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ABSTRACT As a major consumer of energy, the industrial sector must assume the responsibility for
improving energy efficiency and reducing carbon emissions. However, most existing studies on industrial
energy management are suffering from modeling complex industrial processes. To address this issue,
a model-free demand response (DR) scheme for industrial facilities was developed. In practical terms,
we first formulated theMarkov decision process (MDP) for industrial DR, which presents the composition of
the state, action, and reward function in detail. Then, we designed an actor-critic-based deep reinforcement
learning algorithm to determine the optimal energy management policy, where both the actor (Policy) and
the critic (Value function) are implemented by the deep neural network. We then confirmed the validity of
our scheme by applying it to a real-world industry. Our algorithm identified an optimal energy consumption
schedule, reducing energy costs without compromising production.

INDEX TERMS Artificial intelligence, deep reinforcement learning, demand response (DR), industrial
facilities, actor-critic.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Given the continuous growth of the global population and the
increasing demand for energy, sustainable and efficient uti-
lization of power resources has always been a high priority to
avoid an energy crisis [1]. The industrial sector has long con-
sumed over 50% of global energy [2], and the energy-related
CO2 emissions from this sector are predicted to grow to an
extent greater than emissions from other sectors between
2017 and 2050 [1]. A well-designed energy management
scheme for industrial facilities would alleviate pressure on the
power grid, improving energy efficiency and cutting carbon
emissions. To achieve this target, demand response (DR) is
a promising approach that motivates end-users with flexi-
ble loads to vary their energy consumption in response to
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dynamic electricity prices or other incentives [3]. In recent
years, the effect of DR on energy savings has attracted
a great deal of attention [4], [5]; moreover, DR is also
regarded as one of the key drivers of progress in smart grid
technology [6].

However, compared to the large degree of DR participa-
tion in the residential and commercial sectors, the industrial
potential of DR is not well understood [7]. Over the past
decade, the Lawrence Berkeley National Laboratory carried
out a long-term program to tap into the potential of DR
for different industrial areas, includingwastewater treatment
plants, agricultural irrigation, refrigerated warehouses, and so
on [8]. They identified barriers to widespread application of
DR in industry, from the following two viewpoints [9]. The
first problem is industrial diversity. Unlike the residential and
commercial sectors, the energy consumption of production
lines using diverse items of equipment varies considerably.
Successful DR implementation requires a high-resolution
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model capturing the physical characteristics of all equipment
in the system [7]. However, it is not easy to model an entire
industrial facility. Specifically, apart from electricity manage-
ment, raw, intermediate, and auxiliary resources for produc-
tion must all be considered. The second problem is the need
to guarantee daily production; potentially, DR could result
in production losses or cost increases because production
must be shifted [9]. Thus, industrial customers are wary of
DR programs. To overcome these, there is a pressing need
for a solution that avoids complex modeling while main-
taining production and minimizing energy costs; an artificial
intelligence-based deep reinforcement learning (RL) method
can be used to this end.

Deep RL [10], [11] is a combination of RL [12] and deep
learning [13]. RL is derived from the psychological theory of
the same name, and develops policies that stochastically opti-
mize control strategies by employing trajectories produced
by interactions with a real system [14]. In practical terms,
deep RL has found applications in robotics [15], financial
trading [16], allocation of communication resources [17], and
vehicular networking [18]. In certain tests, deep RL outper-
forms human experts in terms of optimal decision-making;
a famous example is the AlphaGo [19].

FIGURE 1. Schematic structure of deep reinforcement learning agent.

Unlike traditional methods that employ dynamic program-
ming techniques [20], RL does not require a detailed mathe-
matical model of the system to ensure optimal control. Rather,
the RL agent regards the target system as its environment, and
then optimizes the control policy by interacting with it. More
specifically, the agent/environment interaction proceeds in
discrete steps. During each step, depending on the current
state of the environment, the agent chooses an action based
on its current policy. The environment feeds back a reward
and then enters the next state. Thus, the RL agent learns
to adjust its policy by reference to the relationships among
the state, action, and reward. After gaining sufficient expe-
rience, the RL agent can determine an optimal policy asso-
ciated with the maximum cumulative reward. For example,
Figure 1 shows a schematic of a deep RL agent. Within
the agent/environment interaction of the RL, the deep neural
network maintains the internal policy of the agent, which
determines the next action based on the current state of the
environment.

