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ABSTRACT Amap-based infectious disease outbreak information system, called PEACOCK, that provides
three types of necessary infectious disease outbreak information is presented. The system first collects the
infectious disease outbreak statistics from the government agencies and displays the number of infected
people and infection indices on the map. Then, it crawls online news articles for each infectious disease
and displays the number of mentions of each disease on the map. Users can also search for news articles
regarding the disease. Finally, it retrieves the portal search query data and plots the graphs of the trends.
It divides the risk into three levels (i.e., normal, caution, and danger) and visualizes them using different
colors on the map. Users can access infectious disease outbreak information accurately and quickly using
the system. As the system visualizes the information using both a map and various types of graphs, users
can check the information at a glance. This system is in live at http://www.epidemic.co.kr/map.

INDEX TERMS Government agencies, infectious disease, infectious disease outbreak system, online news,
search query.

I. INTRODUCTION
In 1918, the Spanish flu killed more than fifty million
people [1]. Now, even after a century has passed, human-
ity is constantly threatened by infectious diseases. From
severe acute respiratory syndrome (SARS) in 2003 to the
H1N1 virus, Middle East respiratory syndrome (MERS),
Ebola virus, and Zika virus, infectious diseases are still
spreading. SARS caused 775 deaths, mainly in Asia [2],
in 2009, and more than 18,000 deaths were recorded world-
wide due to the swine flu epidemic [3]. According to the
World Health Organization (WHO), by 2015, MERS had
caused 1,800 deaths [4]. Ebola and Zika virus infections
and fatalities have continued to increase. These infectious
diseases cause not only human injury but also large-scale
societal damage. From SARS in 2003 to the Zika virus
in 2016, the world has suffered large economic and social
damage owing to infectious diseases. Despite advances in
medical technology and efforts towards the eradication of
these diseases, there are still fewer than 30 infectious diseases
with specific therapies, such as preventive vaccines. With the
spread of mobile devices in recent years, there is a growing
need for an infectious disease outbreak information system
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that monitors emerging diseases and provides information on
the outbreak of infectious diseases.

Because of the importance of an infectious dis-
ease outbreak information system, many researchers and
organizations have studied and developed such systems
extensively [5]–[7]. Some systems provide infectious disease
outbreak information based on statistical data collected by the
Centers for Disease Control and Prevention (CDCs). Since
the end of World War II, many countries have established
their own CDCs for prevention and control of illnesses [8].
The information provided by those systems is true and
accurate. However, CDCs rely on a centralized management
system; hence, some lead time is necessary to collect and
produce disease outbreak statistics. Consequently, a quick
access to disease outbreak information becomes a challenge.

To generate and expedite disease outbreak information,
several existing infectious disease outbreak information sys-
tems leverage web big data, such as online news media,
portal search queries, and social network data [13]–[31],
because an infectious disease that has repeatedly appeared in
the news or been frequently searched for by users is likely
to occur. These data are streamlined faster and information
can be provided in real time. However, some systems pro-
posed in previous studies [13]–[16], [18], [23], [27]–[31]
only provide outbreak information for single or few infec-
tious diseases, and users cannot check information for a
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TABLE 1. List of existing systems.

wide range of infectious diseases. Other proposed sys-
tems [13], [16], [17], [19], [20], [28]–[30] only provide
infectious disease outbreak information from a few kinds
of data sources, so it is difficult to fetch the information
quickly and accurately. Some systems [16], [30], [31] provide
only text-centric information, which makes it difficult for
users to understand the information at a glance. A few other
systems [13]–[16], [18], [23], [27]–[31] are not in operation
and cannot be accessed any more. The objective of this study
is to implement an infectious disease outbreak information
system that (1) generates and provides outbreak information
for as many infectious diseases as possible; (2) exploits var-
ious data sources, such as CDC (i.e., KCDC), online news
(i.e., Naver news), and web search queries (i.e., Naver search
query); (3) uses various visualization tools, such as maps and
figures rather than text only, and (4) remains in operation

as long as possible. The contribution of this paper is as
follows.

