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ABSTRACT In discussions hosted on discussion forums for massive online open courses (MOOCs),
references to online learning resources are often of central importance. They contextualize the discussion,
anchoring the discussion participants’ presentation of the issues and their understanding. However, they are
usually mentioned in free text, without appropriate hyperlinking to their associated resource. Automated
learning resource mention hyperlinking and categorization will facilitate discussion and searching within the
MOOC forums and also benefit the contextualization of such resources across disparate views. We propose
the novel problem of learning resource mention identification in MOOC forums, i.e., to identify resource
mentions in discussions and classify them into pre-defined resource types. As this is a novel task with no
publicly available data, we first contribute a large-scale labeled dataset–dubbed the forum resource mention
(FoRM) dataset–to facilitate our current research and future research on this task. The FoRM contains
over 10 000 real-world forum threads in collaboration with Coursera, with more than 23 000 manually
labeled resource mentions. We then formulate this task as a sequence tagging problem and investigate
solution architectures to address the problem. Importantly, we identify two major challenges that hinder
the applications of sequence tagging models to the task: 1) the diversity of resource mention expression
and (2) long-range contextual dependencies. We address these challenges by incorporating character-level
and thread context information into an LSTM–CRF model. First, we incorporate a character encoder to
address the out-of-vocabulary problem caused by the diversity of mention expressions. Second, to address
the context dependency challenge, we encode thread contexts using an RNN-based context encoder and
apply the attention mechanism to selectively leverage useful context information during sequence tagging.
The experiments on FoRM show that the proposed method improves the baseline deep sequence tagging
models notably, significantly bettering performance on instances that exemplify two challenges.

INDEX TERMS Artificial intelligence, deep learning, hyperlinking, learning resources, MOOC discussion
forums, name entity recognition.

I. INTRODUCTION
With the efforts towards building an interactive online
learning environment, discussion forum has become an
indispensable part in the current generation of MOOCs.
In discussion forums, students or instructors could post prob-
lems or instructions directly by starting a thread or posting
in an existing thread. During discussions, it is natural for
students or instructors to refer to a learning resource, such
as a certain quiz, this week’s lecture video, or a particular
page of slides. These references to resources are called

The associate editor coordinating the review of this manuscript and
approving it for publication was Mervat Adib Bamiah.

resourcementions, which compose themost informative parts
among a long thread of posts and replies. The right side of
Figure 1 shows a real-world forum thread from Coursera,1

in which resourcementions are highlighted in bold, with same
color reference to the same resource on the left. From this
example, we find that if we identify and highlight resource
mentions in forum threads, it will greatly facilitate learners to
efficiently seek for useful information in discussion forums,
and also establish a strong linkage between a course and its
forum.

1Coursera (https://www.coursera.org/) is one of the largest MOOC
platforms in the world.
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FIGURE 1. An example of resource mention identification. The left shows the learning resources of a course, the right is a forum
thread. P1–P6 are six posts in the thread. Resource mentions are marked in bold, with same color refer to the same learning
resource. The underlined text are not valid mentions.

We propose and study the problem of resource mention
identification in MOOC forums. Specifically, given a thread
from MOOC discussion forum, our goal is to automatically
identify all resource mentions present in this thread, and
categorize each of them to its corresponding resource type.
For resource types, we adopt the categorization proposed
in [1], where learning resources are categorized into videos,
slides, assessments, exams, transcripts, readings, and addi-
tional resources.

Our task can be formulated as a sequence tagging problem.
Given a forum thread as a word sequence T = {w1, . . . ,wn},
we apply a sequence tagging model to assign a tag ti to
each word wi, where ti represents either the Beginning,
Inside or Outside (BIO) of a certain type of resource mention
(e.g., the tag ‘‘Videos_B’’ for wi indicates that wi is the first
word of a resource mention with type ‘‘Videos’’). To train a
sequence tagger, we need a large amount of labeled resource
mentions in MOOC forums. However, to the best of our
knowledge, no public labeled dataset is available since we
are the first to investigate this task. To closely investigate this
problem and also facilitate the following research on this task,
we manually construct a large-scale dataset, namely Forum
Resource Mention (FoRM) dataset, in which each example is
a forum post with labeled resource mentions. We first crawl
real-world forum posts from Coursera, and then perform
human annotations to identify resource mentions and their
resource types. During the annotation, we find that resource
mentions are hard to be identified even for human anno-
tators. Compared with some well-studied sequence tagging
problems such as POS tagging [2], [3], and Named Entity
Recognition (NER) [4]–[6], resource mention identification
in MOOC forums poses several unique challenges.

The most challenging issue is the context dependency.
Compared with other sequence tagging tasks such as POS
tagging and NER, in which lexical patterns or local contexts

serves as strong clues for identification, resource mention
identification usually requires more, an understanding of the
whole context in the thread. For example, in Figure 1, both
the post P2 and P4 contain the mention ‘‘this video’’. The
mention in P2 is a valid resource mention, as it refers to
a specific resource (Video 2.2) within the course. However,
in P4, ‘‘this video’’ actually refers to an external resource,
thus is not a valid resource mention. As another example,
the mention ‘‘the other questions’’ in P1 is also an invalid
resource mention, because it makes a general reference to
the quiz questions. These examples reflect some of the typ-
ical scenarios in MOOC forums, in which the identifica-
tion deals with long-range context dependencies, and require
an in-depth understanding of the thread context. Another
challenge comes from the variety of expressions. Since the
discussion forum is a colloquial communication environment,
it is often filled with typos, abbreviations, compound words,
new words, and other words that are not included in the
dictionary, i.e., Out-of-Vocabulary (OOV) words. As shown
in the post P6 of Figure 1, the word ‘‘Q1’’ is a valid resource
mention but also an OOV word. Identifying ‘‘Q1’’ requires
not only the context, but also an understanding of character-
level semantics (e.g., ‘‘Q’’ stands for ‘‘Question’’), which
further increases the difficulty of this task.