B. LITERATURE REVIEW
Taking advantage of its model-free characteristics, RL has
been applied in several studies for solving energy manage-
ment problems, which can be identified into four major
groups [21]: heating ventilation and air conditioning (HVAC)
systems, electric vehicles (EVs), smart home appliances,
and distributed generation with energy storage. HVAC is
the common area for providing DR capabilities, which can
contribute to load curtailment events by modifying the tem-
perature set points, participating in load shifting accord-
ing to price dynamic [22]. For example, in [23]–[25],
Ruelens et al. performed batch RL-based studies involving
electric water heaters and heat pump thermostats; determin-
ing an optimal temperature control policy (i.e., that with the
lowest energy cost). In [26], De Somer et al. demonstrated a
data-driven control approach for DR in residential buildings,
using RL to optimally schedule the heating cycles of domestic
hot water buffers to maximize the self-consumption of local
photovoltaic production. In [27], Patyn et al. discussed the
implementation of RL for heat pumps in a DR setting and its
cost-effectiveness in comparison to different types of neural
networks. The increasing utilization of EVs holds a great DR
potential by their electrical storage capacity as well as their
inherent connectivity [21]. In [28], Wan et al. developed an
RL-based energy management scheme for electric vehicles,
in which the scheduling problem is formulated as a Markov
decision process (MDP). A model-free approach based on
deep reinforcement learning was proposed to identify the
optimal charging strategy. Also, in work with electric vehi-
cles, Chiş et al. [29] developed an RL-based algorithm to
solve a DR problem: howmuch daily energy should be added
to plug-in electric vehicle batteries? Vandael et al. [30] used
a batch RL method to develop a day-ahead charging plan
for an electric vehicle fleet; plug-in time, power limitations,
battery size, and power curves were all considered. In 2010,
O’Neill et al. [31] introduced the application of RL to control
smart home appliances. In the same area, Wen et al. [32]
developed a device-based DR scheme for residential and
small commercial buildings; the energy scheduling problem
was decomposed into several device clusters and reformu-
lated as an RL problem. Kaliappan et al. [33] used a RL algo-
rithm to control a set of home appliances, which considered
the balance between energy consumption and discomfort of
the consumer. Liu et al. [34] focused on reducing the elec-
tricity cost of shiftable loads. In the application related to dis-
tributed generation with energy storage. Qiu et al. [35] used
RL to minimize energy consumption by controlling a battery
under the presence of solar PV panels. Kofinas et al. [36] pro-
posed a decentralized cooperative multi-agent RL algorithm
to maximize the self-energy consumption in a microgrid.

However, although several RL-based energy management
algorithms are available, few can be applied in indus-
try, for two reasons. First, most feature relatively simple
implementation scenarios, considering only the operation
of individual items of equipment, such as those amenable
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to thermostatically controlled loading, and electric vehicles;
interactions among different types of equipment are not con-
sidered. However, in a real-world production line, almost
every task requires different equipment. Second, most stud-
ies considered only electricity costs; they thus sought to
minimize energy costs only. However, although reducing
energy costs is desirable considering the overall operations
costs of an industrial facility, normal production cannot be
compromised.

Considering all of the factors mentioned above, in this
paper we develop a deep RL-based DR scheme for industrial
facilities. First, we introduce a MDP framework suited for
industrial DR; this considers not only energy but also produc-
tion resource management. Moreover, the designed reward
function does not compromise production but still minimizes
energy costs. Next, based on this framework, we design an RL
algorithm that optimizes energy management. Specifically,
we formulate a variant of the actor-critic algorithm [37], [38]
that is suitable for hourly price-based DR to accelerate the
learning process. Moreover, as many equipment items and
resourcesmust be considered simultaneously, we use the deep
neural network [39], which acts as the function approxima-
tor, to map the relationships among the state, action, and
reward. Finally, the proposed scheme is validated by applying
it to steel powder manufacturing (SPM), i.e., a real-world
industry.

To the best of our knowledge, this is the first proposal
of using deep RL to manage the DR of industrial facilities
characterized by the simultaneous operation of many types
of equipment associated with the need for various resources
(i.e., electricity and production materials). The remainder of
the paper is organized as follows. The problem is formulated
in Section II, which introduces industrial energy management
and the correspondingMDP framework. Section III describes
our deep RL algorithm. Section IV is a real-world manufac-
turing case study showing how our scheme can be imple-
mented. Section V analyzes the simulation results. Section VI
provides the conclusion and future work.

