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ABSTRACT Bruxism is a sleep syndrome, inwhich individual involuntarily grinding and clenching the teeth.
If sleep does not complete properly, then it generates many disorders such as bruxism, insomnia, sleep apnea,
narcolepsy, rapid eye movement behavioral disorder, and nocturnal frontal lobe epilepsy. The aim of this
paper is to draw the results in the form of signal spectrum analysis of the changes in the domain of different
stages of sleep. The present research completed in three stages such as the collection of the data, analysis
of the electroencephalogram (EEG) signal, and comparative analysis between bruxism patients and normal
subjects. Importantly, the channels EMG1-EMG2 and ECG1-ECG2 of the EEG signal were combined for
the prognosis of bruxism by using power spectral density, which mainly focused on two sleep stages such as
wake (W) and rapid eye movement (REM). The total number of one-minute EEG recordings from bruxism
patients and normal subjects analyzed in this work were 149 and 95, respectively. The obtained results show
that the average normalized values of the power spectral density of the EMG1-EMG2 and ECG1-ECG2
channels during REM and W sleep stages are several folds higher in case of the bruxism than those in the
normal. Moreover, the proposed power spectral density-based method by using the decision tree classifier
shows a higher accuracy for the prognosis of sleep bruxism in comparison with previous works. In addition,
the proposed approach in the prognosis of the bruxism is noise free and accurate as it is in mathematical
form and has taken very less time as compared with the traditional systems. The present research work
would provide a fast and effective prognosis system of the human bruxism with high accuracy for medical
applications.

INDEX TERMS Bruxism, decision tree (DT), electroencephalogram (EEG), electrocardiogram (ECG),
electromyogram (EMG), power spectral density, sleep disorder.

I. INTRODUCTION
Sleep has an important role in the life of zoological species
such as humans, animals, birds, mammals, reptiles, and
amphibians [1]. Some zoological species complete their sleep
by closing their eyes such as human beings and most of the
animals. Some of them complete it by opening their eyes
such as insects, reptiles and amphibians [2]. The phenomenon
of sleeping with just one eye closed discovered recently in
Wahlberg’s epauletted fruit bat [3]. There are two stages of
sleep such as non-rapid eyemovement (NREM) and rapid eye
movement (REM) [2]. If sleep does not complete properly in

The associate editor coordinating the review of this manuscript and
approving it for publication was Gang Wang.

humans, it leads to several diseases such as bruxism [4], [5],
sleep apnea, insomnia [6]–[10], REM behavioral disorder
(RBD) [11], nocturnal frontal lobe epilepsy (NFLE) [12], nar-
colepsy [13], and periodic limb movement disorder. In addi-
tion, the poor sleep also affects genes and proteins in human
body [14]. It damages several organs including the heart,
the brain and other organs. The causes of the bruxism are
asymmetrical arrangement of the teeth and sleep disorder.
The main symptoms of the bruxism are flattened, chipped,
and fractured teeth with worn tooth enamel exposing deeper
layers of teeth. Other symptoms include jaw, neck, face pain,
and headache [5]. The bruxism can be found in children,
and mostly in the male. The factors that increase the risk
of bruxism are smoking of tobacco, drinking of alcohol,
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and side effect of the psychiatric medicines [15]. Moreover,
the bruxism are associated with some neurological disorders
such as episodes of screaming, intense fear and flailing while
still asleep, epileptic seizure, and sleep apnea.