We propose to add a character encoder and a con-
text encoder to LSTM–CRF [7], a state-of-the-art model
for sequence tagging, to address the above challenges.
First, to better capture the semantics of OOV words
caused by the variety of expressions, we incorporate
Character Encoder to the original LSTM–CRF model,
which encodes character-level information via LSTMs. This
helps us better capture the correlation between abbrevi-
ations (e.g., ‘‘Q1’’ and ‘‘Q2’’) and the prefix or postfix
information (e.g., ‘‘dishdetail.html’’). As for the con-
text dependency problem, we need an effective way to
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leverage thread contexts, since LSTM–CRF usually has a
hard time dealing with long-range context dependencies.
To resolve this problem, we propose to add an attentive-
based Context Encoder,which encodes each context sentence
with LSTMs, and selectively attends to useful contexts using
the attention mechanism [8] during the decoding process of
sequence tagging.

Based on the constructed FoRM dataset, we subsequently
evaluate the performance of different sequence tagging mod-
els, and conduct further analysis on how the proposed method
solves the major challenges in resource mention identifi-
cation. We evaluate the models on two versions of FoRM
datasets: a medium-scale version (FoRM-M), which con-
tains around 9,000 annotated resource mentions, and has
high agreement between human annotators; a large-scale
version (FoRM-L), which contains more than 25,000 anno-
tated resource mentions, but with relatively lower annotation
agreement. The resource mentions in FoRM-M are easier to
identify from surface forms (e.g., ‘‘Week 2 Quiz 1’’); while
mentions in FoRM-L are more ambiguous and dependent on
the context. The experimental results show that our incre-
mental LSTM–CRFmodel outperforms the baselines on both
FoRM-M and FoRM-L, with noticeable effects on alleviating
the above two challenges via incorporating character encoder
and context encoder.

The main contributions of this paper can be summarized
as follows:
• The first attempt, to the best of our knowledge, to sys-
tematically investigate the problem of resource mention
extraction in MOOC forums.

• We propose an incremental model of LSTM–CRF that
incorporates character encoder and context encoder,
to solve the expression variety and context dependency
problems. The model achieves an average improvement
F1 score of 3.16% (c.f. Section V-C) over LSTM–CRF.

• We construct a novel large-scale dataset, FoRM, from
forums in Coursera, to evaluate our proposed method.

The rest of the paper is organized as follows: In Section II,
we will first discuss some related works. In Section III,
we will introduce our dataset, FoRM. In Section IV, we for-
malize the problem, and illustrate our proposed model.
We will provide the experimental results and analysis of
the proposed method in Section V. Finally, Section VI will
summarize the paper and discuss future research directions.

II. RELATED WORKS
The task of resource mention identification can be regarded
as a twin problem of named entity recognition and anaphora
resolution, and we will elaborate both in the following.

A. NAMED ENTITY RECOGNITION
Despite some works have investigated extracting key con-
cepts in MOOCs [9]–[11], our work is different because
the objective of our task is to jointly identify the position
and type of resource mentions from plain texts. Therefore,
it is more similar to Named Entity Recognition (NER), which

seeks to locate named entities in texts and classify them into
pre-defined categories. Neural sequence tagging models have
become the dominate methodology for NER since the emerge
and flourish of deep learning. Hammerton [12] attempted a
single-direction LSTMnetwork to perform sequence tagging,
and Collobert et al. [13] employed a deep feed-forward neural
network for NER, and achieved near state-of-the-art results.
However, these NER models only utilize the input sequence
when predicting the tag for a certain time-step, but ignoring
the interaction between adjacent predictions. To address this
problem, Huang et al. [7] proposed to add a CRF layer on top
of a vanilla LSTM sequence tagger. This LSTM–CRF model
has achieved the state-of-the-art results for NER when using
the bidirectional LSTM (BLSTM).

One problem of LSTM–CRF is that it only captures the
word-level semantics. This causes a problemwhen intra-word
morphological and character-level information are also very
important for recognizing named entities. Recently, dos San-
tos et al. [14] augmented the work of Collobert et al. [13] with
character-level CNNs. Chiu and Nichols [6] incorporated
the character-level CNN to BLSTM and achieved a better
performance in NER. In our task, resource mention identifi-
cation, the widely existing OOVwords, such as ‘‘Q1’’, ‘‘Q2’’,
‘‘hw2’’ in Figure 1, greatly increase the difficulty of cap-
turing word-semantics. Therefore, we also incorporate the
character-level semantics by proposing a character encoder
via LSTM.

However, incorporating character embeddings is insuf-
ficient for resource mention identification, as this task is
different from NER with respect to the reliance on long-
range contexts. Compared to NER, which typically requires
limited context information, resource mention identification
is a more context-dependent task. A common scenario is to
judge whether a pronoun phrase, such as ‘‘this video’’, refers
to a resource mention or not. For example, to understand that
‘‘this video’’ in P4 of Figure 1 actually does not refer to any
resource within the course requires the contexts from at least
P2, P3 and P4. In this case, this problem is more related to
Anaphora Resolution, which is another challenging problem
in natural language processing (NLP).

B. ANAPHORA RESOLUTION
In computational linguistics, anaphora is typically defined
as references to items mentioned earlier in the dis-
course or ‘‘pointing back’’ reference as described by [15].
Anaphora Resolution (AR) is then defined as resolving
anaphora to its corresponding entities in a discourse. Resolv-
ing repeated references to an entity is similar to differentiating
whether a mention is a valid resource mention within the
course.