A. CONTRIBUTIONS OF THIS PAPER
We propose, develop, and operate an infectious disease out-
break information system, called PEACOCK, that is accu-
rate, fast (real-time information from web big data, such as
online news and portal search queries), user-friendly (map-
based), and visual (combination and comparison of various
types of infectious disease outbreak information). Our system
provides the following three types of useful infectious disease
outbreak information.
• PEACOCK provides the number of infected people per
district on a map based on Korea Centers for Disease
Control and Prevention (KCDC) data. It presents four
types of infection indices and the fractions of infected
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people relative to population, district, and time. It also
compares the number of infected people in the current
month with that in the previous month and visualizes the
status of the district in terms of the increase in infectious
disease using a colored classification. In addition, it pro-
vides the number of infected people by district in a bar
graph form.

• PEACOCK provides infectious disease information
based on online news. Online news has been collected
since August 2017. It provides the top-five most fre-
quently mentioned infectious diseases in the collected
news. It also provides news articles and detailed infor-
mation related to the infectious disease searched for by
users. In addition, it displays the number of news articles
related to the diseases per district on the map. A higher
number of news articles indicates a larger outbreak of
infectious disease.

• PEACOCK generates and provides the infection risk
level of the searched infectious disease per district on
a map by combining two types of infectious disease
information: the number of online news articles and
the number of portal search queries. In addition, it pro-
vides graphs that compare infectious disease outbreak
statistics and web data statistics in terms of number,
fraction, and difference. It also provides a graph that
shows the similarity of disease outbreak statistics to web
data statistics. Finally, it presents a graph that shows the
match between the systems infection risk values with
actual disease outbreak statistics. Consequently, users
can visually identify area susceptible to the disease of
interest up to one month in advance. They also figure out
the accuracy of our system.

To the authors’ knowledge, only a few related systems are
in operation [17], [19], [21], [24]. PEACOCK is fully devel-
oped and has been in operation since May 2019. It is avail-
able online at http://www.epidemic.co.kr/map. Moreover, all
figures presented in this work are generated automatically
through the system.

II. RELATED WORKS
Existing infectious disease outbreak systems provide infor-
mation based on various data sources [9]–[12]. Some sys-
tems utilize data from government agencies. The Epidemic
Simulation System [13] presents infectious disease outbreak
information in terms of population and location. It takes
population data from the US Census and provides infec-
tious disease outbreak and spread information according to
population distribution. Google Dengue Trend [14] shows
dengue fever outbreak information for Mexico. It collects
data for dengue analysis from the Mexican Health Office.
The system collects the Mexican population data through the
National Statistics Office and weather data, such as tempera-
ture, from the Mexican Secretariat of the Environment and
Natural Resources, and it shows the information in graph
and map forms. Another system [15] provides influenza out-
break information for China. The system collects official

data reported by China’s Ministry of Health and provides
influenza outbreak information by comparing the collected
data with data predicted by the system. Another system [16]
provides malaria outbreak information for Thailand based on
the data from the official website of the WHO from 2005 to
2009. The system shows similarities between the outbreak
data and its own predicted data.

Other systems utilize online news articles. The Global Pub-
lic Health Intelligence Network [17] collects news articles
from the web, analyzes them, and displays them on its web-
site. In addition, it reconstructs collected news data, filters
them, and delivers the necessary information to users through
e-mail. EpiSPIDER [18] extracts infectious disease outbreak
information, such as keywords and dates, related to diseases
among data collected from online news articles. It displays
the data on the map using colors based on the elapsed date.
It also shows the trend of each disease for three years in a
bar graph form. The Medical Information System [19], [20]
retrieves online news articles about the disease and displays
them according to the user’s search. Based on the number
of articles, the system shows the most-common illnesses for
each district in a chart form. The user can receive the search
result via SMS or e-mail. HealthMap [21], [22] is one of the
systems that provide disease outbreak information on a map.
The system collects the disease outbreak information in real
time from online news articles and processes them as nec-
essary information; it then uses that information to visualize
the risk level on the map. Another system [23] provides news
media information using HealthMap. It provides the dengue
fever outbreak information of Sri Lanka from 2007 to 2015.
The system collects online news articles using keywords of
both Sri Lanka and dengue-fever-related disease from the
HealthMap database, and the number of times that a certain
keyword is mentioned in news articles is shown on hourly
and monthly graphs. The Program for Monitoring Emerging
Diseases Mail [24]–[26] analyzes and extracts online news
articles and provides disease outbreak information via the
web or e-mail by dividing the risk levels into colors based
on the analysis results.