Till date, many attempts have been made to identify
symptom of sleep bruxism by investigating various charac-
teristics of the mental state or different properties of the
bioelectrical signal. Basson et al. [16] studied the significance
of sub-threshold symptoms of anxiety in the etiology of
bruxism in details. Bruxism is an under-recognized cause of
caregiver concern in patients with Alzheimer’s disease [17].
Ohmure et al. [18] aimed to assess the efficacy of a proton
pump inhibitor (PPI) on bruxism, and examined the gas-
trointestinal symptoms and endoscopic findings of the upper
gastro intestinal tract in bruxism patients. They suggested that
the PPI administration leads to a significant reduction in the
frequency of electromyography, rhythmicmasticatorymuscle
activity episodes, and grinding noise. Lavigne and Sessle [19]
suggests that reducing orofacial pain and improving sleep
may improve the patient’s quality of life to promote healing
and optimizing their health. Furthermore, bruxism has been
related to sleep disturbances as in case of migraine [20].
Sleep disturbances are common in postmenopausal women
and contribute to increased morbidity and mortality. It is
related to anatomical, hormonal, metabolic and psychological
factors that can interfere with restorative sleep [21]. On the
other hand for more practical diagnosis in clinical, the bio-
electrical signals generated from human body such as the
electroencephalogram (EEG), the electromyogram (EMG),
and the electrocardiogram (ECG) commonly used as useful
tools for the brain, muscles, and heart, respectively [22], [23].
Recently, Sten’s group reported that the sleep disorder could
be diagnosed by the heart rate using the signal of ECG [24].
The single channel EMG was also proposed in the detection
of sleep disorder [25]. Previously, a decision support sys-
tem for automated identification of sleep stages from single
channel of EEG signals were proposed [26]. Lei et al. [27]
proposed a similar framework for the spatial temporal EEG
and functional magnetic resonance imaging fusion (STEFF).
Wang et al. studied that the directed transfer function and
the wavelet decomposition system were combined to rep-
resent a wavelet-based directed transfer function techniques
for the patient-specific seizure recognition [28], [29]. Addi-
tionally, the basis of partial directed coherence, analysis was
to detect the seizure intervals of epilepsy patients [30]. The
author studied that independent component analysis suc-
cessfully remove the electrooculogram (EOG) artifacts from
EEG signals and preserve useful EEG information with lit-
tle loss [31], [32]. However, there are low accuracy and
poor prognosis on the more affected stages of sleep under
various disease conditions. Especially for the reasons that
the sleep stage of REM is more affected than the sleep
stage of wake (W) in EMG1-EMG2 channel. Meanwhile,
the stage of W is more affected than the stage of REM in
ECG1-ECG2 channel, which is an obstruct for a clinical

application at present. As such, a generalized approach for
prognosis of sleep bruxism is high beneficial.

In the present study, a new prognostic system by comb-
ing the channels of the EMG1-EMG2 and the ECG1-ECG2
extracted from EEG signal is proposed to improve accuracy
of the prognosis of bruxism. Initially, both EMG1-EMG2 and
ECG1-ECG2 channels were preprocessed by using a ham-
ming window, followed by a low pass filter for the removal
of noise in both bruxism patients and normal human. Then,
the power spectral density were calculated individually using
the Welch method. For both two sleep stages such as W and
REM, the corresponding average normalized values of power
spectral density of both EMG1-EMG2 and ECG1-ECG2
channels in bruxism patients and normal subjects were fed
into the classifier of decision tree (DT) for identification of
sleep bruxism. With the proposed approach by combing the
signals of EMG1-EMG2 and ECG1-ECG2, the more affected
stages of sleep during various disease conditions could be
identified more accurately.

II. SUBJECT AND METHODOLOGY
In the present work, the following methods have been pro-
posed for the prognosis of bruxism such as the data collection,
analysis of the EEG signal, extraction of the EMG1-EMG2
and ECG1-ECG2 channels, calculation of the normalized
values of the power spectral density, and the comparative
analysis of bruxism patients and normal subjects with the DT
classifier, as shown in Fig. 1. The details of methodologies
including low pass filter, hamming window, and power spec-
tral density estimation by the Welch method are explained as
following.

A. DATA COLLECTION
The EEG data was collected from bruxism patients and
healthy individuals from the CAP sleep database of phys-
ionet, which offers a free data web-access for collections of
recorded physiologic signals Physio Bank, and related open-
source software Physio Toolkit [33]. The waveform of CAP
sleep database of physionet include at least EEG channels,
EOG, EMG of the submentalis muscle, bilateral anterior
tibial EMG, respiration signals and ECG [34]. Previously,
Hassan et al. employed the Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise (CEEMDAN)
method for automatic sleep staging. They carried experiments
using Sleep-EDF database of physionet. Their proposed
scheme gives high detection accuracy for sleep stages S1
and REM [35]. The REM and W stage is very helpful
in the accuracy of the system [36]–[38]. In this work,
a total number of 244 one-minute EEG recordings from two
bruxism patients and seven normal subjects were collected,
as shown in Table 1. The ages of subjects were 23-42 for
normal subjects and 23-34 for bruxism patients, respectively.
Importantly, two channels of EEG recordings such as the
EMG1-EMG2 channel and the ECG1-ECG2 channel and
two sleep stages such as the REM and the W were exacted
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FIGURE 1. Block diagram of the current research work for the prognosis of the bruxism. The two
channels of the EEG signal such as EMG1-EMG2 and ECG1-ECG2 used in the current work.