II. PROBLEM FORMULATION
Here, we first introduce industrial energy management and
then present our MDP framework.

A. SYSTEM DESCRIPTION
1) GENERAL ARCHITECTURE
In accordance with the standard of [40], Figure 2 shows
an energy management model for industrial facilities, illus-
trating the interrelationships of various elements. In detail,
these elements include a smart grid (SG), smart meter (SM),
gateway (G), production planner, factory energymanagement
system (FEMS), energy load, utility power line (UPL), facil-
ity power line (FPL), wide area network (WAN), and local
area network (LAN). From the macro perspective, the system
can be divided into two parts; the SG belongs to the utility
side and the industrial facility belongs to the demand side.

FIGURE 2. Energy management model for industrial facility.

Between them, the smart meter and gateway serve as the
interface for energy delivery and information exchange.More
specifically, the smart meter records electricity transmission
between the UPL and FPL. The gateway transmits messages
(such as electricity prices) between the WAN and LAN.
On the demand side, the LAN enables message exchange
among elements, and the FPL distributes the electricity. The
FEMS serves as the system core, controlling all energy man-
agement. In detail, during operation, depending on the tar-
get set by the production planner and the electricity price
notified by the gateway, the FEMS determines a working
schedule for every energy load based on pre-installed energy
management algorithms and strategies. The energy load is
that of all energy consumers. These can be divided into
three types [40]: non-shiftable equipment (NSE), shiftable
equipment (SE), and controllable equipment (CE). Specifi-
cally, the energy demands of NSE must always be satisfied,
independent of the electricity price. The energy demands
of SE and CE are adjustable; SE can be switched ON or
OFF and the energy demand of CE is controllable, exploiting
various pre-specified multiple operating points (OPs). There-
fore, the energy demand of equipment with only a single
OP (i.e., NSE) is fixed, whereas the demands of those with
multiple OPs (i.e., CE and SE) are flexible depending on
the working state; thus, SE and CE are prime candidates for
industrial DR.

As mentioned in Section I, in addition to power usage,
production materials must also be managed. For exam-
ple, Figure 3 shows how to produce a final product via
co-operation between different items of equipment. In detail,
to produce the final product ‘1’, feeds ‘1’ and ‘2’ are
processed by NSE creating intermediate ‘a’. Feed ‘3’ is
processed by CE to produce intermediate ‘b’. Then, inter-
mediates ‘a’ and ‘b’ are further processed by SE to pro-
duce the final product ‘1’. Thus, to complete production,
storage of intermediates plays an important role in terms
of collaborations among different equipment items. Specif-
ically, during manufacturing, if the production rate of early
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FIGURE 3. Co-operation between different equipment items.

equipment is higher than the utilization rate of later equip-
ment, the resource must be temporarily stored in an inter-
mediate storage unit. In contrast, if the production rate of
early equipment is slower than the utilization rate of later
equipment, the later equipment must go on standby until
sufficient resources accumulate in the storage unit.

2) MATHEMATICAL REPRESENTATION
Based on the above architecture, we developed a series of
equations quantizing problems associated with industrial DR,
including a model of the energy demand, production resource
balance, and objective functions. Note that, as our scheme
is devised based on hourly prices announced by the util-
ity company, the DR problem is discrete; the time unit for
equipment operation is taken to be 1 hour. Thus, for ease of
description, we divided the 24 hours of the day into 24 stages;
each begins as an hour commences and expires when the next
hour commences. For example, the first hour of the day, from
00:00 to 01:00, is termed stage 1, and stage 12 is the period
from 11:00 to 12:00.

a: ENERGY DEMAND MODEL
Let i be the index of an equipment item and j the index of
an OP. As any item of equipment can be in only a single
state during 1 hour, Equation (1) constrains the OP choice
of equipment, where λji is the binary indicator for OP j(j ∈
[1, J ]) of equipment item i(i ∈ [1,N ]). During stage t , if OP
j is chosen, λji,t is equal to 1. Otherwise, λji,t is 0. On this
basis, Equation (2) determines the energy demand of a single
equipment item, where E it denotes the energy demand of
equipment item i at stage t , eji denotes the corresponding
energy demand of OP j, and J is the total number of OPs. The
total energy demand (EDt ) for all equipment items is summed
using equation (3), where N is the total number of items of
equipment.

