the smallest scale.

As for the edges of the corners with large angles, it can be
found that the center point and the median filter will catch
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the same side of the edges from filter (6). Thus, the filter (6)
output zero in the edges, that is, LMLG filter can suppress
the responses of edges. Moreover, LMLG filter retains the
advantage of the filter (6) and can catch the corner. That is
to say, the response of LMLG filter in the corner is not zero.
As a consequence, LMLG filter outputs a peak on the corner
and detects a point. The corner with large angles detected by
LMLG filter is shown in the fourth row of Fig. 2(g).

D. INTEREST POINT DETECTION BASED ON LMLG FILTER
Interest points are obtained by detecting the peaks which are
on the corner/blob map generated by LMLG filter. Given
one scale parameter σ , interest points can be detected in
a single scale. To detect interest points in multiple scales,
different interest points are detected in different scales by
different scale parameters, as done in [29] and [37]. Since the
responses of LMLG filter on a ridge are strong, some erro-
neous points on ridges are detected by the detector.We use the
algorithm proposed in [30] to remove these erroneous points
on ridges.

The main idea of LMLG detector can be summarized as
follows:

Firstly, peaks are detected on the corner/blob map gener-
ated by LMLG filter. After removing the peaks which are on
ridges, interest points are detected in a single scale. By using
different scale parameters, interest points are detected in
multiple scales.

Then the major steps of interest point detection using
LMLG detector can be summarized as follows.

(1) The initial scale parameter σ and the number of scales
are assigned firstly.

(2) LMLG filter is used to generate the corner/blob map by
filtering the input image.

(3) The peaks that have been detected on the corner/blob
map are taken as the candidate interest points.

(4) The peaks on ridges are removed based on the algorithm
proposed in [30]. Remaining peaks are the true interest points
in this scale.

(5) After updating LMLG filter by increasing the scale
parameter, the detection step goes back to step 2 in a larger
scale until the maximum scale is reached.

IV. EXPERIMENTS
We used the experiment setting suggested in [30] to set the
parameters. All scales were divided into octaves and each
octave contains 3 scales

{
1.6× 21/3, 1.6× 22/3, 3.2

}
. After

the image was down-sampled and the interest points were
detected in a new octave. The number of the octaves was
determined by image size.

Nine comparison methods are used in our experiment,
including ROLG [29], SIFT [30], SURF [26], MSER [28],
Hessian-affine (HS-A) detector [23], Harris-affine (HR-A)
detector [23], FAST [38], A-KAZE [31] and LIFT detec-
tors [32]. We use the same parameters of HS-A and HR-A
detectors as in [39]: thresholds of HS-A and HR-A are
500 and 1000 respectively. SIFT, SURF, MSER, FAST and

FIGURE 8. The detection results of SIFT, ROLG and LMLG on a test image.
The test image contains varied structures, including sharp angles, obtuse
angles, small size points, and a straight line.

A-KAZE are implemented in OpenCV 3.0 using default
parameters. SIFT: contrast threshold = 0.04, σ = 1.6;
SURF: octave = 4, threshold = 500; MSER: δ = 5,
area threshold = 1.01; FAST: threshold = 10; A-KAZE:
octave = 4, threshold = 0.001. ROLG is also implemented
in the same settings as mentioned in [29]: σ = 1.6. Model
of LIFT is trained as suggested in [32] with Piccadilly Cir-
cus dataset. Based on our experiment, all of the comparison
methods obtain the best performance in these settings.

A. VISUAL COMPARISON EXPERIMENTS
We carried out some visual experiments by comparing inter-
est points detected by LMLG detector and the comparison
methods. Fig. 9 shows that ROLG, SIFT, SURF, HS-A,
HR-A, A-KAZE and LIFT detectors omitted some obvious
blobs such as the mole near the corner of the mouth. Mean-
while, ROLG and SIFT detectors detected some negligible
and erroneous points such as the points below the eyes.
Region detector MSER missed the mole near the mouth.
MSER also detected less interest points than LMLG. LMLG
detector detects the obvious blobs omitted by ROLG, SIFT,
SURF, A-KAZE and LIFT detectors such as the mole. Simul-
taneously, LMLG detector avoid some negligible and erro-
neous points. Compared with ROLG, SIFT, SURF, MSER,
HS-A, HR-A, FAST, A-KAZE and LIFT detectors, LMLG
captures more blobs and corners. This is mainly because the
product of the two filters widens the gap between interest
points and others. Thus, the interest points are easier to be
detected and the negligible points are easier to be avoided.