Some systems collect portal search query data and extract
infectious disease outbreak information. GET WELL [27]
analyzes query logs of web-based search engines in real-
time and provides disease outbreak information to users.
It collects search query data from some of Sweden’s
leading disease-related websites and Google. Google Flu
Trends [28], [29] analyzes Google search query data and
predicts flu outbreaks. It also compares those prediction
results with actual CDC data. Google Dengue Trends uses
Google search query data to provide dengue outbreak infor-
mation in a similar way to Google Flu Trends. It pro-
vides disease outbreak information based on anonymous
Google search query logs of Mexico in real time, and it
shows the risk level in colors on the map. It also com-
pares the prediction results with actual CDC data. A sys-
tem [16] that shows the risk-level information for malaria
in Thailand uses Google search query data and Google
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TABLE 2. Notation meaning and formula.

Correlate, an open-source search tool. It collects search
query data using malaria-related keywords and extracts
time-series data obtained using these search keywords.
It generates and provides malaria outbreak information to
Thai medical practitioners. A system that provides influenza
outbreak information for China [30] collects search query
data from Baidu, a representative Chinese search engine.
In particular, the system uses Baidu’s keyword tool to extract
relevant keywords for flu, and users can visualize the results
in graph and table forms. The system reported in another
study [31] uses search query data from UpToDate, a special-
ized database in which practitioners upload medical activ-
ity. It uses UpToDate to collect search keywords related to
influenza-like illness, displays the search ratio of each key-
word in bar graph form, and analyzes the ratio to predict
influenza outbreaks.

TABLE 1 presents an in-depth comparison of the related
works. Many researchers have developed effective infectious
disease outbreak information systems, but many of these
systems provide outbreak information for only one or a few
infectious diseases, exploit only a few kinds of data sources,

provide only text-centric information, have not yet been
implemented, or are not in operation. However, our system
provides outbreak information for as many diseases as possi-
ble, exploits various data sources such as CDC, online news,
and web search queries, uses various visualization tools such
as maps and figures rather than text, and is fully developed
and in operation.

III. SYSTEM ARCHITECTURE
Fig. 1 presents the overall architecture and flow of the pro-
posed system. It was implemented in the Eclipse Jee Oxygen
integrated development environment [32] using Java [33]
and a web-based client-side interface using HTML5 [34]
and CSS [35]. Web pages were dynamically implemented in
JavaScript [36] and jQuery [37]. Asynchronous JavaScript
and XML (AJAX) [38] data transmission using jQuery was
employed. The server-side of the system consists of a web
server and an application server. Jetty was used as the
web server and the Spring framework [39] as the application
server. Finally, PostgreSQL [40] was used as the database
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FIGURE 1. System architecture.

management system. The data collection, client side, server
side, and database are described below.

A. DATA COLLECTION
The system provides information based on the number
of infected people. To provide that information to the
user, statistical infectious disease outbreak data provided by
KCDC [41] per district are collected in comma-separated
values (CSV) [42] file format. The system also provides
infectious disease news information and statistics on a map.
News articles are crawled using the Naver News API [43] and
stored in the form of a text file. Portal search query data are
collected using the Naver search trend platform [44].