Most of the early AR algorithms were dependent on a set
of hand-crafted rules. These early methods were a combina-
tion of salience, syntactic, semantic and discourse constraints
to do the antecedent selection. In 1978, Hobbs et al. [16]
firstly combined the rule-based, left to right breadth-first
traversal of the syntactic parse tree of a sentence with
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selectional constraints to search for a single antecedent.
Lappin and Leass [17] discussed a discourse model to solve
the pronominal AR. Then the centering theory [18], [19]
was proposed as a novel algorithm used to explain phe-
nomenon like anaphora using discourse structure. During
the late nineties, the research in AR started to shift towards
statistical and machine learning algorithms [20]–[23], which
combines the rules or constraints of early works as fea-
tures. Recently, the relevant research shifted to deep learn-
ing models for Coreference Resolution (CR), which includes
AR as a sub-task. Wiseman et al. [24] designed men-
tion ranking model by learning different feature representa-
tions for anaphoricity detection and antecedent ranking by
pre-training on these two individual subtasks [25]. Later,
they proved that coreference task can benefit from model-
ing global features about entity clusters [26]. Meanwhile,
Clark and Manning [27] proposed another cluster ranking
model to derive global information. Up to now, the state-of-
the-art model was proposed by [28], an end-to-end CR system
that jointly modeled mention detection and CR.

Most of the AR works take as input the candidate key
phrases extracted from the discourse, and then resolve these
phrases to entities by casting the problem as either a clas-
sification or ranking task. However, our task is defined as
a sequence tagging problem, which requires anaphora reso-
lution implicitly when predicting the type of an ambiguous
resource mention. In our model, we incorporate a context
encoder to implement a mechanism of sequence-to-sequence
tagging with attention to help the model to learn anaphora
resolution within the contexts implicitly during training.

III. THE FORM DATASET
In this section, we introduce the construction of our exper-
imental dataset, i.e., Forum Resource Mention (FoRM)
dataset. To the best of our knowledge, there is no pub-
licly available dataset that contains labeled resource men-
tions in MOOC forums. We construct our dataset via a
three-stage process: (1) data collection, (2) data annotation,
and (3) dataset construction.

A. DATA COLLECTION
Our data comes from Coursera, one of the largest MOOC
platforms in the world. Coursera was founded in 2012 and up
to August 2018, it has offered more than 2,700 courses and
attracted about 33million registered learners. Each course has
a discussion forum for students to post/reply questions and to
communicate with each other. Each forum contains all the
threads started by students or instructors, which consists of
one thread title (main idea of a problem), one or more thread
posts (details about the problem) and replies (see Figure 1 as
an example).

As the distribution of resource mentions may vary for
courses in different domains, we consider a wide variety
of course domains when collecting the data. Specifically,
we collect the forum threads from 142 completed courses

in 10 different domains2 Note that in Coursera, each course
may have multiple sessions; each session is an independent
learning iteration of the course, with a fixed start date and
end date (e.g., ‘‘Machine Learning’’ (from 2018-08-20 to
2018-12-20)). Different sessions of a course may have dif-
ferent organization and notation systems for the same set
of learning resources, which involves ambiguity if we con-
sider them all. Therefore, we only select the latest com-
pleted session for each course, resulting a total number of
102, 661 posts.3 Finally, we exclude the posts that belong
to the ‘‘General Discussion’’ and ‘‘Meet & Greet’’ forums,
which are unlikely to contain resource mentions, and only
select the posts in ‘‘Week Forums’’, as they are designed for
‘‘Discuss and ask questions about Week X’’. This gives us a
data collection of 84, 945 posts from 11, 679 different forum
threads.

B. DATA ANNOTATION
Based on the above collected data, we thenmanually annotate
resource mentions for each thread. We employ 16 graduate
students from technical backgrounds to annotate the data.
As mentioned before, our data collection consists of 11, 679
forum threads from 142 courses; each thread is a time-ordered
list of posts, including thread title and a series of thread/reply
posts. We split the 11, 679 threads into 8 portions, and assign
each portion to 2 annotators. For simplicity of annotation, for
each thread, we concatenate all contents of its posts, to get a
single document of sentences for annotation. For each thread
document, the task of the annotator is to identify all the
resource mentions in the document, and tag each of themwith
one of the pre-defined 7 resource types defined in Section I
(refer to Table 9 for details). We define a resource mention as
any one or more consecutive words in a sentence that repre-
sents an unambiguous learning resource in the course.We use
the brat rapid annotation tool,4 an online environment for
collaborative text annotation, which is widely used in entity,
relation and event annotations [29]–[31], as our annotation
platform.

To help annotators better understand the above process and
relevant concepts, we conduct an one-hour training for anno-
tators; the complete training process is documented in VII.
Then, we start the real annotation; the whole annotation pro-
cess takes around onemonth. In the end, each thread is doubly
annotated, and we denote the two copies of the annotated data
as Group 1 and Group 2, respectively. Table 1 summarizes
the number of annotated resource mentions for each resource
type. Note that we integrate the 4 resource types representing
teaching materials, i.e., ‘Readings’, ‘Slides’, ‘Transcripts’,
and ‘Additional Resources’, into one single resource type

2The selected domains are: ‘Arts and Humanities’, ‘Business’, ‘Computer
Science’, ‘Data Science’, ‘Language Learning’, ‘Life Sciences’, ‘Math and
Logic’, ‘Personal Development’, ‘Physical Science and Engineering’ and
Social Sciences.

3Our data was collected at January 31, 2017, and we are in partnership
with Coursera at the time of the dataset collection.

4http://brat.nlplab.org/
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TABLE 1. Annotation result from group 1 and group 2 on assessments,
exams, videos, and coursewares. Coursewares = readings, slides,
transcripts, and additional resources. Ppos is the positive specific
agreement.

‘Coursewares’, to form a dataset with more balanced training
examples for each class.