In [40], a simple test pattern is used to evaluate the method.
The input image contains circular patterns with increasing
scales. The detection results of the input image demonstrate
the ability of their method to detect multi scale circles.
Inspired by [40], we evaluated LMLG detector on an artificial
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FIGURE 9. The comparison results of interest points location and scales.
The red points are the detected interest points and the radius of the
yellow circle represents the scale of the interest point at its center.

image. As shown in Fig. 8, the test image contains varied
structures, including sharp angles, obtuse angles, small size
points, and a straight line. Fig. 8 gives the results obtained
by SIFT, ROLG and the proposed LMLG. SIFT fails to
detect small size points. Also, there are false alarms around
blobs and corners. ROLG and LMLG avoids that using a
rank order filter instead of a weighted mean filter. However,
ROLG omits obvious corners with large angles, small struc-
tures and endpoints. We can find that proposed LMLG can
successfully meet all above-mentioned challenges and avoid
erroneous points around blobs, which validates the analysis
we carried out in III-C.

B. REPEATABILITY AND DISCRIMINATION EXPERIMENTS
In order to evaluate LMLG detector under different image
variations, we carried out the repeatability and discrimina-
tion experiments. We used the evaluation suggested in [39]
to make comparisons with nine detectors, including ROLG
detector, SIFT detector, SURF detector, MSER detector,
Hessian-affine (HS-A) detector, Harris-affine (HR-A) detec-
tor, FAST detector, A-KAZE detector and LIFT detector. The
repeatability measures include the number of repeated inter-
est points and the repeatability score. Each point corresponds
to a detected region. Two regions are repeated if their overlap
error is less than a threshold (set to 40% in our experiments).
The repeatability score was computed as the ratio between
the number of the repeated points and the smaller number of
the detected points in the pair of images. The discrimination
measures include the number of matched points andmatching
score. Two regions are matched if they are repeated and their
SIFT descriptors are the nearest-neighbor in descriptor space.
The matching score was computed as the ratio between the
number of matched points and the smaller number of detected
points in the pair of images. Larger values of repeatability and
matching score indicate good performance of corresponding
method.

In our experiments, the database provided by [39] was used
to evaluate detectors. This database contains eight datasets.
Some examples of the database are shown in Fig. 11. These
datasets contain five different image variation conditions:
JPEG compression, image blur, illumination change, scale
and rotation change, and view point change. Each dataset
consists of six images with five homographies between the
first image and the other five images. The sizes of images
range from 765× 512 pixels to 1000× 700 pixels.
For all the images, the interest points were detected by

LMLGdetector in 5 octaves. By comparing the interest points
in the first image and the other five images, the evaluation
measures between the first image and the other five images
can be calculated. From the average evaluation measures in
the eight datasets for each detector in Fig. 10, we can find that
LMLG detector obtained higher average values of repeata-
bility and matching score than the other detectors. What is
more, LMLG detector obtained larger numbers of repeated
points and matched points than the other detectors. From the
number of repeated points and matched points, we can find
that LMLG detector detected much more interest points than
the other detectors. Experimental results show that LMLG
detector is robust to image variations and can detect interest
points with high repeatability and discrimination. Besides,
the experiment database contains images with distortion and
quality variation. The result of this experiment show that
LMLG outperforms other methods, with shows its stability
and robustness.

C. RECALL RATE EXPERIMENT ON DTU DATASET
To better evaluate the performance of different detectors
under illumination changes and scene variations, we conduct
an experiment on the DTU dataset [41]. The DTU dataset
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FIGURE 10. The average values of evaluation measures in 8 experiments
of different filters. There are 6 images in each group, the horizontal
coordinator image index indicates the index of the image been tested
with the first image in one experiment. For example, the node of the
4th image index in LMLG curve in image (a) gives the average value of
repeatability of the first and 4th image. (a) Repeatability. (b) Number of
repeated points. (c) Matching score. (d) Number of matched points.

contains 60 scenes, such as model houses, fruit and vegeta-
bles, fabric. Images of each scene are acquired in 119 camera
positions. And, 19 individual LED illuminations are used for
each camera position.

The 119 positions are grouped into three horizontal arcs
and a straight path away from the scene. The three arcs
are distributed in circular paths with radii of 0.5 m (Arc 1,
positions 1-49), 0.65 m (Arc 2, positions 65-94) and 0.8 m
(Arc 3, positions 95-119). The straight path ranges from
0.5− 0.8m (positions 50-64). Ranges of the angles of the arcs
from the key frame are: ±40◦,±25◦,±20◦. Performance of
interest points detection on viewpoint and distance changes
can be evaluated on the frames taken in these positions.