B. CLIENT SIDE
The client side is the user interface. The system provides a
form for users to carry out a search by selecting the year,
month, district, infectious disease name, and infectious dis-
ease outbreak information type. After a user selects items
on this search form and submits a request, the request is
sent to the web server. First, when the user searches for
the number of infected people, the client side calculates the
infection indices using input data, the number of infected
people, the population of the district, and the number of
infected people during the past month. TABLE 2 shows the
notation meanings and formulas of infection indices. Once
the infection indices are calculated, the client side displays the
information on the map. The Naver Map API is used for map
implementation. If the user searches the district through the
interface, the client-side receives the latitude and longitude
data of the district stored in the database from the server,
which is displayed in the map. The map is visualized in blue
to specify a decreasing monthly infection index, green for
no change, and red for an increase. The infectious disease
outbreak rankings with the number of infected people are

shown by district using a bar chart. The chart is obtained using
Chart.js [45], an open-source library that provides various
functions for drawing charts. Second, if the user searches
for news information, the client side displays the number of
news articles by district on the map. It also displays news
articles in a table format. In addition, the client-side also
shows the five most mentioned infectious diseases in a block
form. The client side finally shows the risk level on the
map based on the number of infected people, the number
of news articles, and the number of search queries. It shows
the risk level on the map by combining the aforementioned
infection indices, infected-people percentage, news article
percentage, and search query percentage. It displays the num-
ber of infected people, the number of news articles, and
the number of search queries by month through a line chart
using Chart.js. It also shows the relative percentages of these
parameters so that the user can more easily understand their
similarities. The client then calculates the risk level using
the relative percentages as follows. TABLE 2 provides the
notation meanings and formulas for risk-level calculations.
The client side divides the risk into three levels based on the
value. If the risk is more than 70% (Risk > 70%), red color
is used. If it exceeds 50% (Risk > 50%), yellow is used.
Red represents danger, yellow represents attention, and blue
means normal.

C. SERVER SIDE
The server side extracts the data necessary to calculate the
infection index from the CSV statistics file collected from
KCDC. The server uses the Java API, POI-HSSF [46],
to retrieve the month, infectious disease, district, and number
of infected people from the CSVfile. It also stores the number
of infected people data in connection with infectious diseases
and district codes stored in the database. The server uses
the Naver News API to fetch and produce news information.
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FIGURE 2. Entity relationship diagram.

It retrieves news data every 30 min by specifying the news
keyword as an infectious disease name, saves the articles
as a text file with date, and extracts and stores the text in
the database. According to the user input, a query fetches
the number of news articles mentioned and the news data
from the database. It then returns the results received from
the database to the client through JSON [47]. When the
user retrieves the risk-level information, the server retrieves
these three types of information and delivers them to the
client. The number of infected persons and the number of
news referrals are taken from each table in the database, and
search trend data are obtained by entering keywords into the
Naver search trend platform. Certain infectious diseases have
several names or aliases, and the system includes such names
as keywords too.

D. DATABASE
The system stores the collected data in each table of the
database. TABLE 3 shows a detailed description of each
table and view [48] of our database. Seven tables and three
views were created. Views were created to include only the
desired data to implement fast retrieval. Fig. 2 is the entity
relationship diagram (ERD) [49] that shows the relationship
to each table in the database.

IV. RESULTS
The system provides the user with three types of infectious
disease outbreak information, namely the number of infected
people, news information, and risk-level information. The
system provides five search options: year, month, district,
infectious disease, and type of information. The system pro-
vides information in two languages: Korean and English.

TABLE 3. Detailed description of the tables.

A. INFORMATION BASED ON THE NUMBER
OF INFECTED PEOPLE
Fig. 3 shows the user interface for information on the number
of infected people. Fig. 3A shows the language settings, and
Fig. 3B shows the search form. Fig. 3C is the map display-
ing infectious disease outbreak statistics. Through this map,
the user can quickly viewwhether the number of infected peo-
ple has increased or decreased compared with the previous
month. The user can see the number of infected people in
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FIGURE 3. User interface of information based on the number of infected people.

each district. When the user hovers the cursor over any
district, the system shows four infection indices: the upper
infection index, monthly infection index, district infection
index, and nationwide infection index. Fig. 3D is a chart
showing the ranking of the districts in the order of number
of infected people. Fig. 3E presents the description of each
infection index.