To evaluate the inter-annotator agreement between two
groups, we use thePositive Specific Agreement [32], a widely-
used measure of agreement when the positive cases are rare
compared with the negative cases. In summary, there are
4 possible cases when comparing the result of the anno-
tated mentions between Group 1 and Group 2, summarized
in Table 2. For example, AG denotes the number of cases that
both groups agree are resource mentions and also have an
agreement about its type. Based on all the conditions listed
in Table 2, the calculation of the positive specific agreement
(denoted as Ppos) between two groups’ annotations is given in
Equation 1. The agreement scores for different resource types
are shown in the column Ppos of Table 1.

Ppos =
2× AG

2× AG+ (TD+ G1)+ (TD+ G2)
(1)

To give an explanation for Ppos values to better understand
whether our annotation achieves an acceptable agreement,
we analyze the value ofPpos by referring toKappa coefficient,
because [32] proves that κ approaches the positive specific
agreement when the number of negative cases grows large,
which is exactly our case. We find that the Ppos value for
Exams, Videos and Coursewares are in the range of mod-
erate agreement,5 and for Assessments, the value shows a
substantial agreement [33]. The possible reasons that the
agreement for Assessments is higher than the other types are:
1) samples for four types of resource are unbalanced; the
ratio of Assessments is higher than others, thus has a lower
annotation bias; 2) Assessments is easier for annotators to
distinguish compared to other types of resource. In summary,
the overall annotation result achieves a moderate agreement
between two group of annotators.

5The values for κ: [−1, 0): less than chance agreement; 0: random; [0.01,
0.20]: slight agreement; [0.21, 0.40]: fair agreement; [0.41, 0.60]: moderate
agreement; [0.61, 0.80]: substantial agreement; and [0.81, 0.99] almost
perfect agreement; 1: perfect agreement.

C. DATASET CONSTRUCTION
Based on the annotation results, we construct two versions
of datasets with different characteristics. First, to provide
a dataset with high-quality resource mentions, we only use
the ‘‘Agree’’ cases in Table 2 as the ground-truth resource
mentions to construct the FoRM-M dataset. For the ‘‘Agree’’
case, we joint the text spans of annotated mentions from
Group 1 and Group 2 as the ground truth. For example,
if the annotated mentions are ‘‘the video 1’’ (Group 1) and
‘‘video 1 of week 2’’ (Group 2), we create a ground-truth of
‘‘the video 1 of week 2’’ by unioning the texts. In this way,
we tend to obtain more specific mentions (e.g., ‘‘the video 1
of week 2’’) rather than general ones (e.g., ‘‘video 1’’). The
number of ‘‘Agree’’ resource mentions is 9, 390 as shown
in the column ‘‘Intersection’’ in Table 1. We also construct
a larger but relatively more noisy dataset, namely FoRM-L,
by using all the cases as ground-truths, which represents a
‘‘union’’ of the annotations from the two groups. The statis-
tics are shown in the ‘‘Union’’ column of Table 1.

As mentioned in Section I, we formulate the task of
resource mention identification in MOOC forums as a
sequence tagging problem. Therefore, we associate each
word in the dataset with a corresponding tag, based on the
ground-truth we obtained in the previous step. A word is
associated with the Beginning (B)/ Inside (I) tag if it is the
beginning/inside of a resource mention with type T , denoted
as T_B/I . Otherwise, the Outside (O) tag is assigned to the
word.

The statistics of the constructed datasets are shown
in Table 3, where # Examples is the total number of sentences
containing at least one resource mention, # Tokens is the total
number of words in the dataset. # Average Length denotes the
average number of words in a sentence. The total number of
B-tags (e.g., Coursewares_B) and I-tags (e.g., Exams_I) for
different resource types, as well as the number of O-tags, are
also listed in the table.

IV. METHODS
We present our neural model for identifying and typing
resource mentions in MOOC forums. We first formulate the
problem and then present the general architecture of the
proposed model. Followed by that, we introduce the major
components of our model in detail in the remaining sections.

A. PROBLEM FORMULATION
We first introduce some basic concepts, and formally define
the task of resource mention identification in MOOC forums.

TABLE 2. Four possible cases when comparing the annotation results of group 1 and 2.
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TABLE 3. Statistics of the forum resource mention dataset (FoRM).

Definition 1 (Post): A post P is the smallest unit of commu-
nication inMOOC forums that contains user-posted contents.
Each post is composed of the text contents written by the
user, and some associated meta-data such as user ID, posting
time etc. In our task, we focus on extracting resource men-
tions from text contents; thus we simply formulate a post as
a sequence of sentences, i.e., P = {s1, . . . , s|P|}, where each
sentence is a word sequence s = {w1, . . . ,w|s|}.
Definition 2 (Thread): Typically, a thread T in MOOC

forums is composed of a thread title t , an initiating post I , and
a set of reply posts R [34]. Initiating post is the first post in
the thread and initiates discussions. All other posts in a thread
are the reply posts that participate in the discussion started
by the initiating post. For simplicity, we do not differentiate
between the initiating post and the reply posts, and we also
treat the thread title as a special post P0. In this case, a thread
T can be represented as an ordered list of posts, i.e., T =
{P0,P1, . . . ,P|T |}. A thread T with n posts can be unfolded as
a long document ofN sentences T = {s1, . . . , sN : si ∈ PI (i)},
where I (i) is the index of the post that sentence si belongs to.
Definition 3 (Resource Mention): A course C in MOOCs is

defined as a set of resources, where each resource represents a
specific learning resource/material in C (e.g., ‘‘Video 2.1’’),
and is associated with a resource type (e.g., ‘‘Video’’). In a
thread that belongs to course C , we define any semanti-
cally complete single/multi-word phrase that represents a
resource of C as a resource mention (e.g., ‘‘the first video
of chapter 2’’).
Definition 4 (ResourceMention Identification): The task of

resource mention identification in MOOC threads is defined
as follows: Given a thread T in the discussion forums of
course C , the objective is to identify all resource mentions
appearing in T , and for each identified resource mention,
to categorize it into one of the pre-defined resource types.