We adopted the experiment setting as in [41], where images
are down-sampled to 600 × 800 in grayscale. Also, we use
the recall rate, which is suggested in [41], to evaluate the
performance of the proposed LMLG detector and eight other
detectors. The recall rate here is the ratio of potential matches
to total interest points of the key frame (frame 25). The match
we used in our experiment is the same as in [41], where
interest points of two images are matched only when they
fulfill all three criteria below:

1. Corresponding interest points should bewithin 2.5 pixels
from the epipolar line of the camera positions;

2. Corresponding interest points should be within a win-
dow of interest with a radius of 5 pixels;

3. Corresponding interest points are within a scale factor
of 2 from each other.

To evaluate the performance of interest point detection on
viewpoints and distance changes, we evaluate the recall rate
on 118 frames of the DTU dataset. Scale of each interest point
is essential in this experiment. To be fair, we only choose
multi-scale detectors.

However, due to the properties of interest point detectors,
interest points detected cannot be restrained to exact the same
number by setting parameters. Thus, to make a fair compar-
ison, we propose an experiment using the same number of
detected interest points. The experiment is named random-
200 experiment. For every detector, firstly, the interest points
of images in the DTU dataset are detected, and from which
we randomly select 200 interest points for every image. This
could ensure the number of interest points used for each
method is equal. Finally, the recall rate of each method for
images is obtained by calculating the number of matches
between keyframe and every image. Images in the DTU
dataset are acquired in various camera positions and lighting
conditions. Thus, recall rate can be used as the evaluation
metric of the performance of each detection method. The
number 200 is chosen because the minimum number of inter-
est points detected on the DTU dataset by all detectors is 254.
We carried out the experiment 5 times, and calculate the mean
value of recall rates as given in Fig. 12 and table 1. We can
see that our method gives a comparable performance on view-
point changes (Fig. 12 a,b,c) and distance changes (Fig. 12 d).

Moreover, to evaluate the performance on lighting changes,
we obtain the recall rate on 19 illumination conditions. Mean
value of the recall rate of 19 illumination conditions of DTU
dataset is given in Fig. 13. The result also gives a comparable
performance with state of the art methods.

V. APPLICATIONS
In order to verify the performance of LMLG detector
in real tasks, we carried out some applications based on
LMLG detector including face recognition, infrared-visible
image registration and image classification.

A. FACE RECOGNITION
Face recognition is a challenging and active research area.
In recent years, various methods are proposed [42], [43]. It is
known that face recognition is an important application of
interest point detectors, which can be used to evaluate the
effectiveness of interest point detectors.

We performed the nearest-neighbour matching procedures
in [30] for face recognition to compare the discriminative
power of interest point detection by eight detectors, including
LMLG, ROLG, SIFT, SURF, MSER, Hessian-affine (HS-A)
detector, Harris-affine (HR-A) detector, FAST, A-KAZE and
LIFT. Firstly, interest points were detected by all the detec-
tors and then their SIFT descriptors were computed. Sec-
ondly, the minimum Euclidean distance of SIFT descriptors
between the image pair from the gallery set and the probe set
was found. Finally, the image class of the nearest neighbor
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FIGURE 11. Dataset of the repeatability and discrimination experiments. Zoom+rotation: (a) bark, (b) boat. View point change: (c) graf,
(d) wall. Image blur: (e) bikes, (f) trees. JPEG compression: (g) ubc. Illumination change: (h) leuven.

TABLE 1. Mean value of the recall rates in random-200 experiment.

TABLE 2. The recognition rate on face databases.

in the gallery set was assigned to the image in the probe
set.

We conducted face recognition procedure in images of
three face databases, including AR [44], ORL [45], GT [46]
database. There are 100 subjects in AR [44] database which
includes 14 nonoccluded images per subject. Color images
are converted to gray images and then normalized into the
size of 60 × 80 pixels. There are 40 subjects in ORL [45]
database and the size of each image is 92 × 112 pixels. For
Georgia Tech (GT) [46] database, color images are converted
to gray images and the size of images ranges from 50 × 75
pixels to 91× 140 pixels.
Table 2 gives the recognition rates of LMLG, ROLG, SIFT,

SURF, MSER, HS-A, HR-A, FAST, A-KAZE and LIFT

based methods. As depicted in Table 2, the performances
of HS-A, HR-A and MSER detectors in AR, ORL and GT
databases are lower than the other detectors. The results
of LMLG, ROLG, FAST and LIFT are comparable in AR
database. For GT andORL database, result of LMLGdetector
is better than the other detectors. From Table 2, we can find
that LMLG detector outperforms the other detectors in all
three face databases. This indicates that LMLG detector can
detect accurate interest points.