1 =
∑J

j=1
λ
j
i,t (1)

E it =
∑J

j=1
λ
j
i,te

j
i (2)

EDt =
∑N

i=1
E it (3)

b: PRODUCTION RESOURCE BALANCE MODEL
Let x be the index used to identify production resources.
Equations (4) and (5) determine the total production for and
the utilization of resource x (Pxt and U x

t respectively) at

stage t , where pj,xi is the production rate of resource x afforded
by OP j of equipment item i, and uj,xi is the utilization rate of
resource x. Let Rxt denote the residual of storage of resource
x at the end of stage t. Then, the production resource balance
is modeled by equation (6); the amount of a resource stored at
the end of the current stage (Rxt ) depends only on the amount
stored during the previous stage (Rxt−1) and new production
(Pxt ) and utilization (U x

t ) during the current stage t .

Pxt =
∑N

i=1

∑J

j=1
pj,xi λ

j
i,t (4)

U x
t =

∑N

i=1

∑J

j=1
uj,xi λ

j
i,t (5)

Rxt = Rxt−1 + P
x
t − U

x
t (6)

c: OBJECTIVE FUNCTIONS
As mentioned earlier, a real-world industrial facility seeks
to achieve production targets using minimal energy cost.
On this basis, the objective functions of industrial DR are
summarized in equations (7) and (8). Equation (7) defines the
need to minimize the daily energy cost (thus over 24 stages);
EDt is the entire energy demand during stage t and HPt is
the hourly electricity price notified by the utility company.
Equation (8) reflects the fact that production must not be
compromised; the residual of final product storage (RF24) at
the end of the last daily stage (stage 24) must thus be equal to
or greater than the predefined production target.

min
{∑24

t=1
EDt HPt

}
(7)

RF24 ≥ Production target (8)

B. MARKOV DECISION PROCESS FRAMEWORK
Based on the above description, we here present our MDP
framework for industrial energy management. An MDP is a
mathematical framework modeling decision-making in sit-
uations where outcomes are partly random and partly con-
trollable, and has been widely adopted to solve optimization
problems via RL [41]. In general, the standard MDP is a
four-tuple (S,A,T ,R) , where S and A denote the state and
action, respectively, T is the state transition probability, and
R is the reward function. However, as the state transition
probability is not necessarily required for RL [18], [42],
we here consider only the state, action, and reward function.

1) STATE FORMULATION
From the viewpoint of the FEMS, the composite state of the
environment (S) includes the state within the facility (S f ) and
the external state (Se). In our case, the state of the industrial
facility is defined as the residual of each production resource
storage, because this can be used to follow production status
in real time. The external state is defined as the real-time elec-
tricity price, which is important when seeking to minimize
energy costs. Accordingly, equation (10) shows a sample
of the state at stage t(st ), featuring a time indicator of the
current stage (t), the current electricity price (HPt) notified
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by the utility company, and the real-time storage residual of
all resources (R1t ,R

2
t , . . . ,R

x
t ).

S = S f ∪ Se (9)

st = (t,HPt,R1t ,R
2
t , . . . ,R

x
t ) (10)

2) ACTION FORMULATION
The FEMS schedules the energy demands of all energy loads
in the facility. Thus, the learning agent is instructed to deter-
mine the OPs for all items of CE and SE. Equation (11) shows
a sample action at taken at stage t , where ait is the OP chosen
for equipment item i at stage t , N is the total number of
equipment items.

at = (a1t , a
2
t , . . . , a

i
t , . . . , a

N
t ) (11)

3) REWARD FUNCTION FORMULATION
In terms of the industrial DR described in Section II-A, this
multi-objective optimization must both reduce energy costs
and ensure that production is complete. Therefore, the reward
function is formulated by (12), which simultaneously consid-
ers rewards for resource production (rpt ) and energy cost (r

c
t ).

rt = rpt − r
c
t (12)

rpt =
∑x

1
Pxt (13)

rct = EDt HPt (14)

In a real production line, feeds (raw materials) must be
processed through several equipment items to create the final
product. Thus, from the perspective of production resources,
whenever materials are processed into a new type, they
progress toward the final product. We define the production
reward (rpt ) in (13); the value depends on the all resource
productions during the current stage. In detail, x is an index
of different resources and Pxt is the amount of resource x
production during stage t . On this basis, as RL seeks to maxi-
mize the cumulative reward, the learning agent will schedule
all equipment items to process all available resources (to
earn the production reward). Thus, maximization of

∑24
t=1 r

p
t

implies that all available resources are processed into the
final product within the 24 stages; production is complete.
On the other hand, equation (14) defines another reward item
rct , which can be simply viewed as a punishment meted out
for energy consumption. Specifically, EDt denotes the entire
energy demand at stage t , during which time HPt is the
electricity price.

max
24∑
t=1

rt = max
24∑
t=1

rpt −min
24∑
t=1

rct (15)

In summary, the reward function of (12) both minimizes
energy costs and ensures full production in an industrial
DR environment; optimization attracts the highest cumulative
rewards in all 24 stages. Based on this MDP framework,
after the learning process converges, (15) is the maximized
value; the term max

∑24
t=1 r

p
t ensures completion of produc-

tion and the term min
∑24

t=1 r
c
t minimizes energy costs.