This task involves identifying both the location and the type
of a resource mention, so it can be formulated as a sequence
tagging problem. Specifically, given a thread T , our task is
to assign a tag t to each word w ∈ T . The tag t can be
either TB (the beginning of a resource mention of type T ),
TI (inside a resource mention of type T ), or O (outside any
resource mention). Under this problem formulation, state-of-
the-art sequence tagging models, such as LSTM–CRF, can be

applied to our task. However, they suffer from the two major
challenges discussed in Section I. Therefore, we propose an
incremental neural model based on LSTM–CRF to address
the challenges. In the following sections, we will introduce
our model in detail, and more specifically, discuss how we
address the above two challenges by incorporating the context
encoder and the character encoder.

B. GENERAL ARCHITECTURE
A thread T with n posts is unfolded as a sequence of N
sentences T = {s1, . . . , sN }, where si is the i-th sentence
in the entire thread T . Given T as input, our model per-
forms sentence-level sequence tagging for each sentence in
the thread T . Specifically, to decode the sentence si ∈ T ,
we consider all or part of the previous sentences of si as its
contexts, denoted asCi. Then, our goal is to learn a model that
assigns each word in si with a tag; we denote the output tag
sequence as ti. Therefore, our model essentially approximates
the following conditional probability.

p(Y | T ; 2) =
N∏
i=1

p(ti | si,Ci ; 2) (2)

where2 is the model parameters, and p(ti |si,Ci ; 2) denotes
the conditional probability of the output tag sequence ti given
the sentence si and its context Ci.
To model the conditional probability p(ti | si,Ci ; 2), our

model includes three components: (1) the context encoder,
(2) the character encoder, and (3) the attentive LSTM–CRF
tagger. Figure 2 shows the framework of our proposed neural
model. First, to encode the context information Ci, we incor-
porate the context encoder: a set of recurrent neural net-
work (RNN) to encode each context sentence (Section IV-C).
Our context encoder is generic to any textual contexts that can
be additionally provided (e.g., from external resources), while
in our model, we use the previous sentences of the thread
as the context, to address the context dependency problem
proposed in Section I. To alleviate the OOV challenge in our
task, we employ the character encoder to build word embed-
dings using BLSTMs [35] over the characters (Section IV-D).
The character-level word embeddings are then combinedwith
the word-level embeddings as inputs to our model. Finally,
we use the BLSTM–CRF [7] to generate the output tag
sequence. Different from the original model in [7], we add an
attention module [8] that acts over the encoded textual con-
texts (attentive LSTM–CRF tagger), to make use of important
context information during sequence tagging (Section IV-E).

C. CONTEXT ENCODER
As discussed in Section I, context information is crucial for
identifying resource mentions. For the i-th sentence si in the
input thread T , a straightforward way is to use the thread
context, which is to encode all the previous sentences of
si in T as its context, i.e., Ci = {s1, . . . , si−1}. The thread
context contains complete information for inferring resource
mentions in si, but also makes it harder for the model to
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FIGURE 2. The general architecture of the proposed model. Our model consists of three parts: Context encoder,
character encoder, and LSTM–CRF, which are shaded in gray.

learn the inherent patterns from these long and noisy con-
texts. We address this problem by introducing the attention
mechanism into the decoding process, which will be further
illustrated in Section IV-E.

We denote the thread context C as a sequence of m sen-
tences C = {c1, . . . , cm | ci = (ci1, . . . , c

i
|ci|

)}, where cij rep-
resents the one-hot encoding of the j-th token in the i-th
context sentence ci, and |ci| is the length of the sentence
ci (cf Figure 2, each gray block represents the encoding of
a sentence ci in context C). We employ the method in [36] to
use a set of m Gated Recurrent Neural Networks (GRU) [37]
to encode each of the context sentence separately:

hcij = GRUi

(
Ec cij , h

ci
j−1

)
(3)

where GRUi denotes the GRU used to encode the i-th context
sentence ci, Ec is the input word embedding matrix, and
hcij ∈ RHc is the GRU hidden state in the j-th time step, which
is determined by the input token cij and the previous hidden
state hcij−1. We concatenate the last hidden state hci

|ci|
for each

encoded context sentence ci to obtain our context vector hc
as follows:

hc =
[
hc1
|c1|
; . . . ; hci

|ci|
; . . . ; hcm

|cm|

]
(4)

The context vector will further be used by the attention
mechanism in Section IV-E to provide contextual information
in the sequence tagging process.

D. CHARACTER ENCODER
As discussed in Section I, our task suffers from the OOV
problem, i.e., a large portion of words in forums (e.g., ‘‘Q4’’)

are not in the vocabulary. This problem can be alleviated by
incorporating the character-level semantics (e.g., the postfix
‘‘.pdf’’ in the word ‘‘intro.pdf’’). In fact, introducing the
character-level inputs to build word embeddings has already
been proved to be effective in various NLP tasks, such as part-
of-speech tagging [38] and language modeling [39]. In our
model, we build up a character encoder to encode character-
level embeddings to fight against the OOV problem. For each
word, we use bidirectional LSTMs to process the sequence of
its characters from both sides and their final state vectors are
concatenated. The resulting representation is then concate-
nated with the word-level embeddings to feed to the sequence
tagger in Section IV-E.

We denote VC as the alphabet of characters, including
uppercase and lowercase letters as well as numbers and
punctuation, with dimensionality in the low hundreds. The
input word w is decomposed into a sequence of charac-
ters x1, . . . , x|w|, with each xi represented as an one-hot
vector over VC . We denote Ec ∈ Rdc×VC as the input
character embedding matrix, where dc is the dimension of
character embeddings. Given x1, . . . , x|w|, a bidirectional
LSTM computes the forward state hfi by applying hfi =
LSTM (Ecci, h

f
i−1), and computes the backward state hbi by

applying hbi = LSTM (Ecc|w|−i+1, hbi−1). Finally, the input
vector vw to the sequence tagger is the concatenation of word
and character embeddings, i.e., vw = [Eww ; h

f
|w| ; h

b
|w|].