B. INFORMATION BASED ON ONLINE NEWS
Fig. 4 shows the user interface of the news-based information.
Fig. 4A shows the top-five infectious diseases mentioned in
the news during a particular month. The user can see detailed
information, such as definitions, symptoms, and prevention
methods, of the infectious diseases. Fig. 4B shows the map
with the number of news articles on the searched infectious
disease. This information enables the user to predict the
likelihood of an outbreak of an infectious disease. Fig. 4C
shows highlights of the news about the searched infectious
diseases. The user can see the news in the order of the most
recent date during a particular month. In addition, the user can
also check news on the infectious disease news per district,
as seen in Fig. 4D. The user can quickly view each news item

briefly, and, when it is clicked, the user can see the entire
article.

C. RISK LEVEL INFORMATION
Fig. 5 shows the user interface of the risk-level informa-
tion. In Fig. 5A, when users input year, month, district, and
infectious disease in the search form, the system divides
the risk into three levels, namely normal, attention and risk,
and it displays them as blue, orange, and red, respectively.
Fig. 5B compares the actual numbers of infected people,
news articles, and search queries as a function of month.
The actual number is important, but it is not appropriate
to compare the similarities of different data types because
the difference in the size of the number may be too large.
Fig. 5C shows the comparison of the relative percentages
of the three aforementioned data. The relative percentage
is defined as the numbers of the selected month over the
maximum number of the year, which helps to understand
the similarities of different data types. Fig. 5D illustrates
the difference between news article percentage and infected-
people percentage, and the difference between search query
percentage and infected-people percentage. In Fig. 5B to D,

82962 VOLUME 7, 2019



B. Jang et al.: PEACOCK: A Map-Based Multitype Infectious Disease Outbreak Information System

FIGURE 4. User interface of information based on online news.

the graph can be removed or redrawn by clicking on each
legend. Fig. 5E evaluates the accuracy of the risk value by
comparing the risk value with the infected people percentage.
Fig. 5F presents the Pearson correlation coefficient between
the infected people percentage and the web data percentage
calculated by equations (2) and (3).

Fig. 5G provides a detailed description of the risk level.

V. ANALYSIS
In this section, we analyze our proposed system and evaluate
the similarities between the actual infected people data and
theweb data (i.e., news article, search query) and the accuracy
of the risk-level equation proposed in the system.

Figs. 6A and B show the infection index information on
the map. Fig. 6A shows the nationwide infection index of
hepatitis C in August 2018. In the case of Seoul, the upper
infection index and the nationwide infection index are the
same, because the upper district of Seoul is representative
of the entire nation. Therefore, the system provides three
infection indices, monthly, district and nationwide, when
the keyword of the nationwide is selected. The nationwide
infection index is 12.99317, which is higher than the national
average. The monthly infection index is −132.52, and the
district infection index is 0.00125. Fig. 6A shows the hepatitis
C infection index in Seoul in August 2018. Most of Seoul’s
subdistricts also have reduced number of infected people.
In addition, the infection index is low in Seoul. However,
the upper infection index is 8.13008 in Yongsan district.
Users can pinpoint not only the number of infected people by
district, but also their relative meaning in terms of the district,
time, and population.

Figs. 7 and 8 compare the infected people percentage
with the news article percentage. The x-axis represents the
month, and the y-axis represents the percentage in the line
graph. The black bold square line indicates the infection

percentage, while the blue triangular dotted line indicates
the news article percentage. The blue bar is the difference
between the news article percentage and the infected people
percentage in the bar graph. Fig. 7 compares the infected
people percentage with the news article percentage of Scrub
typhus from January to June 2018, where the trend of the
news article percentage is different from that of the infected
people percentage. This is because the news contains inten-
tional information, such as advertisements [50]–[52]. The bar
figure has many large bars, which indicates a large difference.
Fig. 8 compares the infection percentage with the news article
percentage of hepatitis C from January to June 2018. Unlike
the trend of Scrub typhus in Fig. 7, except for January, hepati-
tis C shows a similar trend. The bar figure has few large bars,
which indicates similarity. Thus, the news query percentage
is sometimes similar to the infection percentage, so it can be
used to estimate the infected people percentage.