III. DEEP REINFORCEMENT LEARNING ALGORITHM
Based on our MDP framework for industrial energy
management, we now present an actor-critic-based deep
RL algorithm that we use to determine the optimal energy
management policy for industrial facilities when real-time
electricity prices vary. We first present the background on
actor-critic and deep RL, and then our algorithm.

A. THE ACTOR-CRITIC
During interactionwith the environment, the goal of the learn-
ing agent is to choose a sequence of actions maximizing the
cumulative reward. On this basis, the function that indicates
the action to choose in a certain state is termed a policy [43],
denoted by π (a|s). The cost-to-go function used to evaluate a
state or a state-action pair is termed a value function. In detail,
equation (16) formulates a state value function V (st ) used
to estimate the expected cumulative reward from state st .E
denotes the expectation, rt is the reward, and 0 < γ < 1 is a
discount factor. Thus, the state-action value functionQ(st , at )
is used to estimate the expected cumulative reward if action at
is selected in state st . RL algorithms can be divided into three
types: value-based (critic-only), policy-based (actor-only),
and actor-critic. The words actor and critic are synonyms of
the policy and value function, respectively [10].

V (st) = E
{∑∞

t=0
γ trt | s = st

}
(16)

Q (st , at) = E
{∑∞

t=0
γ trt | s = st , a = at

}
(17)

In value-based methods such as Q-learning [44] and
SARSA [45], the learning agent uses only the value function
to choose the action, and there is no explicit function for the
policy. Specifically, when choosing an action, the agent uses
the value function to estimate the expected rewards of all
candidate actions and then makes a decision. For example,
a straightforward way is to select the greediest action (that
with the highest reward). However, to ensure optimization,
the agent must iterate all candidate actions for every state to
determine the best solution, but this is time-consuming, espe-
cially when the state and action spaces are large. Therefore,
application of value-based algorithms alone is not practical
in the real world; the state and action spaces are always
complex and sophisticated. On the contrary, policy-based
algorithms do not use the value function. Rather, they directly
parameterize policy, and update parameters using the policy
gradient method [46]. Thus, unlike the step-by-step process
required when using the value function, the agent directly
performs sequential policy-specific actions, and adjusts the
action choice by reference to the cumulative reward only
after proceeding through an entire learning episode (from the
initial to the terminal state). However, as bias from any single
step accumulates throughout the entire episode, single-step
gradient estimations exhibit high-level variance; learning is
thus slow.
To overcome the disadvantages of these above two types of

RL, they are combined into the actor-critic that can be con-
sidered as an advanced version of the policy-based method.
The actor still determines the actions, and the critic uses its
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FIGURE 4. Schematic structure of actor-critic-based learning agent.

value function to evaluate current policy. Unlike what occurs
when the actor works alone, joining of the critic reduces
variance when estimating single-step gradients. Specifically,
during policy optimization, the critic uses the value function
to estimate the cumulative reward for all states that the agent
has experienced. Then, differences between expected and
received values are recorded as temporal difference (TD)
errors, indicating whether the current policy is better or worse
than expected. The actor uses the TD errors when updat-
ing action-choice gradients in each state, reducing variance
and accelerating learning. Therefore, actor-critic algorithms
usually exhibit better convergence speed than when an actor
or critic works alone [14]. Figure 4 is the schematic of an
actor-critic-based learning agent; the actor determines actions
and the critic processes the rewards. During learning, after
observing the latest state of the environment, the actor will
choose the action in accordance with its current policy. On the
other hand, the critic will evaluate the quality of this decision
using the value function. The resulting TD error serves as
feedback for both the actor and critic, based on which the
policy and value function can be adjusted, respectively.