E. LSTM–CRF TAGGER
After defining the input vector vw and the context vector hc,
we build up the attentive LSTM–CRF tagger to assign a tag to
each word. Given a sentence with n words s = {w1, . . . ,wT }
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in the input thread T with contextC , to obtain its tag sequence
l = {l1, . . . , lT }, we are actually approximating the condi-
tional probability p(l1, . . . , lT |w1, . . . ,wT ,C). This can be
effectively modeled by the LSTM–CRF tagger [7] in the
following way.

p(l1, . . . , lT |w1, . . . ,wT ,C) =
exp(r(s, l|C))∑
l′ exp(r(s, l ′|C))

(5)

where r(s, l|C) is a scoring function indicating how well
the tag sequence l fits the given input sentence s, given
the context C . In LSTM–CRF, r(s, l|C) is parameterized
by a transition matrix A and a non-linear neural network f ,
as follows:

r(s, l|C) =
T∑
t=1

(
Alt−1,lt + f (wt , lt |C)

)
(6)

where f (wt , lt |C) is the score output by the LSTM network
for the t-th word wt and the t-th tag lt , conditioned on the
context C . The matrix A is the transition score matrix, [A]ij is
the transition score from i-th tag to j-th for a consecutive time
steps.

To model the score f (wt , lt |C), we build a bidirectional-
LSTM network with attention over the contexts C . In time
step t , the current hidden state ht is updated as follows:

ht = LSTM ([vwt ; a
t
c], ht−1) (7)

where vwt is input vector for word wt , atc is the attended
context vector of hc at time step t , which will be discussed in
detail later. Then, the score f (wt , lt |C) is computed through
a linear output layer with softmax, as follows:

ot = Woht (8)

f (wt , lt |C) =
exp(olt ,t )∑
j exp(oj,t )

(9)

where Wo is the matrix that maps hidden states ht to output
states ot .

F. CONTEXT ATTENTION ON THE TAGGER
To effective select useful information from the contexts,
we introduce an attention mechanism over all the hid-
den states of the context sentences hc1

|c1|
, . . . , hci

|ci|
, . . . , hcm

|cm|.
We denote αti as the scalar value determining the attention
weight of the context vector hci

|ci|
at time step t . Then, the input

context vector to the LSTM–CRF tagger atc is calculated as
follows:

atc =
m∑
i=1

αti h
ci
|ci|

(10)

Given the previous state of the LSTM ht−1, the attention
mechanism calculates the context attention weights αt =
αt1, . . . , α

t
m as a vector of scalar weights, where αti is calcu-

lated as follows:

eti = v>a tanh(Waht−1 + Uah
ci
|ci|

) (11)

αti =
exp(eti )∑
j exp(e

t
j )

(12)

where va,Wa,Ua are trainable weight matrices of the atten-
tion modules. Note that we actually calculate an attention
over all context sentences, but not on the word level, which
greatly reduce the scale of parameters. Another reason to use
sentence-level attention is based on the observation that the
useful information tends to appear coherently in one context
sentence, rather than separated in different sentences.

V. EXPERIMENTS
A. BASELINES
Since we formulate our task as a sequence tagging problem,
to evaluate the performance of the proposed method, we con-
duct experiments on several widely-used sequence tagging
models as follows:

• BLSTM: the bidirectional LSTM network (BLSTM)
[40] has been widely used for sequence tagging
task. In predicting the tag of a specific time frame,
it can efficiently make use of past features (via for-
ward states) and future features (via backward states).
We train the BLSTM using back-propagation through
time (BPTT) [41] with each sentence-tag pair (s, l) as
a training example.

• CRF: Conditional Random Fields (CRF) [42] is a
sequence tagging model that utilizes neighboring tags
and sentence-level features in predicting current tags.
In our implementation of CRF, we use the following
features: (1) current word, (2) the first/last two/three
characters of the current word, (3) whether the word is
digit/title/in upper case, (4) the POS tag, (5) the first two
symbols of the POS tag, and (6) the features (1)-(5) for
the previous and next two words.

• BLSTM–CRF: As we illustrated in Section IV-E,
BLSTM–CRF [7] is a state-of-the-art sequence tagging
model that combines a BLSTM network with a CRF
layer. It can efficiently use past input features via a
LSTM layer and sentence level tag information via a
CRF layer.

• BLSTM–CRF–CE: This model adds a character
encoder (CE), as described in Section IV-D, into the
BLSTM–CRF model. It can be regarded as a simplified
version of the proposed model, i.e., without the context
encoder.

• BLSTM–CRF–CE–CA: The full version of the
proposed method, i.e., an incremental model of
BLSTM–CRF that takes into account the character-level
inputs and the thread context information.

B. EXPERIMENTAL SETTINGS
1) DATASETS
We test LSTM, CRF, LSTM–CRF, LSTM–CRF–CE and our
model on both the FoRM-M and the FoRM-L datasets. For
each dataset, we randomly split the data into 2 parts: 90% for
training and 10% for testing. This results in 6, 796 training
and 839 testing examples for FoRM-M, and 16, 160 training
and 1, 996 testing examples for FoRM-L.
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TABLE 4. Overall performance of different methods on the FoRM dataset (%). The best performances for each metric are in bold.

TABLE 5. The F1 scores of different methods for each resource mention type on the FoRM-M dataset. The best results are in bold.