and analyzed. Noted that all of bruxism patients’ data in
the CAP sleep database was collected in this work, includ-
ing 96 one-minute segments at REM stage and 53 one-
minute segments at W stage. A total of 7 normal subjects
were randomly selected from 16 subjects of the CAP sleep
database. For each of normal subject, 7 one-minutes seg-
ments and 5-7 one-minutes segments were collected ran-
domly during the REM stage and the W stage respectively.
The different channel allocation for the EMG1-EMG2 chan-
nel and the ECG1-ECG2 channel, there are a total of 149 and
95 EEG recordings collected from the REM and W sleep
stages in bruxism patients and normal subjects, respectively
(Table 1).

B. LOW PASS FILTER
The low pass filter passes the low frequency signals, and
blocks the high frequency signals. The low pass filters can
be designed either using resister with inductor or resister
with capacitor. Both the models are used for passing low
frequency and blocking the high frequency [33]. The low pass
finite impulse response (FIR) filters [39] were used for this
purpose, which is used for finite duration and operated in
the discrete time signal. The filtering was done to overcome
aliasing effect in the EEG signals [40]. The other purpose
of using filter is to remove undesirable oscillations that are
not part of EEG signal [41]. The window based linear phase
low pass FIR filter of cut off frequency of 25 Hz were used

in this study [11]. This window based linear phase low pass
FIRfilter has been normalized to obtain amagnitude response
with pass band center frequency of zero dB [42]. The low pass
FIR filter used in this work is present by equations (1).

y(n) =
M∑
k=0

bkx(n− k) (1)

where y (n) is the output signal, M is the order of the filter,
bk is the value of the response for 0 ≤ k ≤ M and x (n-k) is
the unit delay of the signal.

C. HAMMING WINDOW
The Hamming window technique was applied on the col-
lected EEG signals in this work to reduce the side lobe
compared to the main lobe. Richard W. Hamming discovered
hamming window techniques [7], [43], [44]. It was recom-
mended for smoothing the truncated auto covariance function
in the time domain. In place of each constants being same
to half within the hanning window. The constant approxima-
tions of values (α = 25/46) and (β = 21/46), which cancel
the primary aspect-lobe of the hanning window by means
of putting a zero at frequency (5π /(N − 1)). Approximation
of the constants to two decimal locations notably lowers the
extent of side-lobes, to a nearly equal ripple condition. Inside
the equal ripple sense, the most reliable values for the coeffi-
cients are α = 0.53836 and β = 0.46164. The zero segment
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TABLE 1. Experimental data set details.

models are explained by equations (2) and (3), respectively.

w (n) = α − β cos
(
2πn
N

)
(2)

where α = 0.54, and β = 1− α = 0.46

wh (n) = 0.54− 0.46 cos
(
2πn
N

)
(3)

where wh(n) is hamming window, N is the number of samples
each frame and n is the real number.

D. WELCH METHOD
P.D. Welch describes the Welch technique for the estimation
of power spectral density [45]. It is way to evaluate the
control phantom thickness. This strategy is utilized as a part
of assessing the intensity of a signal at various frequencies.
The average periodogram tends to decrease the variance, and
to estimate relative to a single periodogram of the entire data.
Although overlap between segments introduces redundant
information, this effect is diminished by the use of a non-
rectangular window. The combined use of short data records
and nonrectangular windows results in reduced resolution
of the estimator [46]. There is a tradeoff between variance
reduction and resolution. One can manipulate the parameters
in Welch’s method to obtain improved estimates relative to
the periodogram, especially when the signal to noise ratio
is low [47]. Equations (4), (5), and (6) can estimate the
periodogram spectral.

P(i)SM (f ) =
1
LU

L−1∑
n=0

∣∣∣wh (n) x (n+ iD) e−j2π fn∣∣∣2 (4)

U =
1
L

L−1∑
n=0

|wh (n)|2 (5)

PSW (f ) =
1
K

K−1∑
i=0

P(i)SM (f ) (6)

The periodogram of the each segment windowed is propor-
tional to the square of the Fourier transform of the signal.

