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ABSTRACT It has been proved that themodified form of ridge regularized linear models (MRRLMs) can get
‘‘very close’’ to identifying a subset of Markov boundary. However, it is assumed that the covariance matrix
is non-singular, so MRRLMs cannot be applied to discover the Markov boundary (subset) from data sets
when the covariance matrix is singular. The singularity of the covariance matrix means that there are some
collinear variables in the data sets, and such data sets exist widely in the real world. In this paper, we present
a novel variant of ridge regularized linear models (VRRLMs) to identify a subset of Markov boundary from
data sets with collinear and non-collinear variables and, then, reveal the relationship between covariance
matrix and collinearity of variables in the theory. In addition, we prove theoretically that the VRRLMs can
identify a subset of Markov boundary under some reasonable assumptions and verify the theory on the
four discrete data sets. The results show that VRRLMs outperform the MRRLMs in discovering a subset
of Markov boundary on the data sets with collinear variables, while both of them have a similar discovery
efficiency of the Markov boundary (subset) on the data sets with non-collinear variables.

INDEX TERMS CRP_δ, Markov boundary, Markov blanket, variant ridge regression models, linear
regression models.

I. INTRODUCTION
Discovering causal relationships among variables from obser-
vation data sets is fundamental to the discipline, such as
computer science, medicine, statistics, economics and social
science [1]–[4]. Moreover, the causal relationships have been
widely accepted as an alternative to randomized controlled
trials(RCTs) [5]–[7]. In most cases, RCTs are impractical to
discover causal relationship from the observational data due
to expensive, unethical or impossible [8]–[10].

As a directed acyclic graph model [4], a Bayesian net-
work can represent causal relationships among all nodes
or variables in the network. Specifically, for a given target
node Y in the graph, it is only related to its parents, chil-
dren, and spouses of Y and independent with other nodes.
The set of its parents, children, and spouses of Y is called
Markov blanket (MB) of Y, which is different from Fuzzy
Markov [11]. The property of MB is widely used the feature
selection algorithm for classification or regression in the field
of machine learning [12]–[14]. In 1996, Koller and Sahami
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from StanfordUniversity, first associatedMarkov blanket and
feature selection, proved theoretically that a Markov blanket
of Y on a Bayesian network is an optimal feature subset of
variables for Y on the corresponding data set [15], while fea-
ture selection as one of the important pre-processing methods
in the field of machine learning has promoted the application
and development of Markov blanket theory tremendously.
Conversely, under some reasonable assumptions, an optimal
feature subset for Y is also a Markov boundary (blanket) of
Y on the corresponding Bayesian network. so it is another
method for obtaining Markov boundary (blanket) by getting
an optimal feature subset. This article focuses on this idea and
does some work.

Over the past two decades, many algorithmswere proposed
for discovering Markov blanket from observational data sets.
According to literature [16], at least 18 kinds of Markov
blanket induction algorithms, such as the famous IAMB [17],
HITON-MB [18], and PCMB [19], were mentioned from
1996 to 2013, and more MB induction algorithms were
emerged in the recent five years [20]–[24]. However most
of these algorithms are based on the conditional independent
test, the main reason is that the probability and topological
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structure information of Bayesian network are helpful to
define the constraint condition effectively [16]. Other algo-
rithms based on scoring, which widely used in Bayesian
network structure learning, were rarely used in Markov
blanket induction. Only two algorithms namely DMB and
TPDMB [25] were proposed to identify Markov boundary
in 2013.

In recent years, a new method based on regularized linear
models was proposed to identifyMarkov blanket or boundary
from data sets. At present, there are only two articles related
to regularized linear models used to discover Markov bound-
ary or blanket. Literature [26] focused on Bayesian network
structure learning, while literature [27] theoretically proved
that a subset of Markov boundary can get from a solution
of MRRLMs. These algorithms have good performance in
certain special conditions or on the special data sets.

The main contribution of MRRLMs recovers relationship
between Markov boundary and solution of MRRLMs by
combining ideas in Markov boundary and sufficient dimen-
sion reduction theory. One of the important assumptions of
MRRLMs is that the covariance matrix is positive definite
and non-singular, hence, MRRLMs can’t be applied to the
case where the covariance matrix is singular. The singu-
larity of the covariance matrix means that there are some
collinear variables in the data sets, and such data sets exist
widely in the real world. The second deficiency of MRRLMs
is that the response variable is multi-dimensional, but in
practice, the response variable is usually one-dimensional.
Hence, to tackle the challenges above, we propose new mod-
els (VRRLMs) based on regularized linear models, which is
also our first motivation to write this article.