2) SETUP
For deep learning models, we set the size of the word rep-
resentation to 200, and initialize the word embedding matrix
with pre-trained GloVe [43] vectors. In the LSTM–CRF–CE
and our model, we set the dimensionality of characters to 64.
Each hidden state used in the LSTM and GRU is set to 256.
We train all models by stochastic gradient descent, with a
minibatch size of 16, using the ADAM optimizer. For the
CRF model, we implement it using the keras-contrib6 pack-
age. To evaluate the overall performance, we use the micro-
precision/recall/f1 score on all the resource mention tags,
i.e., all tags excluding the O tag, calculated as follows:

micro-P =

∑
t∈L/O TPt∑

t∈L/O(TPt + FPt )
(13)

micro-R =

∑
t∈L/O TPt∑

t∈L/O(TPt + FNt )
(14)

micro-F1 =
2×micro-R×micro-P
micro-R+micro-P

(15)

where L is the tag set, TPt ,FPt andFNt represents the number
of true positive, false positive, and false negative examples for
the tag t ∈ L, respectively.

C. EXPERIMENTAL RESULTS
We train models using training data and monitor performance
on validation data. During training, 10% of training data
are held out for validation (10-fold cross validation). The
model is re-trained on the entire training data with the best
parameter settings, and finally evaluated on the test data. For
deep learning models, we use a learning rate of 0.01, and the

6https://github.com/keras-team/keras-contrib

training process requires less than 20 epochs to converge and
it in general takes less than a few hours.

We report models’ performance on test datasets in Table 4,
in which the best results are in bold cases. On both FoRM-
M and FoRM-L dataset, BLSTM–CRF–CE–CA achieves the
best F1 score, which indicates the robustness and effective-
ness of the proposed method. Specifically, we also have the
following observations.

(1) BLSTM is the weakest baseline for both two data
sets. It obtains relatively high precision but poor
recall. When predicting current tags, BLSTM only
considers the previous and post words, without
making use of the neighboring tags to predict the
current one. This problem greatly limits its per-
formance, especially in identifying the Begin tags,
which will be further demonstrated in Table 5.

(2) The CRF forms strong baselines in our experiments,
especially in precision. In the FoRM-M dataset,
it achieves the best precision of 78.08% among
all the models. This is as expected, because hand-
crafted local linguistic features are used in the CRF,
making it easy for the model to capture the phrases
with strong ‘‘indicating words’’, such as ‘‘quiz 1.1’’
and ‘‘video of lecture 4’’. However, the recall for
CRF is relatively low (11.3% lower than the pro-
posed method in average), because in many cases,
local linguistic features are not enough in identi-
fying resource mentions, and long-range context
dependencies need to be considered (e.g., the phrase
‘‘Chain Rule’’ in Figure 1).

(3) The BLSTM–CRF performs close to CRF on pre-
cision, but is better than CRF on recall (+3.64%
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TABLE 6. The performance comparison between BLSTM–CRF and BLSTM–CRF–CE on the test set of FoRM-M. ‘Correct/Total’’ refers to the correct/total
number of predictions, ‘‘Ratio’’ is the ratio of correct prediction.

in average). During prediction, the model can make
use of the full context information encoded in
LSTM cell rather than only local context features.

(4) After considering character embeddings, the change
of precision is not obvious, but the recall improves
4.72% in average compared with BLSTM–CRF.
This demonstrates the effectiveness of incorpo-
rating character-level semantics. We will further
analyze how character embeddings alleviates the
OOV problem in Section V-D. Encoding the thread
contexts further improves the recall (+2.77% in
average), at the cost of a slightly drop on precision
(−1.37% in average). The thread contexts bring in
enough information for inferring long-term depen-
dencies, but also burdens the model to filter out
irrelevant information introduced.

(5) As expected, the F1 score of all models drops when
moving from the FoRM-M to the FoRM-L dataset
that contains more noisy annotations. This decrease
in performance is more obvious on recall, with an
average of 5.03% drop. Themost significant perfor-
mance drop comes from CRF (−5.9% in F1 score),
which further exposes its limitation in handling
the variability of resource mentions. The proposed
method, with a 1.68% decrease in F1, proves to
be the most robust model, owing to its high model
complexity.

To further investigate how different models perform on
identifying each type of resource mention, we report mod-
els’ micro-F1 scores for each type of tag on the FoRM-M
dataset. The results are summarized in Table 5, and we get
several interesting observations. For BLSTM, the F1 score
of Begin tags (47.76% in average) is much lower than that
of Inside Tags (58.29% in average). A reasonable explana-
tion is that there are less training data for B-tags compared
with I-tags, and BLSTM does not utilize the neighboring
tags to predict the current one. After adding the CRF layer,
the BLSTM –CRF model makes a significant improvement
in identifying B-tags (+23.35% in average). Among the four
mention types, the models achieve best results in identifying
the Assessments. There are two reasons: (1) there are about
3 times labeled data for the Assessments, compared with the
other 3 types, and (2) identifying the mention of assessments
does not rely much on long-range contexts (e.g., ‘‘Assign-
ment 1.3’’). The Coursewares is the most difficult resource
type to identify; all models achieve the lowest F1 scores in
identifying the Coursewares. This is due to the high variety

of this type, since it is a mixture of transcripts, readings,
slides, and other additional resources. Furthermore, long-
range context dependency is more common in this type
(e.g., ‘‘sgd.py’’), which further increases its variety.

D. EFFECT OF THE CHARACTER ENCODER
This section examines how our introduction of the Character
Encoder addresses the problem of Out-of-Vocabulary. To this
end, we first evaluate the severity of the OOV problem on
our data. We define OOV words as the words that cannot
be found in the pre-trained GloVe embeddings, which has
a vocabulary size of 400K.7 As OOV words do not have
pre-trained word embeddings, we need their character-level
information to be taken into account. The FoRM-M dataset
contains a vocabulary size of 9,761, with 3,045 (31.19%) of
them are OOV words. This reveal the severe of the OOV
problem in our task.