Fig. 9 compares the infected people percentage with the
search query percentage of Scrub typhus from January to
July 2018. Because the KCDC data are uploaded once a
month, if the user searches for July, the infected people per-
centage is displayed until June. However, because the search
query percentage is provided in real time, it includes data
for July. Fig. 9 shows that the infected people percentages
are very similar to the search query percentages. Users can
predict that the infected people percentage decreases based
on the search query percentage in July. As a result, the search
query percentage can be used to predict the infected people
percentage.

To show the similarity in the percentages clearly, we pro-
vide a correlation graph between the infected people percent-
age and the web data percentage for each infectious disease.
We use the Pearson correlation model to derive the correla-
tion. The Pearson correlation analysis model is a method of
expressing the similarity between two changing data sets, a
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FIGURE 5. User interface of risk level information.

and b, as numerical values p, as follows:

p(a, b) =

∑n
i=1 (ai − a)(bi − b)
(n− 1) SaSb

(1)

where n is the length of a and b, a and b are sample averages
for each data set a and b, and Sa and Sb are the standard
deviations for the two data sets. The resulting p values range
between -1 and 1, and the closer the value is to 1, the higher
the positive correlation.

Fig. 10 shows p(r (a) ,PIP), the Pearson correlation coeffi-
cient values between the infected people percentage and web
data percentage for the Scarlet fever according to α values.
We calculate the web data percentage, r(a), by combining the
news articles percentage, PNC , and the search query percent-
age, PSQ, as follows:

r(a) = PNCa+ PSQ(1− a) (2)

As the value of α increases, the proportion of the news
percentage increases and the proportion of the search
query percentage decreases. By contrast, as the value of α
decreases, the proportion of the news percentage decreases,
and the proportion of the search query percentage increases.
Fig. 10 shows that the scarlet fever outbreak is inversely
proportional to the news percentage, while conversely, we can
confirm that scarlet fever outbreak correlates well with the
search query percentage.

Fig. 11 presents the infected people percentage with the
news article percentage and the search query percentage
for scarlet fever. The x-axis represents the month, and the
y-axis the percentage. The black bold square line indicates
the infected people percentage, the blue triangular dotted line
indicates the news article percentage, and the green circular
dotted line indicates the search query percentage. As can be
seen in Fig. 10 and Fig. 11, the incidence of scarlet fever
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FIGURE 6. Information based on the number of infected people.

FIGURE 7. Similarity of infected people percentage and news article percentage of Scrub typhus as a function of month.

differs significantly from the news article percentage and
shows a similar trend to the search query percentage. Hence,
we can identify the outbreak of each disease through web
data by checking the similarity between the infected people
percentage of each infectious disease and the web data (i.e.,
news and search query) percentages through given correla-
tion analysis graph before the comparatively time-consuming
KCDC data are collected.

Finally, to predict the outbreak of each infectious disease,
we calculate the risk values and visualize them on the map
by optimally combining the web data percentages, such as
the news article percentage and the search query percentage.
First, we derive the risk by calculating p(r (a) ,PIP), i.e.,
the Pearson correlation coefficient value between the web

data percentage and the infected people percentage, where
a reduces by 0.1 from 1 to 0. p(r (a) ,PIP) is calculated as
follows:

p (r(a),PIP) =

∑n
i=1

(
r(a)i − r(a)

) (
PIPi − PIP

)
(n− 1)Sr(a)SPIP

(3)

Equation (3) helps to obtain the correlation coefficient
between the actual number of outbreaks and the web data
frequency according to the change in a. We find aopt that
maximizes p(r (a) ,PIP) as follows.

aopt = Max(p(r (a) ,PIP)) (4)

where Max () is the function that calculates and returns αopt
that maximizes p(r (a) ,PIP). We finally derive the risk value
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FIGURE 8. Similarity of infected people percentage and news article percentage of hepatitis C as a function of month.