The second motivation is that using the regularized lin-
ear models to discover MB is still at stage of theoretical
research, there are many unknowns that need to be explored
and proved. For example, how to choose the appropriate
expectation of number of variables within MB, and the sim-
plification of covariance matrix operation, etc. We hope that
more researchers will take part in this work in the future.

It should be emphasized that MB theory has a strong
practical value in practice. For example, MB used for fea-
ture selection can reduce the data set dimension, reduce the
search space dimension, and save time and storage cost for
data collection, storage, transmission and preprocessing [16].
MB used for causality is often used to instead of randomized
controlled trials (RCTs) to discover causality in data sets due
to MB containing causal variables.
In this paper, we limit the response variable as one-

dimensional variable and propose VRRLMs to identify a
subset of Markov boundary from data sets with collinear and
non-collinear variables.

In summary, our contributions of this paper are listed as
follows:

1) We propose VRRLMs to tackle the problem of
MRRLMs. Experiments on the data sets with collinear
variables show that our proposed method is better than
MRRLMs.

2) We prove VRRLMs in theory and demonstrate the
performance of VRRLMs in discovering subset of
MB from data sets with collinear and noncollinear
variables.

The structure of this article is as follows. The next section
briefly reviews the work related to MB and feature selection
as well as relationships between MB and feature variables.
The third section briefly introduces the theoretical foundation
of MRRLMs. In the fourth section, we reveal relationships
between collinearity of variables and singularity of the corre-
sponding covariance matrix, and then propose VRRLMs and
prove it theoretically under some assumptions. Section five
shows the experimental results and analysis, and section six
concludes.

II. RELATE WORK
Existing algorithms are generally divided into two cate-
gories: constraint and scoring, Constraint-based algorithms
can be further divided into two categories: algorithms
based on conditional independence test (ACIT) and algo-
rithms based on topology structure information (ATSI) [16].
But the mainstream induction algorithms are still based
on constraint, so constraint-based algorithms occupy a lot
of space.

ACIT are directly constructed according to the definition of
Markov blanket. This kind of algorithms has a simple search
strategy, so that it has high time efficiency. Unfortunately, its
data efficiency is not high, therefore it needs more samples.
ACIT can be traced back to K&S [15] which not only requires
the expectation of the number of variables within Markov
boundary (blanket) but also requires the number of variables
to be deleted in advance. To meet this challenge, Margaritis
et al. provided a newMB induction algorithm GSMB [28] for
constructing a complete Bayesian network through Markov
blanket local properties, but the implementing process of
GSMB is fundamentally different from that of K&S. The
implementing process of K&S is to calculate distribution
distance with the help of the information entropy theory;
while the implementing process of GSMB is divided into two
stages: growth and shrink. The greedy heuristic strategy in the
growth stages makes a variable as a candidate variable within
Markov blanket as long as the condition-independent testing
holds. Such a process directly leads to some false positive
variables added to the candidateMarkov blanket, but the false
positive variables are removed from the candidate Markov
blanket in the shrinking stage. Tsamardinos et al. proposed
IAMB [17] which optimized GSMB in the growth stage, and
reduced the number of conditional independent test. How-
ever, IAMB inherited the problem of low data efficiency of
GSMB and also neededmore samples. Some researchers paid
attention to the flaw of GSMB (or IAMB), and then proposed
different improved algorithms of IAMB successively, such as
inter-IAMB, IAMBnPC [17], fast-IAMB [29], k-IAMB [19],
and λ-IAMB [30]. However, IAMB and its series of improved
algorithms basically inherited the two-stage strategy
of GSMB.

VOLUME 7, 2019 113207



S. Yan et al.: Markov Boundary Discovery Based on Variant Ridge Regularized Linear Models

ATSI is based on the topological structure information of
the Bayesian network and checks the conditional set between
the independent non-MB variables and the target variable
which is often much smaller than MB of target variable,
so the discovery efficiency of ATSI is relatively high, but
more complex heuristic strategies also bring more computa-
tional costs. In addition, ATSI can derive more topological
information than ACIT. they can not only get whether a node
is a variable within MB but also distinguish the parents-
children nodes and spouse nodes, part of children nodes and
part of V structures. The typical representatives of ATSI
are MMMB [31] and HITON-MB [18] proposed in 2003.
The implementing process of both also is divided into two
stages, but it is different from that of IAMB (or GSMB).
The first stage is to learn parents-children nodes, the second
stage is to learn spouse nodes, and finally get MB. In 2007,
MMMB (or HITON) was proved to be unable to guarantee
obtaining the correct Markov blanket [19], Pena et al. pro-
posed improved PCMB [19] and Fu et al. proposed improved
IPC-MB [32] respectively, but the two algorithms inherited
implementing process of HITON (or MMMB). The differ-
ence between PCMB and IPC-MB algorithm is mainly in
the implementing strategy of learning the parents-children
nodes. PCMB chooses a forward strategy, while IPC-MB
chooses a backward strategy. In addition, some researchers
synthesized the advantages of the two or more algorithms
above mentioned, and proposed some new algorithms, for
example, MBOR [33] and DOS [34].