B. DEEP REINFORCEMENT LEARNING
During traditional RL using a simple lookup-table or linear
function approximator, it is difficult to identify an optimal
scheduling policy when the state space is large. This is termed
the ‘‘curse of dimensionality’’ [47]. Thus, we exploited recent
advances in the training of deep neural networks to han-
dle such complexity [48]. Especially, AlphaGo [19] encour-
aged an intuitive understanding of what deep RL could
achieve, and deep neural networks have proven to be powerful
function approximator [39]. Here, as the MDP framework
for industrial DR features multiple state inputs and mul-
tiple action outputs, we used the deep neural network to
approximate both the policy and value function. Figure 5
shows an example implementation of the actor and critic
networks. Specifically, in line with the general structure of
the actor-critic architecture in Figure 4, the inputs to both
networks are states of the agent’s environment; this contains
m-dimensional subitems numbered s1 to sm. Accordingly,
the actor network output features n units labeled a1 to an;
these are the chosen actions. On the other hand, the output
of the critic network is a state value v; this is the expected
cumulative reward from the current input state. On this basis,
the TD error (the difference between the estimated state value
and the real reward) is the reinforcement signal used to adjust
the weights of both the actor and critic networks.

FIGURE 5. Example implementation of the actor and critic network.

C. DEEP RL ALGORITHM FOR INDUSTRIAL
DR MANAGEMENT
Based on the above introduction, the entire pseudocode of
the proposed algorithm is provided in Algorithm 1. As stated

Algorithm 1 Deep RL Algorithm for Industrial DR
Management
0. Initialize the experience buffer for st , at , rt , st+1
1. Initialize actor network π (at | st , θ) and critic network
V (st , θv)
2. Initialize episode counter K= 1
3.For episode K= 1, 2, . . . ,Kmax do:
4. Initialize step counter t= 1
5. Reset gradients dθ= 0 and dθv = 0
6. Receive initial state st
7. For step t= 1, 2, . . . , 24 do:
8. Perform at according to policy π (at | st , θ)
9. Receive reward rt and new state st+1
10. Store the sample (st , at , rt , st+1) into the expe-
rience buffer
11. t = t + 1
12. End for
13. For step t = 24, . . . 2, 1 do:
14. Get sample (st , at , rt , st+1) from the experience
buffer
15. Calculate cumulative discounted reward:

Rt =
{
rt + γRt+1, t < 24
rt , t = 24

16. Estimate state value through the value function:
Res = V (st , θv)

17. Calculate temporal difference (TD) error:
δt = Rt − Res

18. Accumulate gradients for actor network:
dθ = dθ + ∇θ logπ (at | st , θ) δt +

β∇θH (π (at | st , θ))
19. Accumulate gradients for critic network :

dθv = dθv + ∂δt2/∂θv
20. t = t − 1
21. End for
22. Update the weights θ in actor network using dθ
and the weights θv in critic network using dθv
23. Clear the experience buffer
24. K = K + 1
25.End for
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above, this is a variant of the actor-critic algorithm; both
the actor and the critic are estimated by the deep neural
network. Thus, we use π (a | s, θ) to denote the actor network
and V (s, θv) to denote the critic network, where θ and θv
are parameters within the two networks, respectively. The
parameters are updated using the policy gradientmethod [47].

From the macro view, the algorithm can be decomposed
into three stages: initialization (lines 0 to 2), accumulation of
experience (lines 7 to 12), and learning from experience (lines
13 to 21). In addition, the entire learning process is controlled
by two variables: the episode counter K (line 3) and the step
counter t (lines 7 and 13). In the context of hourly price-based
DR, we define a learning episode as a day, and a step as an
hour. Thus, a learning episode features 24 steps.

During initialization (line 0), the buffers for the state (st ),
action (at ), reward (rt ), and next state (st+1) are initial-
ized, to allow the experience that will be accumulated to
be stored for future learning. Then, the neural networks for
the actor and critic are initialized using the random parame-
ters θ and θv, respectively, in line 1. Commencing on line 3,
the algorithm enters episodic iteration; Kmax is the number
of iterations required for the convergence that determines an
optimal energy management policy. At the beginning of each
episode, i.e., from lines 4 to 6, the agent resets the step counter
t = 1, and the gradients of both the policy and the value
function network parameters are reset to 0. Then, the agent
begins to observe the environment’s initial state st .

Commencing on line 7 and proceeding to line 12, the algo-
rithm engages in experience accumulation. In detail, as the
step counter t increases, the agent sequentially chooses action
at based on state st by reference to the policy π (at | st , θ),
during this process, each pair of samples (st , at , rt , st1) is
stored in the experience buffer to allow for future learning.