To understand how character encoder addresses the OOV
problem, we analyze the prediction results of BLSTM–CRF
and BLSTM–CRF–CE on the test set of FoRM-M, which
contains 876 ground-truth resource mentions within its
839 testing examples. Among these 876 resource mentions,
163 of them contain at least one OOV word. We call these
resource mentions as OOV Mentions; identifying OOVMen-
tions require both word-level and character-level semantics.
Other resource mentions are then denoted as None-OOV
Mentions.
Table 6 shows the performance comparison between

BLSTM–CRF and BLSTM–CRF–CE on both the OOV
mentions and none-OOV mentions. Among the 876 testing
resource mentions, the rate of correct predictions8 increases
from 64.38% to 68.49%, with a 4.11% improvement. But the
performance improvement for the none-OOV mentions only
increase 3.08%. For the OOV mentions, however, the per-
formance boost is 8.58%, much higher than the overall
improvement of performance. This indicates that incorpo-
rating character-level information significantly benefits the
identification of OOV resource mentions, which makes a
major contribution to the overall performance improvement.

E. ERROR ANALYSIS
The micro-F1 score is a proper evaluation metric for models’
performance on individual tags; however, does not tell us
why errors are made. To provide an in-depth analysis of

7https://nlp.stanford.edu/projects/glove/
8A correct prediction means that the prediction of scope and type for a

resource mention are both correct.
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TABLE 7. Prediction error types and examples. (Pred.) is the model prediction, and (G.T.) is the ground truth. The bold texts with [ ] are identified/true
reource mentions associated with type label.

TABLE 8. Error analysis of BLSTM–CRF–CE–CA on the FoRM-M dataset. The table shows the number/percentage of different prediction cases for different
resource types.

the proposed model’s performance, we list the six possible
conditions that happen during the prediction, summarized
in Table 7, together with examples. The model makes an
Exactly Correct prediction if the scope of the prediction
exactly matches the ground truth, and the predicted type is
also correct. There are cases when scopes are matched but the
predicted type is incorrect or conversely, these are summa-
rized as three cases: Scope Right/Wrong Type Right/Wrong.
The remaining conditions happen when the prediction has
no overlap with the ground truth in the sentence, which are
divided into Missing and Wrongly Extracted errors.

Table 8 summarizes the performance of BLSTM–CRF–
CE–Context on the FoRM-M test set. Among all the 914
cases obtained from the 839 testing examples, 600(65.6%)
of them are predicted completely correctly by the model.
We observe that most of the errors come from the Scope
Wrong Type Right, holding a high percentage of 23.5%.
Compared to this, other errors are less obvious. However,
we further discover that a large portion (178 out of 215
cases) of this error happens because the model selects a more
‘general’’ mention from a longer ground truth. For example,
as given by the example in Table 7, the model selects the
phrase ‘‘the quiz’’ from the ground truth mention ‘‘the quiz

for week 2’’. This behavior can be explained by the feature of
sequence tagging; the decoder tends to select shorter and gen-
eral patterns, as they are more frequently present as training
signals. To some extent, both general and specific mentions
are acceptable in practice, but teaching model to identify
more specific mentions is a future direction for improvement.
A potential solution is to take into account the grammatical
structure of the sentence in decoding. Another observation
is that besides the scope error, the Missing error holds a
high percentage of 12.8% in identifying Coursewares. This
is consistent with the relative low recall presented in Table 4,
which poses the challenges of dealing with noisy expressions
and long-range context dependency. Encoding thread context
partially addresses the challenge, but there is still much room
for improvement.

VI. CONCLUSION AND FUTURE WORKS
We propose and investigate the problem of automatically
identifying resource mentions in MOOC discussion forums.
We precisely define the problem and introduce the major
challenges: the variety of expressions and the context depen-
dency. Based on the vanilla LSTM–CRF model, we propose
a character encoder to address the OOV problem caused by
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TABLE 9. The description and examples for the pre-defined 7 types of resources mentions.

the variety of expressions, and a context encoder to capture
the information of thread contexts. To evaluate the proposed
model, we manually construct a large scale dataset FoRM
based on real online forum data collected from Coursera. The
FoRMdataset will be published as the first benchmark dataset
for this task. Experimental results on the FoRM dataset vali-
date the effectiveness of the proposed method.

To build up a more efficient and interactive environment
for learning and discussing in MOOCs, it requires the inter-
linkings between resource mentions and real resources. Our
work takes us closer towards this goal. A promising future
direction is to investigate how to properly resolve the identi-
fied resource mentions to real learning resources. However,
it is also worthy to notice that the current identification per-
formance still has much room for improvement; there are still
challenges that are not fully addressed, such as identifying
more specific resource mentions, as discussed in Section V-E.
Addressing these challenges by utilizing more features from
both static materials and dynamic interactions in MOOCs are
also promising future directions to be explored.

VII. APPENDIX ANNOTATION DETAILS
We train the annotators in advance, before starting the anno-
tation at June, 2018. First, we email every annotator with an
annotation instruction document, which contains the detailed
description and examples for different types of resource
resources, cf Table 9. We then provide them with a link to
our brat platform with an example annotation file containing

TABLE 10. Original annotation result from group 1 and group 2 on
assessments, exams, videos, readings, slides, transcripts, and additional
resources. The values in the parentheses are the ratios of intersections
(column 4) for each type of resource mentions of group 1 (column 2) and
group2 (column 1).

formatted annotation data and typical examples. They are
required to complete an one hour training to learn the usage of
the annotation tool and try out some practical annotations to
better understand the annotation instruction. Finally, we add
every annotator to a Wechat group to coordinate questions
and answers about unclear examples. We observe that a few
questions are raised at the beginning of the annotation, and
later the annotators becomemore confident and fluent in their
annotation. Table 10 summarized the detailed information of
the annotated data for 7 types of learning resource mentions
as described in Table 9. We find that the percentages of inter-
sections for two groups of each type of resource mentions are
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from 19.6% (Transcripts for Group 1) to 67.7% (Assessments
for Group 1).
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