Score-based algorithms are actually strategy based on scor-
ing and searching, and it is widely used in Bayesian network
structure learning, but rarely used inMarkov blanket learning.
In 2013, DMB and RPDMB [25] based on scoring were
reported for the first time, their experimental reports showed
that RPDMB has competitive against PCMB in accuracy,
but it required more time costs. Considering that the time
efficiency of IPC-MB is much higher than that of PCMB,
it can be reasonably predicted that IPC-MB has much better
time efficiency than RPDMB. Even so, the two algorithms
are an important attempt.

In recent years,MB induction algorithms based on regular-
ized linear models were reported in the literature. Although
there is not too much related work, it provides a new idea
for obtaining MB. Mark Schmidt [26] used BIC scoring
to propose an MB induction algorithm (L1MB) with lasso
regressionmodels for building a Bayesian network, but he did
not give theoretical proof for L1MB. V.Strobl [27] used the
modified form of ridge regularized linear models (MRRLMs)
to explore the relationships between explanatory variables
and response variable under certain conditions, and theoret-
ically proved that the set of variables corresponding to the
non-zero solution of the models is a subset of MB, and it has
great significance in theory.

Feature selection, also known as variable selection or
feature subset selection which is different from feature
extraction [35], selects the minimum feature subset (feature
variables) from the variables to satisfy the optimization of

performance metric [36]. It is often used to improve the accu-
racy of the classifier or regressionmodels and the explanatory
ability of the data production process [37] in the field of
machine learning. There are many methods available for
feature selection, regularized linear model(s) is (are) one of
the important methods, the main idea of this method is to
compress coefficients, hence it also called as coefficient com-
pression method [38], [39]. By adjusting penalty parameters
until more coefficients are zero or tend to zero, users delete
the corresponding variables to achieve the purpose of variable
selection. LASSO and ridge regression based on regularized
linear models are common feature selection methods. In this
paper, ridge regression modes are used.

The relationships between feature variables and Markov
blanket were proved theoretically in the literature [15], [40]
(see definition 15 and theorem 7). Under the condition that
P(Y |X) can be accurately estimated, the optimal predictor of
the target variable is theMarkov blanket of the target variable,
where, the optimal predictor is the feature variable that satis-
fies some conditions. Literature [27] expanded the concept
of the optimal predictor, and defined the minimal optimal
predictor with the help of the optimal predictor. Moreover,
it theoretically proved that a minimal optimal predictor is
a Markov boundary. For MRRLMs, under some assump-
tions, the set of variables corresponding to the non-zero row
coefficients (or non-zero coefficients) of the solution of the
models is a subset of Markov boundary. However, in practice,
the target variable is usually a one-dimensional variable and
these conditions are hard to hold, therefore, MRRLMs finally
become method based on ranking.

III. DEFINITION AND BACKGROUND
In order to introduce our proposed work, some necessary
definitions and relevant contents are presented as follows.

A. NOTATIONS
In addition to specific annotations, the notations used in this
paper and their related relationships are listed in Table 1:

TABLE 1. Notations.

B. MARKOV BOUNDARY THEORY
1) Markov boundary (blanket): A Markov blanket(MB) of
a response variable Y in the joint probability distribution of
variablesX is a set of variables conditioned on which all other
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FIGURE 1. Markov blanket of Y.

variables are independent of Y, that is, for every F⊆(X\M),
Y⊥F|M, thenM is a Markov blanket of Y; if no proper subset
of M satisfies the definition of Markov blanket of Y, then
M is a Markov boundary of Y. As shown in the Figure 1,
M = (X1,X2,X5,X6,X7). PC = (X1,X2,X6,X7) is set of
causal variables of Y.