After an entire episode (24 steps) has been executed,
from lines 13 to 21, the algorithm enters the learning-
from-experience phase. In detail, line 14 reads sample
(st , at , rt , st1) from the experience buffer and, based on these,
sums the discounted rewards for each state in line 15, where
0 < γ < 1 is the discount factor. In line 16, the estimated
value for each state is generated by reference to the current
value function. Then, line 17 calculates the TD error δ. Here,
a positive δ means that the current policy is ‘good’ because
it created a state with a better-than-expected reward. On the
contrary, a negative δ means that the current policy is ‘bad’
because it created a state with a worse-than-expected reward.

Based on the TD errors, the actor and critic accumulate
their gradients in lines 18 and 19, respectively, using the
general method of [46]. Moreover, using the method of [49],
an entropy regularization term β∇θH (π (at |st , θ)) is added to
actor policy gradient to encourage exploration, where H is
entropy and β is the exploration factor. Then, the parameters
of both the policy and value function networks are updated
in line 22. Line 23 clears the experience buffer to allow
for future storage of new experiences. Line 24 updates the
episode counter. The learning process begins afresh until the
cumulative reward reaches its maximum value.

IV. CASE STUDY AND SCHEME IMPLEMENTATION
To verify the feasibility of our DR scheme, we now conduct a
real-world case study of SPM. First, we introduce the detailed
manufacturing process and then the implementation of our
scheme.

A. STEEL POWDER MANUFACTURING
The field of powder metallurgy creates opportunities that
are lacking when materials are in their conventional forms;
melting is not required during complex component forma-
tion [50]. Thus, metallic powders for additive manufacturing
(three-dimensional printing) are widely used in, for example,
the aerospace, medical, and rapid tooling fields. Figure 6 [51]
provides an overview of SPM, which is linear and associated
with strict specifications for all processing steps. In detail,
the process features an atomizer, a dehydrator, a dryer, two
crushers, two classifiers, a magnetic separator, a reduction
furnace, and a blender. As the principal intermediate products
differ, we divide the process into three phases. The first is iron
powder fabrication. Obviously, the atomizer is a key compo-
nent of the entire process, transforming molten iron into iron
powder via several high-pressure water jets. Next, the powder
slurry is dewatered by the dehydrator and dryer. Steel powder
is formed in the second step. As the powder particles may
differ in size, the dry powder must be further homogenized
in the crusher and classifier. The magnetic separator is used
to remove any remaining mixed slag. Then, the iron powder
is deoxidized in the reduction furnace and changed into steel.
In the third and last step, as powder condensation is common,
attributable to the high temperature of the reduction furnace,
the steel powder must be further refined by the crusher and
classifier to control particle diameter. Then, the blender is
used to mix other materials with the powder to satisfy market
demands.

FIGURE 6. Steel powder manufacturing process.

To mirror the real situation in the factory, apart from the
principal production line equipment, we add two essential
auxiliary components. One is a water-cooling tower (WCT),
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which generates the cool water indispensable in terms of
metal atomization, and cooling of the dryer and reduction
furnace. The other is a nitrogen generator (NG) deliver-
ing pure nitrogen to the reduction furnace, ensuring an
oxygen-deprived atmosphere.

B. SCHEME IMPLEMENTATION
Tables 1–5 show the detailed SPM parameters. Specifically,
Table 1 lists the energy demands of all equipment items,
including the atomizer, dehydrator, dryer, crusher, classi-
fier, magnetic separator, reduction furnace, blender, WCT,
and NG. Tables 2–4 list their resource-processing capaci-
ties. Table 5 details the relationship between each equipment

TABLE 1. Detailed information on energy demand.

TABLE 2. Processing capability of equipment in the main process.

TABLE 3. Cool water processing capability.

TABLE 4. Pure nitrogen processing capability.

item and resource storage. The production target was set to
120 tons of steel powder per day. Note that, apart from the
number of OPs, during simulation, the learning agent does not
access any detailed information from the SPM process, such
as the equipment’s resource-processing capabilities, energy
demand, or the relationships between equipment items and
production resources. The MDP framework solving the SPM
energy management problem is as follows:

1) STATE FORMULATION
In line with the MDP framework of Section II-B, at stage t,
as shown in (18), the environment consists of an indicator
of hourly stage (t), the day-ahead hourly electricity price
(HPt,), and the real-time residuals of the 13 resources listed
in Table 5.

st = (t,HPt,Rmolten iront , . . . ,

Rsteel powdert ,Rcool watert ,Rpure nitrogent ) (18)

TABLE 5. Detailed information on each resource storage.