B. INFRARED-VISIBLE IMAGE REGISTRATION
Image registration is one of the important image processing
applications [47]. As a kind of image registration, infrared-
visible image registration is a challenging task. It is difficult
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FIGURE 12. Mean values of the recall rate in random-200 experiment. The graphs show the recall rate of all camera positions.
(a) Arc 1, ±40◦. (b) Arc 2, ±25◦. (c) Arc 3, ±20◦. (d) Straight path, distance: 0.5m-0.8m.

to construct effective algorithms for this application. In this
section, we proposed a method for infrared-visible image
registration to verify the practicability of LMLG detector.
This image registrationmethod employed geometric structure
features including interest points and image edges, which
adopted a coarse-to-fine procedure. This registration method
was carried out in three main stages: feature extraction stage,
coarse registration stage based on edge alignment and fine
registration stage based on interest point matching. In the
feature extraction stage, interest points were detected by an
interest point detector. In the coarse registration stage, an ini-
tial approximate transformwas computed byCanny [48], [49]
edge alignment through searching for the transform which
can make the edges of the two images overlap. In the fine
registration stage, candidate matching region of each interest
point was reduced to the neighborhood region of the trans-
formed point and the false interest point matching pairs are
removed. Then, the more accurate transform was computed
to refine the registration.

In order to better illustrate the performance of LMLG
detector, we compared LMLGbased registrationmethodwith

the nine detectors and three other registration algorithms on a
same dataset in visual and quantitative ways. The three other
algorithms used for comparison are Hrkać’s method based on
corners and hausdorff distance [11], Han’s method based on
line-based geometric analysis [50] and Liu’s method based
on SIFT flow [51]. All of the three methods are representative
feature-basedmethods for infrared-visible image registration.

The dataset includes 20 infrared-visible image pairs, which
are from the literatures [52]–[54] and our cooperators. The
dataset includes image pairs taken in outdoor and indoor
scenes, in natural and man-made environments, under vari-
ous illumination conditions, from different directions, and at
different times of a day. The scenes of the images include
indoor furniture, urban buildings, landscape, persons and
military targets. The illumination conditions of the images
include brightness, dark, obscuration and faint lamplight. The
shooting times of the images include dawn, daytime, evening
and night. The image size ranges from 224 × 106 pixels to
700×556 pixels. All the image pairs differ greatly in intensity
and there is contrast reversal in many image regions. Some
difficult image pairs differ greatly in scale and orientation.
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FIGURE 13. Mean values of the recall rate in 19 lighting conditions in random-200 experiment.

TABLE 3. The average transform errors for 20 image pairs.

Some of them have complex and irregular backgrounds, such
as the waves. Thus, the registration task on the dataset is very
challenging.

The registered result images were employed for visual
comparison, which was constructed by overlaying the Canny
edges of the transformed visible image onto the correspond-
ing infrared image. If the transformed visible edges and
infrared edges overlap verywell in the result image, the image
pair is registered accurately. Some of the result images are
shown in Fig. 14. From Fig. 14, it can be found that Hrkać’s
method, Han’s method and Liu’s method cannot make the
visible and infrared edges overlap very well. It can also
be found that the scenes in the result images obtained by
Liu’s method were twisted in different degrees because the
computed dense correspondences between images were not
accurate enough. ROLG based method could register some of
the image pairs, but some of them were not accurate enough.
SIFT and FAST are good at matching indoor image pairs,
however they failed at some outdoor image pairs. A-KAZE
can match the outdoor images precisely, however the result
seems a little worse on the indoor images. The matching
results of SURF and LIFT are fine in both indoor and outdoor
images. However, the results were a little worse than LMLG.
MSER, HS-A and HR-A do not perform well for infrared-
visible image registration. Most of their matching results
were far from the correct matching. Moreover, MSER, HS-A
and HR-A were all failed at giving a matching result of some
image pairs.

As shown in Fig. 14, our method based on LMLG detector
can register the image pairs with high accuracy and high
success rate, while the other algorithms can only register parts
of the image pairs successfully and some registration results

of them were far from satisfactory. The matching results
indicate the interest points detected by LMLG detector is
more accurate than other detectors and algorithms.

In order to evaluate the accuracy of different registration
algorithms quantitatively, we measured the transform errors
of different algorithms. The transform error is defined by
the distance between a point in an infrared image and its
transformed point in the corresponding visible image, which
is given by

error = ‖H · PVis − PIR‖ . (9)

Here PVis and PIR are the coordinates of two matching points
in the visible and infrared images,H represents the transform
matrix.