2) Intersection property: For the variables X with a joint
probability distribution P and any subset A, B, C, and D,
the joint probability distribution P was said to satisfy the
intersection property if A⊥B|(C∪D) and A⊥D|(C∪B)⇒
A⊥(B ∪D)|C.
3) GlobalMarkov condition: The joint probability distribu-

tion P of variables satisfies the global Markov condition for
a directed graph G = 〈H, E〉 if and only if any three disjoint
subsets A, B, C from H, if A is d-separated from B given C
in G, then A is conditionally independent of B given C in P.
Theorem 1: if a joint probability distributionP of variables

X satisfies the intersection attribute, then for V⊆X, there
exists a unique Markov boundary of V [41].
Theorem 2: if a joint probability distributionP of variables

satisfies the global Markov condition for a directed graph G,
then the set of parents, children, and spouses of Y is a Markov
blanket of Y [41].
According to the Theorem 2, a Markov boundary of Y is

composed of parents, children, and spouses of Y. For the
convenience of description, Markov boundary or Markov
blanket is no longer distinguished in this paper.

C. SUFFICIENT DIMENSION REDUCTION THEORY
1) Sufficient Dimension Reduction (SDR): SDR attempts to
find a Matrix η ∈ Rp×d (d ≤ p), such that Y⊥X |ηTX , where
X = (X1;X2 . . . ;Xp)
2) Dimension Reduction Subspace (DRS): if Y⊥X |ηTX ,

the column space of η is called a DRS denoted as S(η), where,
the column space of η refers to the space spanned by the
columns of η. A subspace SY |X is called a central DRS for
Y | X if SY |X is a DRS and SY |X ⊆ SDRS for all DRS SDRS
3) Linear intersection property: The distribution P of

variables Z satisfies the linear intersection property if for
any α1, α2, α3, α4 ∈ R(p+1)×d . Where d ≤ p + 1 such
that αT1 Z⊥α

T
2 Z |(α

T
3 Z , α

T
4 Z ) and αT1 Z⊥α

T
4 Z |(α

T
3 Z , α

T
2 Z ),

we also have αT1 Z⊥(α
T
2 Z , α

T
4 Z )|α

T
3 Z

Theorem 3: If a distribution P of variables satisfies the lin-
ear intersection property, then there exists a central dimension
reduction subspace [27].

The relationships between Markov boundary and DRS is
introduced below.

Suppose M is a Markov boundary of variables, pM
is denoted as the number of variables within M, η =
(ηM ; ηX\M ) ∈ Rp×d (d ≤ p) is the dimension reduction
matrix, where ηM has pM , and ηX\M has p− pM rows.
Theorem 4: if a joint probability distribution of variables

(Y; X) satisfies the linear intersection property, then there
exists a central DRS S(ηM ) for Y| M, and S(η) is the central
DRS for Y| X, where ηX\M is a matrix of all zeros [27].
Theorem 5: if a joint probability distribution of variables

(Y; X) satisfy the linear intersection property, let d denote the

number of column dimensions in η, thenwe have
d∑
i=1
|ηj,i|>0,

where the row j corresponds to a variable within M, and
d∑
i=1
|ηj,i| = 0, when the row j corresponds to a variable within

X\M [27].
We thus find that variables within Markov boundary are

identified by discovering the central DRS and identifying any
deviations from zero in the coefficients of η.

D. MODIFIED FORM OF RIDGE REGULARIZED
LINEAR MODELS
Let K denote the number of the column dimensions of
α and β, and let k ∈ [1, 2, ..K ] = K, Consider the following
linear regression model:

Y = α + βTX + ε,where,X∈ Rp×n,

α ∈ RK×n, β ∈ Rp×K , ε ∼ N (0, σ 2I)

If we have the following assumptions: (1)
1) The global Markov condition holds.
2) The joint probability distribution of (Y;X) satisfies the

linear intersection property.
3) The covariance matrix

∑
X is positive definite.

4) E(X |ηTX) is a linear function of ηTX , when
Y⊥X |ηTX .

5) The matrix β∗ is a non-zero matrix, and the solution to
the following optimization problem:

argminE{µ(α + βTX,Y )} + λtr(βT
∑

Xβ) (1)

then S(β∗k ) ⊆ S(η), for all k ∈ K, where S(η) is any
DRS, µ is a convex function, λ is model’s parameter,
and λ > 0.

The above mentioned show the relationships between the
solution β∗k of MRRLMs and the dimension reduction
matrix η. We can recover a subset of the parents, children, and
spouses of Y from the non-zero coefficients of β∗. However,
the target variable Y is usually a one-dimensional vector,
that is, K = 1 in practice. Let β = (

∑
X)−1/2γ , then

equation (1) is equivalent to the following normal ridge
regression models.

argminE{µ(α + γ TZ,Y )} + λγ T γ (2)

where Z = (
∑
X )−1/2X .
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Obviously, the covariance matrix
∑

X must be non-
singular. The theoretical results show that MRRLMs cannot
be applied to the case where

∣∣∑X
∣∣ is zero. The subsequent

experimental results show that the closer
∣∣∑X

∣∣ be close to
zero, the faster the discovery efficiency drops.