FIGURE 9. Similarity of infected people percentage and search query percentage of scrub typhus by month: (a) April, (b) May,
(c) June and (d) July.

using αopt as follows.

Risk = PNCaopt + PSQ(1− aopt ) (5)

Our system shows the similarity of our proposed risk value
to the number of infected people provided by the KCDC.
Fig. 12 shows the actual outbreak frequency and risk value of
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TABLE 4. Pearson correlation coefficient between actual outbreaks and risk for common 20 infectious disease.

FIGURE 10. Pearson correlation coefficient between the infected people
percentage and the web data percentage calculated by the equation (2)
and (3) of scarlet fever according to α.

FIGURE 11. Similarity of infected people percentage, news article
percentage and search query percentage of scarlet fever as a function of
month (2018).

hepatitis A in 2018. The black bold square line is the actual
number of occurrence, and the blue dotted line is the risk
level. We can confirm that the risk value is fairly similar to

FIGURE 12. Similarity of actual outbreaks and risk of hepatitis A as a
function of month (2018).

FIGURE 13. Pearson correlation coefficient between infected people
percentage and risk of hepatitis A by cumulative period.

the actual number of outbreaks of the infectious disease from
KCDC.

For accurate similarity analysis, we used the Pearson cor-
relation coefficient and divide this trend by monthly cumu-
lative period (1 month, 2 months, etc., up to 12 months).
Fig. 13 shows a low degree of similarity initially, but as the
period increases, the similarity improves.

Table 4 shows the value of the Pearson correlation coeffi-
cient between actual outbreaks and risk values for top twenty
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common infectious diseases in South Korea during 2018.
Most of them show high correlation coefficient, which shows
that our proposed risk equation is fairly accurate.

VI. CONCLUSION
Humans continue to suffer from the ongoing outbreak of
infectious diseases. The recent spread of mobile devices
has increased the importance of infectious-disease outbreak
information systems that aggregate data related to these dis-
eases and provide outbreak information to users accurately
and quickly. In this work, a map-based multitype infec-
tious disease outbreak information system was presented
that provides information based on the number of infected
people, information based on online news, and risk-level
information by combining the number of infected people,
news items, and search queries. The system depicts the
information using maps and various figures, and users can
pinpoint the information easily. The system presents vari-
ous and necessary types of disease information separately,
in combination and in comparison. The system will help
people monitor and prevent infectious diseases by providing
them with necessary infectious disease outbreak informa-
tion accurately, quickly, and visually through a user-friendly
interface. The system is currently available on the web at
http://www.epidemic.co.kr/map.

VII. FUTURE RESEARCH AGENDA
We have three future ongoing research works. First, we ana-
lyze the similarity among actual infectious disease outbreak
statistics and various relevant web data statistics.Most related
works have analyzed web data for single or few diseases.
We analyze web data for as many diseases as possible and try
to reveal their patterns of similarities. Second, we find effi-
cient keywords for web data collection using artificial intel-
ligence technologies. Our system collects news and search
queries by simply using names for specific diseases. We can
find words related to specific diseases using Word2Vec tech-
niques [53], [54]; as a result, we can use them as keywords for
the data collection to gather more relevant web data. Third,
our final goal is to provide accurate prediction information for
infectious disease outbreaks. We develop general prediction
models that can be applied to as many diseases as possible
rather than specific diseases. Because the characteristics of
the diseases are different from each other, it is difficult to
create a general model. We classify the infectious diseases
and develop models for each disease group. We then apply
the models to our system and provide the user with accu-
rate prediction information of infectious disease outbreaks.
We believe that our system will provide not only actual
infectious disease outbreak information and various related
web data statistics but also predictions of infectious disease
outbreak in the near future.
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