For each image pair, we selected 20 matching pairs manu-
ally and calculated their transform errors. Then we calculated
their average and standard deviation values for comparison,
which were represented by AVE and STD respectively. The
smaller the value of AVE is, the more accurate the transform
is calculated. The smaller the value of STD is, the more
uniformly an image pair is registered. For example, AVE
value of Han’s method is 109.02. It means the corresponding
pair points are with a distance of average 109.02 pixels.
As the second column images shown in Fig. 14, Han’smethod
gives a large mistake of registration. The average AVE and
STD values of our algorithm for 20 image pairs are only
34.2 and 1.65 pixels as shown in Table 3, which are smaller
than the values of the other twelve methods. In other words,
our results are very satisfactory, which demonstrates the high
practicability of LMLG detector in infrared-visible image
registration.
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FIGURE 14. Some matching results obtained by different algorithms. The black image represents that
the method cannot work while registering an image pair.
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TABLE 4. The classification result of all methods.

TABLE 5. Running time of all methods.

C. IMAGE CLASSIFICATION BASED ON INTEREST POINT
DETECTION
Image classification is to categorize images into different
classes. It plays an essential role in many applications.
Both state-of-the-art convolution neural networks and interest
point detectors provide features for classifiers. Therefore,
image classification can also evaluate hand-crafted features.

In the experiment, we performed image category classifi-
cation using a bag of features based approach. Among the
database provided by VOC2012, two categories (bus and
horse) were chosen to classify for their preponderance of
train/validation images. We adjusted the number of images
per category in the dataset to make a balance. Then we split
the datasets into 70% training and 30% testing sets.

First, interest points of the images in the training set were
detected by eight detectors, including LMLG, ROLG, SIFT,
SURF, MSER, HS-A, HR-A, FAST, A-KAZE and LIFT.
Then, their SIFT descriptors and feature metric were com-
puted. We kept 80% of the strongest features from each
category and balanced the number of features across all image
categories. After that, K-Means clustering was applied to
create a 500 word visual vocabulary, which used the squared
Euclidean distance measure and the k-means algorithm for
the initialization of the cluster center. Finally, images were
encoded into feature vectors by visual vocabulary, which
were then fed into a support vector machine (SVM) multi-
class classifier using framework of the error correcting output
codes (ECOC).

The classification result is given in Table 4. As shown
in Table 4, LIFT gives the highest accuracy. This is mainly
due to the fact that the training set contains VOC2012. Our
method achieves the second high precision in this task. The
results of ROLG and SURF are close to LMLG. The clas-
sification rate of SIFT, MSER, HS-A, HR-A, FAST and A-
KAZE are lower than the other methods, which indicate their
detection result of images are less accurate than the other
methods.

The precision of LMLG is the second high among all
the methods, which indicates the detection performance of
LMLG is high when applied in image classification.

VI. COMPARISON OF RUNNING TIME
For the comparison of running time with other methods,
we detect interest points on the ‘‘bark’’ dataset provided

by [39]. LMLG, ROLG, MSER, SURF and FAST detec-
tors are implemented by MATLAB. SIFT, HS-A, HR-A and
A-KAZE are implemented by C++. LIFT detector is imple-
mented in Python. The experiments are conducted under
Inter(R) Core(TM) i7-5960X CPU, 3.00GHz, and 32.00 GB
RAM. The test images are with the size of 765 × 512.
As Table 5 shows, LMLG and ROLG have higher compu-
tational cost than the other methods. This is because the
computational complexity of median filters are higher than
linear filters. However, the computational cost of LMLG is
lower than ROLG, which can be attributed to the structure
of LMLG filter. LMLG filter only contains one median fil-
tering, which is simpler than ROLG. In the future, we con-
sider improving efficiency of our method by designing a
more effective median rank order filter used in our detector.
Therefore, the time complexity of LMLG can be significantly
decreased with the improvement, creating the opportunity for
real-time applications.

VII. CONCLUSIONS
In this paper, the limiting form of median Laplacian of Gaus-
sian (LMLG) filter is proposed. After that, a new interest
point detector named LMLG detector is developed. Com-
paring with other detectors in the visual comparison exper-
iments, LMLG detector can detect more interest points and
less erroneous points. In the repeatability and discrimination
experiments on Oxford dataset and recall rate experiment
on DTU dataset, LMLG gives the comparable performance
with state of the art methods. The results show LMLG
is more robust in image variations and distortion. Finally,
the applications in face recognition, infrared-visible image
registration, image classification verify the effectiveness of
LMLG detector.
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