IV. VARIANT RIDGE REGULARIZED LINEAR
MODELS (VRRLMs)
This section first introduces the variable collinearity which
leads to the singularity of covariance matrix, and then
presents VRRLMs as well as theoretical proof.

A. COLLINEARITY OF VARIABLES
For a X = (X1;X2; . . . ;Xp), Xi ∈ Rn, i = 1..p, if vari-
ables X are collinear, then there exists a set of constants
k0, k1, k2, . . . , kp not all zero, such that the following formula
holds:

kTX = k0,where, k = (k1, k2, . . . , kp)T

So, we have

Var(kTX) = Var(
p∑
i=1

kiXi) =
p∑
i=1

p∑
j=1

kikjCov(Xi,Xj)

= kT
∑

Xk = Var(k0) = 0

Therefore, we have kT
∑

Xk = 0. Recall that covariance
matrix

∑
X is a very special matrix: it is square (P × P),

symmetric and positive-definite, meaning that kT
∑

Xk ≥ 0.
Let λi(vi) is eigenvalue (eigenvector) of

∑
X , i = 1, 2, ..p.

such that
∑

Xvi = λivi. Obviously, we have

kT
∑

Xk =
p∑
i=1

(kT vi)2λi = 0

Therefore, there exists at least one λi = 0.
Since

∑
X = VDVT , where V is the matrix and D is

the diagonal matrix whose entries are λ1, λ2, . . . , λp. So the
covariance matrix

∑
X is singular and vice versa.

B. VARIANT RIDGE REGULARIZED LINEAR MODELS
We add a matrix I to MRRLMs to solve the question
about collinearity of variables. Let X̃ ≈ X + δσ , δ ∈

[−0.5, 0.5], σ = (σ1; σ2; . . . ; σp), σi ∈ Rn , where σi is
an independent identically distributed variable subject to the
standard Gaussian distribution N (0, 1).
Suppose Y⊥X̃ |ηT X̃ holds (δ ∈ [−0.5, 0.5]) when

Y⊥X |ηTX , the hypothesis is completely reasonable, because
the design matrix X is composed of observation data which
has observation errors itself. Moreover, δ is very small num-
ber.
Theorem 6:

∑
X̃ =

∑
X + δ2I(δ 6= 0) is non-singular

and positive definite.
Proof: Let λi (vi ) is an eigenvalue (eigenvector) of

∑
X ,

then
∑

X̃ =
∑

X + δ2I = V(D C δ2I)VT , λi + δ2 is
the eigenvalue of

∑
X̃ . Obviously,

∑
X̃ is non-singular for

δ 6= 0.

We know that
∑

X̃ is a non-singular matrix which means
kT
∑

X̃k 6= 0. As can be seen from section III.A.

Var(kT X̃) = kT
∑

X̃k ≥ 0

Therefore, we have kT
∑

X̃k > 0(k 6= 0), so
∑

X̃ is positive
definite.

The following is a revision of theorem 3.5.2 in the litera-
ture [27], and the conclusion also holds. Obviously, VRRLMs
is equivalent to MRRLMs when δ = 0 and 0K = 1.
Theorem 7: Let S(η) is any reduce dimension subspace,

such that E(X̃ |ηT X̃) is a linear function of ηT X̃ when
Y⊥X̃ |ηT X̃ . The covariance matrix

∑
X̃ is positive definite,

and we have the assumption (1) and (2) in the section III.D.
if the following formula (3) can be minimized for α∗ ∈ R,
β∗ ∈ Rp.

L(α, β) = argminE{µ(α + βTX,Y )}

+λtr(βT (
∑

X̃)β) (3)

Then, S(β∗) ⊆ S(η)
Proof: Let X̃ ≈ X + δσ , following formula holds (see

theorem 3.5.2 in the literature [27]).