Psw (f ) = γ
K−1∑
m=0

[{Xma }
2
+ {Xmb }

2] (7)

FIGURE 2. An example of one-minute segment of the EEG recording with 18 channels in the bruxism patients during the rapid eye
movement (REM) stage. Noted that each of channel is shown as relative amplitude for a better overview of all channels, where the amplitude
of the channel of ECG1-ECG2 is shown in 1/5 of that of raw data, while the others channels is illustrated the raw data such as Fp2-F4, F4-C4,
C4-P4, P4-O2, F8-T4, T4-T6, FP1-FP3, F3-C3, C3-P3, P3-O1, F7-T3, T3-T5, C4-A1, ROC-LOC, EMG1-EMG2, DX1-DX2, and SX1-SX2. The absolute
value of amplitude of each channel was given in [33].
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FIGURE 3. An example of one-minute segment of the EEG recording with 21 channels in the EEG signals of the normal subjects. Noted that
each of channel is shown as relative amplitude for a better overview of all channels except the HRV in beat per minute and SpO2 in %, where
the amplitude of the channel of ECG1-ECG2 is shown in 1/5 of that of raw data, while the others channels is illustrated the raw data such as
ROC-LOC, LOC-ROC, F2-F4, F4-C4, C4-P4, P4-O2, F1-F3, F3-C3, C3-P3, P3-O1, C4-A1, TERMISTORE, TORACE, ADDOME, Dx1-Dx2, SX1-SX2, and
Posizione. The absolute value of amplitude of each channel was given in [33].

FIGURE 4. The comparative analysis of original and filtered channels of EMG1-EMG2 in (A) bruxism patients and
(B) normal subjects. The comparative analysis of original and filtered channels of ECG1-ECG2 in (C) bruxism
patients and (D) normal subjects. The original waveform is in blue color and the filtered waveform is in green
color.

where γ = 1
KLU is constant, Xma and Xmb are real and

imaginary parts, respectively of Fourier transform for the
mth segment and LD is the data of segment.

E. DECISION TREE CLASSIFIER
Furthermore, the classifier of DT [48] is used to distin-
guish between the normal subject and Bruxism patients in
this work. The decision tree classification algorithm is an
instance-based induction learning method, which can extract
the tree classification model from a given disordered training
sample. The decision tree classification algorithm is relatively
simple.

III. RESULTS
A. ANALYSIS OF THE EEG SIGNAL
The total number of EEG channels of bruxism patients
and normal subjects were eighteen and twenty-one, respec-
tively. Specifically, the EEG signals of bruxism patients were
found to have various channels such as Fp2-F4, F4-C4,
C4-P4, P4-O2, F8-T4, T4-T6, FP1-FP3, F3-C3, C3-P3,
P3-O1, F7-T3, T3-T5, C4-A1, ROC-LOC, EMG1-EMG2,
ECG1-ECG2, DX1-DX2, and SX1-SX2 channel, as shown
in Fig. 2. And, the EEG signals of normal subject have
ROC-LOC, LOC-ROC, F2-F4, F4-C4, C4-P4, P4-O2, F1-F3,
F3-C3, C3-P3, P3-O1, C4-A1, EMG1-EMG2, ECG1-ECG2,
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FIGURE 5. The estimation of the power spectral density using welch method for EMG1-EMG2 channels in
(A) bruxism patients and (B) normal subjects. The estimation of the power spectral density using welch
method for ECG1-ECG2 channels in (C) bruxism patients and (D) normal subjects. This method converts the
time domain signal into the frequency domain spectrum.

TERMISTORE, TORACE, ADDOME,Dx1-Dx2, SX1-SX2,
Posizione, HR and SpO2 channel, as shown in Fig. 3. Noted
that each of channel is shown as relative amplitude for a better
overview of all channels, where the amplitude of the channel
of ECG1-ECG2 is shown in 1/5 of that of raw data, the HRV
in beat per minute and SpO2 in %, while the others channels
is illustrated the raw data. The absolute value of amplitude of
each channel was given in [33].