2) ACTION FORMULATION
As shown in (19), the action taken at each stage involves
determination of the OPs for all 10 equipment items listed
in Table 1.

at = (aatomizert , . . . , ablendert ,

awater cooling towert , anitrogen generatort ) (19)

3) REWARD FUNCTION FORMULATION
The reward is calculated using (12), (20), and (21), where rpt
is the sum of resource production during stage t and rct is
the total energy cost for each equipment item; P denotes the
amount of resource production, E is the energy demand, and
HPt is the electricity price.

rpt = Ppowder slurryt + Pwet powdert + . . .+ Psteel powert

+Pcool watert + Ppure nitrogent (20)

rct = HPt
(
Eatomizert + . . .+ Eblendert + Ewater cooling towert

+Enitrogen generatort
)

(21)
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TABLE 6. Determined operating point of each CE and SE.

V. RESULTS AND ANALYSIS
Applying the algorithm of Section III to the case study of
Section IV, the learning agent and the corresponding SPM
process are programmed with the aid of TensorFlow [52],
an open-source software library used to develop AI-related
applications. The day-ahead hourly electricity prices used in
the simulation were obtained from ComEd, a utility company
operating in the Pennsylvania-New Jersey-Maryland (PJM)
electricity market [53].

FIGURE 7. Cumulative reward during the learning process.

To demonstrate the performance of the proposed scheme,
the detailed simulation results based on the electricity price
for July 20, 2017 are discussed in detail in this section.
Figure 7 shows the cumulative reward as the number of
training episodes increased. Initially, the reward is relatively
low because the learning agent is engaging in trial-and-error.
As experience is gained via episodic iteration, the learning
agent constantly adjusts its policy and the cumulative reward
gradually increases. Finally, the algorithm converges at about
episode 1,800, yielding the optimal policy. Table 6 shows
the selected actions of that optimal policy, thus the OPs of
CE and SE during each stage. To better illustrate all of these
actions, Figure 8 shows the corresponding aggregated energy
demands. As expected, our scheme exhibits the desired DR
behavior, shifting energy demand from high-price stages to
low-price stages. Taking the WCT and the NG as examples,
when the price is low, such as during stages 1–7, both were
scheduled to work at high energy-demandOPs (Table 6); con-
siderable energy was consumed. Correspondingly, nitrogen

FIGURE 8. Aggregated energy demand of the CE and SE.

FIGURE 9. Residual in the storage for cool water and pure nitrogen.

and cool water were stored, as shown in Figure 9. In con-
trast, when the price was high, such as during stages 16–20,
both equipment items worked at low energy-demand OPs
(Table 6); energy demand decreased, as did nitrogen and
cool water storage (Figure 9). Thus, stored resources were
produced during periods when electricity was cheaper and
became exhausted during periods of high-price electricity.

To further emphasize the capabilities of our DR scheme,
Figure 10 compares the energy demands of the entire man-
ufacturing process during each stage. Specifically, Case 1
(brown) shows the demand when electricity price fluctu-
ations were ignored; all equipment items simply operated
in sequence to complete production; no DR algorithm was
involved. Case 2 (blue) shows demand based on our DR
scheme. The gray dashed line with the triangles represents
the electricity price. The energy demand during the relatively
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FIGURE 10. Total energy demand comparison.

FIGURE 11. Total expense comparison.

high-price period was reduced by our DR scheme compared
to that of Case 1, indicating that our scheme affords efficient
DR control, eliminating peak loads. Figure 11 compares the
total expenses. The total energy cost of Case 2 (blue) using
our DR scheme was 24.12% less than that of Case 1 (brown).
Thus, our DR scheme reduces energy costs.

VI. CONCLUSION AND FUTURE WORK
We present a deep RL-based industrial DR scheme opti-
mizing industrial energy management. To ensure practical
application, we designed an MDP framework for industrial
DR and formulated corresponding state, action, and reward
function. We used an actor-critic-based deep RL algorithm
to determine the most efficient manufacturing schedule; both
the policy and value function were estimated by the deep
neural network. We simulated a real-world manufacturing
process and our DR scheme balanced energy demand, reduc-
ing energy costs and ensuring that production targets were
met.

In the future, wewill consider applying RL to awider range
of DR applications. Compared to the large number of studies
on price-based DR, incentive-based DR is indispensable but
there has beenmuch less research in this area.Wewill attempt
to build a suitable RL framework for incentive-based DR
applications.
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