E{µ(α + βTX,Y )} ≈ E{µ(α + βT X̃,Y )}

≥ EY ,ηT X̃ [µ(α + β
TE(X̃ |ηT X̃),Y )] (4)

Also consider,

Var(βT X̃) = E(Var(βT X̃ |ηT X̃))+ Var(βTE(X̃ |ηT X̃))

≥ Var(βTE(X̃ |ηT X̃)) (5)

Therefore, we apply proposition 4.2 of the literature [42],
so that

L(α, β) ≥ L(α,Pη(
∑

X̃)β)

where, Pη(
∑

X̃) = η(ηT
∑

X̃η)−1ηT
∑

X̃
Let S(η) be minimum DRS such that E(X̃ |ηT X̃) is still lin-

ear function of ηT X̃ . we have E(X̃ |ηT X̃) = CT ηT X̃(C 6= 0),
then

Var(βTE(X̃ |ηT X̃)) = Var(βTCT ηT X̃)

= βTCT ηT (
∑

X̃)ηCβ

Wewant to show that we have [βTCT ηT ]
∑

X̃[ηCβ] > 0.
if S(β) ⊃ S(η), so S(β) ⊃ S(ηC), and β is not orthogonal
to a column in ηC , we have ηCβ 6= 0 by the definition of
orthogonality. Therefore it implies that (5) is strict inequal-
ity, and such a β is impossible to minimize equation (3),
so S(β∗) ⊆ S(η).

C. ALGORITHM
We employ Covariance Ridge with Permutation test and

parameter δ ( CRP_δ ) to solve object function (3) for recov-
ering coefficient specific p-value. As shown in Algorithm 1,
the input and output parameters are introduced first. X and
Y are input data set, where X = (X1;X2; . . . .;Xp),Xi is an
n-dimensional row vector and Y is a one-dimensional column
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Algorithm 1 CRP_δ
Require: X , Y, ref _mb_num, δ, numPermute.
Ensure: crp_mb
1: Calculate covariance matrix

∑
X

2:
∑

X =
∑

X + δ2 ∗ I
3: Data transformation: X =

∑
X−0.5 ∗ X

4: Calculate γ0 and λ with ridge regression(cvglmnet).
5: Calculate original β0 =

∑
X−0.5 ∗ γ0.

6: Calculate number of the row of X : p;
7: Set the matrix mat_p(p, numPermute),
8: for k = 0 to numPermute do
9: Random perm Y.

10: Calculate γ with ridge regression(glmnet)
11: Calculate original β =

∑
X−0.5 ∗ γ

12: mat_p(:, k) = (abs(β) ≥ abs(β0))
13: end for
14: p_Value = (sum(mat_pT )+ 1)./(numPermute+ 1)
15: Calculate index p_value_index from small to larger
16: Calculate crp_mb : p_value_index(1 : ref _mb_num)
17: return crp_mb

vector; ref _mb_num refers to the number of variables within
MB returned by a reference algorithm or expected value given
in advance; δ is a regulatory parameter, NumPermute is the
number of duplicates in permutation test and crp_mb is the
MB returned by CRP_δ. From the first row to the third row of
the algorithm, the covariance matrix of X denoted as

∑
X

is calculated first, then the
∑

X is modified by applying
the method shown in Theorem 7 in this paper, and then the
variable replacement is made as shown in formula (2). At this
moment, VRRLMs become normal ridge regression models.
The fourth row is a question for the solution of the normal
ridge regression models. There are many off-the-shelf tools
and software available, in this paper, the cvglmnet function
in the Glmnet toolkit is used to get the model parameters,
while the parameter λ is selected by 10-fold cross-validation.
Lines 8 to 15 are the process of computing the p-value by
using the permutation test. Line 15 is the sequence of the
X variable obtained by sorting the p-value from smallest to
largest. Since permutation test [43] is not the focus of this
paper and is omitted here. Line 16 returns the index set
crp_mb of the front ref _mb_num variables in the sequence
of p-values. According to Theorems 4, Theorems 5, and
Theorems 7, crp_mb is a subset of MB.

V. SIMULATION
To verify the theory above, we evaluate the algorithms
using Precision Rate, Recall Rate, F-Score and running
time. Experimental data are composed of four discrete data
sets: Alarm(10), Child(10), Gene, and Insurance (down-
loaded: http://pages.mtu.edu/lebrown/supplements/mmhc_
paper/mmhc_index.html). The attribute of data sets is listed
as follows.

TABLE 2. Attribute of data sets.

TABLE 3. Selection of reference algorithm (F-Score).

To realize the performance comparison between sev-
eral classical algorithms and the regularized linear models,
we first choose several classical algorithms to compare with
each other on the same data set in advance (see Table 3),
and then choose the optimal algorithm (HITON: G2 test and
α = 0.05) to compare with regularized linear models (see
Table 4 and Table 5). The reasons are that the algorithms
based on regularized linear models are essentially sorting
algorithms, and they need the expectation of the number of
variables withinMBwhich is provided byHITON in advance.
It should be emphasized that the main purpose of the experi-
ment is to compare the discovery performance of MRRLMs
and VRRLMs on the data sets with collinear variables.