In this work, both channel of the EMG1-EMG2 and the
ECG1-ECG2 were extracted from EEG recordings for the
bruxism patients and normal subjects, as shown in Fig. 4.
As shown in Fig. 4, both the filtered EMG1-EMG2 and
ECG1-ECG2 channels in the bruxism patients and normal
subjects were compared with their corresponding original
signals, respectively. The low pass filter of hamming window
with the cutoff frequency 25 Hz shows a good capability
with less noisy, which passed both the EMG1-EMG2 and
ECG1-ECG2 channels of the bruxism patients and normal
subjects, and simultaneously blocked the high frequency of
the EEG signal. Moreover, the estimation of the power spec-
tral density of the bruxism patients and normal subjects of the
EMG1-EMG2 and ECG1-ECG2 channel of the EEG signal
were performed by the Welch methods, which converts the
signal from time domain into the frequency domain. This
method was used for the estimation of the power signal at
different frequencies in this study, as shown in Fig. 5.

B. NORMALIZED POWER OF THE EMG1-EMG2
AND ECG1-ECG2 CHANNELS
The normalized power specifies the percentage of a par-
ticular EEG activity out of whole power. It gives a better
indication of measurements of prognostic of features instead
of taking average power of specific EEG activity [49]. The
comparative analysis of the average normalized values of the
EMG1-EMG2 and ECG1-ECG2 channels for the bruxism
patients and normal subjects in the REM and W sleep stages
were presented in Table 2. The normalized value of bruxism

TABLE 2. Comparison between bruxism and normal human for the
EMG1-EMG2 and ECG1-ECG2 channels.

patients and normal subjects of EMG1-EMG2 channel for
the REM sleep stage are in the range of 0.9082-0.9770 and
0.7727-0.9472, respectively. While, the normalized value of
bruxism patients and normal subjects in the W sleep stage
are in the range of 0.5906-0.9820, and 0.7293-0.9696, respec-
tively. It has been found that the average normalized values
of the EMG1-EMG2 channel for bruxism patients and normal
subjects during REM were 0.9404 and 0.8893, respectively.
While, average normalized values of the bruxism patients
and normal subjects during W stage were found to be 0.8904
and 0.8836, respectively.

Furthermore, The normalized value of bruxism patients
and normal subjects for the ECG1-ECG2 channels in the
REM sleep stage are in the range of 0.4239-0.7159 and
0.3341-0.7649, respectively. While, the normalized value of
bruxism patients and normal subjects in the W sleep stage
are in the range of 0.4924-0.6346, and 0.2797-0.7579, respec-
tively. It has been found that the average normalized values
of the ECG1-ECG2 channel for bruxism patients and normal
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TABLE 3. Performance of the proposed work by using the decision tree classifier.

FIGURE 6. The comparison of the average normalized values of power
spectrum density between in bruxism patients and normal subjects for
the EMG1-EMG2 and ECG1-ECG2 channels, respectively. The value of the
estimated power spectral density in the bruxism is higher than that in the
normal during both sleep stages such as the REM and the W.

human during REM were 0.5612 and 0.5420, respectively.
While, the average normalized values for bruxism patients
and normal subjects during the W stage were found to be
0.5758 and 0.5467, respectively.

In summary, the calculated average normalized value of the
power spectral density in normal subjects is smaller than that
of bruxism patients in both EMG1-EMG2 and ECG1-ECG2
channels, as illustrated in Fig. 6.

C. CLASSIFICATION AND EVALUATION OF THE
PERFORMANCE OF THE PROPOSED METHOD
In this work, the classifier of DT are used to distinguish
between the normal subjects and bruxism patients, where
149 EEG recordings from the bruxism patient and 95 EEG
recordings from the normal subjects were extracted at both
channels of EMG1-EMG2 and ECG1-ECG2. To train and
test the proposed DT model, 5-fold cross validation was
employed in this study. All data was random divided into
5 subsets, each time 4 subsets were used for training the
DT model and the remaining one subset was used for
test. The evaluation of classification is processed in three
conditions (ECG1-ECG2, EMG1-EMG2, and the combina-
tion of ECG1-ECG2 and EMG1-EMG2 channels) with the
same process. Moreover, the performance of the proposed

method for prognosis of bruxismwas evaluated by specificity,
sensitivity, and accuracy, which are computed by following
equations below:

Sensivity =
TP

TP+ FN
(8)

Specifity =
TN

TN+ FP
(9)

Accuracy =
TN+ TP

TN+ TP+ FP+ FN
(10)

where, TP is the true positive, TN is the true negative, FP is
the false positive and FN is the false negative. As a result,
five models were obtained in this work and the performance
of the proposed method could be determined by the average
performance of the five DTs models, as shown in Table 3.