A. ENVIRONMENT AND PARAMETER
We use the Causal Explorer and Glmnet package for matlab,
and call HITON-MB, IAMB, interIAMBnPC and GSMB
algorithm in Matlab2014a. The running environment of
the experiment is that the processor is Inter(R) Core(TM)
i7-6700 CPU @3.4g, the memory is 16GB, and the oper-
ating system is 16-bit windows 7. The CRP-δ algorithm is
implemented by Matlab language, and cvglmnet and glmnet
function in the Glmnet package is directly called.

The experiment specifically investigated the discovery effi-
ciency of VRRLMs when δ = (0, 0.2, 0.3, 0.4, 0.5). The
experimental parameters are agreed as follows:

1) Zero eigenvalue problem.An eigenvalue λi is considered
equal to zero when the absolute value of eigenvalue is less
than 1*E-12. Obviously, the covariance matrix is singular
when λi = 0; the covariance matrix is non-singular when
λi 6= 0.

2) The number of samples. Considering the high calcu-
lation costs of covariance operation and permutation test,
the sample size of data set we uniformly considered is
500 or 1000.

3) The number of target node. Considering the compu-
tational time costs, In the experiment, fifteen target nodes
randomly selected are adapted to evaluate MB discovery
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TABLE 4. MRRLMs (η = 0) and VRRLMs (η 6= 0) on the data sets with collinear variables.

TABLE 5. MRRLMs (η = 0) and VRRLMs (η 6= 0) on the data sets with non-collinear variables.

efficiency of the data set, and the average of the discovery
efficiency of fifteen target nodes was considered as the dis-
covery efficiency on the data set.

4) The number of permutation test and penalty parameter.
Theoretically, the larger the number of permutation test is,
the more accurate the result will be. Considering the time
costs, the number of permutation test in this experiment is
set to 199. The same penalty parameter λ is used when the
estimation parameters are repeatedly calculated.

B. DATA RESULTS AND ANALYSIS
1) Results on the data sets with collinear variables.

By calculating the eigenvalue of the covariance matrix of
the data sets in advance, we find collinearity of variables

in the data sets shown in the Table 4, repeat 10 times and
calculate the average discovery efficiency of Markov bound-
ary, and the results are also shown in Table 4 (the standard
deviation is also shown in brackets).

As can be seen from Table 4, in terms of precision, recall
rate or F-Score, the performance of VRRLMs significantly
higher than that of MRRLMs on the data set with collinear
variables, which also indicates the correctness of VRRLMs in
theory. More specifically, taking the F-Score as an example,
discovery performance of VRRLMs can be improved by
3.54 times at the highest than that of MRRLMs (i.e. from
0.151 to 0.536 in Gene_s500_v1 dataset) and 1.42 times at the
lowest (i.e. from 0.408 to 0.58 in insurance_s500_v1 dataset).
Note the size of the data set’s dimension, we seem to get
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FIGURE 2. Small Bayesian network.

FIGURE 3. Discovery efficiency on the data set (Alarm10_s500_v1) with
collinear variables.

a rule: The discovery performance of MB of VRRLMs is
more obvious than that of MRRLMs on the data sets with
higher dimension of data sets or more samples. But in
terms of running time costs, the opposite is true. That is,
the higher the number of variables or the larger the sample
size, the longer the running time will be. Note that MRRLMs
can’t be applied in theory when the covariance is singular,
but in practice, when the absolute value of the eigenvalue
is less than 1*E-12, the determinant value of the covariance
matrix is close to zero, and the discovery efficiency ofMarkov
boundary decreases when δ = 0.We can alsomore intuitively
understand the performance advantages of VRRLMs from
Figure 3 and Figure 4. In addition, both of them have lower
discovery efficiency ofMB than that of HITON-MB which is
also consistent with the literature [27].

We can also see that HITON-MB is significantly higher
than MRRLMs and VRRLMs in identifying MB from
Table 4. The reason is that MRRLM and VRRLM can
get ‘‘very close’’ to identifying a subset of MB; while
HITON-MB based on conditional independent test can
approximately find all of theMB. However, the above results
do not negate the superiority of VRRLM in finding the key
causal variables affecting a target variable. The implemen-
tation process of Algorithm 1 says the VRRLM is actually
a sequence of ranking from small to large based on p-value
(i.e. causal correlation from strong to weak), we can eas-
ily select the most primary or secondary variable from the
p-value sequence, such a result has great significance in prac-
tice. For example, when studying the effect of drug therapy,
we mainly focus on the primary or secondary factors; while
HITON algorithm selects a group of influential variables with

FIGURE 4. Discovery efficiency on the data set (Gene_s500_v1) with
collinear variables.