IV. DISCUSSION AND CONCLUSION
Previously, sleep disorder from normal and affected per-
son using time frequency analysis of power spectral density
approach applied on EEG signals using right of central – left
of central (ROC-LOC) channels were applied. The analysis
and calculation were performed in all stages of sleep of
power spectral density of each EEG segment. The results indi-
cated the possibility of recognizing insomnia events based on
delta, theta, alpha and beta segments of EEG signals [11].
Fulgencio et al. [4] presented that the prognosis of bruxism
based on the Poisson regression with robust variance and
chi square test. Barbosa et al. [25] presented that portable
single channel EMG device were able to detect bruxism by
the gold standard criteria method. A further clarification and
comparative analysis on sleep bruxism between patients and
normal human are required for better analysis. In the present
work, 244 one-minutes EEG recordings were collected from
two bruxism patients and seven normal subjects from CAP
sleep database, and a power spectrum density based approach
by using theDT classifier for prognosis of sleep bruxismwere
presented. We have calculated normalized value of power
spectral density both of the EMG1-EMG2 and ECG1-ECG2
channels recorded in patients and normal subjects during
the REM and W sleep stages. The average normalized val-
ues of the normal human are lower than bruxism patient
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in the EMG1-EMG2 and ECG1-ECG2 channels. Moreover,
the performance of the proposed approach for distinguishing
between the bruxism patients and normal subject was evalu-
ated and presented.

In the present work, we have developed a prognosis system
of the bruxism using the channel EMG1-EMG2 and the
channel ECG1-ECG2 of EEG signal. A total number of EEG
channels of bruxism patients and normal subjects obtained
were eighteen and twenty-one, respectively. The obtained
average normalized values of the power spectral density of
bruxism patients were higher than that of normal subjects
in both the channel of EMG1-EMG2 and ECG1-ECG2. The
EMG1-EMG2 and ECG1-ECG2 channels during REM and
W sleep stages of the bruxism are several folds higher than
those of the normal as indicated in Fig. 6. In this method,
the hamming window was helpful in the accuracy of the
system as it has negligible noise. The proposed method in
the prognosis of the bruxism has taken very less time as
compared with the traditional systems. Importantly, com-
prised with the accuracy of 62.20% reported in the previous
work on prognosis of sleep bruxism [50], the proposed PSD
based approach by using the DT classifier shows a higher
accuracy of 97.212%. Specifically, the obtained sensitiv-
ity, specificity and accuracy of the EMG1-EMG2 channel
are 94.734%, 92.096% and 93.604%, respectively. Mean-
while, the obtained sensitivity, specificity and accuracy of the
ECG1-ECG2 channels are 94.484%, 94.486% and 93.604%,
respectively. Importantly, the obtained sensitivity, specificity
and accuracy for the combination of the both EMG1-EMG2
and ECG1-ECG2 channels are 96.830%, 98.714% and
97.212%, respectively, which present a higher accuracy as
comparedwith either the EMG1-EMG2 or ECG1-ECG2. The
reason of the proposed method providing a better perfor-
mance could be addressed as that the sleep stage REM ismore
affected than the sleep stageW in EMG1-EMG2 channel, and
the sleep stage W is more affected than the REM stage in
ECG1-ECG2 channel [24], [25].

The present work showed potential applications in the
prognosis of bruxism by using the EMG1-EMG2 and
ECG1-ECG2 channel of the EEG signal. The research work
would provide a fast and effective prognosis system of the
human bruxism with high accuracy for medical applications,
especially for the more affected stages of sleep during vari-
ous disease conditions. The main application of the current
research is to diagnose the psychological patients in short
time with high accuracy.

The present work has certain limitations that the data from
the PhysioNet database used in this paper was relatively small
for statistical evaluation. Further work could be required
to collect a great number of clinical data to evaluate the
proposed approach for a higher accuracy. Another limita-
tion includes the careful interpretations of results from EEG
recording, since EMG1-EMG2 and ECG1-ECG2 channels of
the EEG signal were not be able to monitor the all signals
of the brain. Additionally, the third limitations are related
to filter used in this work. The low pass FIR filter were

used for finite range. In order to design a better filter, both
the finite impulse response (FIR) and the infinite impulse
response (IIR) in the same time should be implemented in
both continuous and discrete time signals.
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