FIGURE 5. Discovery efficiency on the data set (Child_s500_v2) with
non-collinear variables.

strong causal correlation from variables, especially when
there are many influencing variables, people cannot obtain
the primary or secondary variable at all.

Figure 2 shows a Bayesian network with 8 nodes. (http://
www.bnlearn.com/bnrepository/discrete-small.html). For
target node 5 (tuberculosis or pneumonia), the result obtained
by HITTON algorithm is {3,4,6,7,8}, and the result of
VRRLM is {3,4,7,8,6}. Unfortunately, both algorithms have
the same the primary and secondary causal variables (tuber-
culosis, pneumonia), so we look at the third factor. VRRLM
outputs node 7 (i.e. X-ray); while HITTON outputs node 6
(i.e. bronchitis). However, for patients with tuberculosis or
pneumonia, it is obvious that the causality of X-ray is stronger
than bronchitis, and the superiority of VRRLM is reflected.

The VRRLMs proposed in this paper are actually an exten-
sion of MRRLMs, which also provides the theoretical basis
for the improvement of the MB discovery algorithms based
on regularized linear models in the future.

For δ, we suggest that δ should be consistent with the
assumptions in the paper, which is to select values between
−0.5 and 0.5 (except 0). Our experience is that when δ is
between −0.5 and 0.5 (except 0), the performance is found
to be relatively stable. Otherwise, there is a tendency for
performance to decline on the some data sets. This conclusion
is also applicable to VRRLMs on the data set with non-
collinear variables.

2) Result on the data sets with non-collinear variables.
Similarly, the variables within the data sets shown in the

Table 5, were found to be non-collinear. The calculation
results of the two models are also shown in Table 5.
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FIGURE 6. Discovery efficiency on the data set (Child_s500_v9) with
non-collinear variables.

The Table 5 says that there is little difference in the discov-
ery efficiency of the twomodels (δ = 0 and δ 6= 0), therefore,
MRRLMs can be replaced by VRRLMs. We unify models
which can get better discovery efficiency on the data sets with
collinear and non-collinear variables. The same conclusion
can be drawn more easily from Figure 5 and Figure 6.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose VRRLMsmodified fromMRRLMs
to identify a subset of Markov boundary on the data sets
with collinear and non-collinear variables. Theoretical and
experimental results show that the MB discovery efficiency
of VRRLMs is significantly improved than that of MRRLMs
on the data sets with collinear variables, while both of them
are basically similar discovery efficiency on the data sets with
non-collinear variables, therefore, VRRLMs can completely
replace MRRLMs and is fully applicable to discover MB on
the data sets with collinear and non-collinear variables.

The literature [27] theoretically assumes that MRRLMs
has the ability of variables selection, in fact, neither the ridge
regression models nor MRRLMs has the ability of variables
selection, both of them need to use other techniques for
implementing variable selection. The most common method
is used to set the threshold of p-value (such as 0.05), but the
results vary with different thresholds, hence, it is difficult to
get the optimal solution in practice, this is why we do not
directly use the p-value threshold but adopt the p-value rank-
ing method. By using p-value ranking method, the example
in the literature [27] shows that MRRLMs are competitive
against the traditional algorithm in discovering part of theMB
on the NOTCH1 and RELA gene data sets, we reasonably
infer that VRRLMs have similar conclusions.

VRRLMs can significantly improve the discovery perfor-
mance of Markov blanket on data sets with collinear vari-
ables. However using regularized linearmodels to getMarkov
blanket is still at stage of the theoretical research and practical
exploration, so there are still some limitations of application,
for example, ridge regularized linear models are worse than
traditional algorithms such asHITONon our low dimensional
data sets. Moreover, high-dimensional covariance matrix and
permutation test need too much computing power. However,
regularized linear models as an important method of fea-
ture selection, such as ridge regression and LASSO, have

been widely applied in the fields of machine learning in
high-dimension small sample data sets and achieved good
performance, therefore, further work can be carried out in
the following aspects in the future: (1) covariance matrix
shrinkage algorithm. Under the condition of no loss or little
loss of matrix information, the optimization algorithm of
covariance matrix calculation is studied to reduce the com-
puting costs. (2) Study the new computing p-value method
for improving discovery performance. The permutation test
used in this paper is essentially a method to computing the
P value. Compared with the traditional p-value method, and
the permutation test can significantly improve the discovery
performance of MB(subset), but it takes more computing
time.
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