
Received May 19, 2019, accepted June 8, 2019, date of publication June 20, 2019, date of current version July 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2924040

Experimental Validation of Inheritance Metrics’
Impact on Software Fault Prediction
SYED RASHID AZIZ1, TAMIM AHMED KHAN 1, AND AAMER NADEEM 2
1Department of Software Engineering, Bahria University, Islamabad 44000, Pakistan
2Department of Software Engineering, Capital University of Science and Technology, Islamabad 45750, Pakistan

Corresponding author: Tamim Ahmed Khan (tamim@bahria.edu.pk)

ABSTRACT Software faults can cause trivial annoyance to catastrophic failures. Recent work in software
fault prediction (SFP) advocates the need for predicting faults before deployment to aid testing process.
Object-oriented programming is complex while comparing it with procedural languages having multiple
dimensions wherein inheritance is an important aspect. In this paper, we aim to investigate how much
inheritance metrics assist in predicting software fault proneness. We first select the Chidamber and Kemerer
(CK) metrics, most accepted metric suite for predicting software faults and inheritance metrics. We use
65 publicly available base datasets having CK metrics and some other inheritance metrics to evaluate the
impact of inheritance on SFP. We split each dataset into further two datasets: inheritance with CK and
CK without inheritance for comparison of results. An artificial neural network (ANN) is used for model
building, and accuracy, recall, precision, F1 measures, and true negative rate (TNR) are used for measuring
performance. Comparison is made and the results show an acceptable contribution of inheritance metrics in
SFP. The testing community can safely use inheritance metrics in predicting software faults. Moreover, high
inheritance is not desirable, as this can potentially lead to software faults.

INDEX TERMS Inheritance, object oriented, software metrics, software fault prediction, machine learning.

I. INTRODUCTION
A bug in a software program is a failure or fault that prevents
the program from running as intended, for example, generat-
ing an incorrect result. A software fault is a defect that causes
a software failure at runtime. A strategy is needed to predict
faults earlier, as it helps to reduce faults and improve the qual-
ity of software. The essential part of software development is
to ensure that developed software has enhanced quality. It is a
well-proven fact that the sooner a fault is detected, the sooner
it is resolved, the lesser it costs [1].

The cost of business software worldwide was $ 3.8 billion
in 2014 [2] which includes 23% of quality assurance and test-
ing [3]. These results demonstrate the importance of software
testing in the Software Development Life Cycle (SDLC).
Modern software is usually large and complex which makes
it extremely fault-prone. Ultimately the aim of software engi-
neers is to launch high-quality software without faults. Unfor-
tunately, faults are unavoidable therefore certain mechanisms
are required to locate and correct them from software.

The associate editor coordinating the review of this manuscript and
approving it for publication was Tao Zhang.

Early detection of faults can save time, cost and reduce
software complexity as it is proportional to testing. In order
to locate all residual faults, thorough testing is required.
Exhaustive testing is impossible [4], [5]. So this is the reason
testing sometimes exceeds 50% of total development cost [6].
This number could go up to 75% according to the IBM
report [7].Testing of object oriented programs is vital and
unavoidable to deliver fault free software. Thoroughly testing
all the classes of programs with limited resources is a chal-
lenging job, relatively it would be better to locate and test the
fault prone classes more thoroughly to aid testing process.

Experimental studies show that most techniques cover less
than 40% for statement coverage [8]. The testing criteria
are quite expensive for coverage such as Decision Coverage,
Branch Coverage, Condition Coverage etc. Since these tech-
niques require knowledge about internal program structure
along with the generation of test case to follow a particu-
lar path. Machine learning instead requires neither of such
requirements and aid the testing process by locating fault
prone classes to reduce testing efforts. The faults are not
dispersed evenly. Some classes are faultier than others and
are grouped into clusters [9]. Research reveals that faults are

85262 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-8209-6100
https://orcid.org/0000-0002-8641-8795

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

confined to 42.04% of total software in a project [10], while
Ostrand et al. concludes that there are faults in only 20%
of the total components of the software project [11]. This
makes the effective prediction of faulty classes an essential
measure of modern software. Since, after deployment, trou-
bleshooting is many times more expensive than the repair
during the process of software development [12]. In addition,
the late prediction of the faults propagates into the subsequent
stages of development and complicates the entire prediction
process. Likewise, the prediction in the early stages is a
challenge due to the nonexistence of faulty data in these
stages [13].

The presence of faults considerably affects software reli-
ability, quality, and maintenance cost. The ratio of faults is:
15-50 per thousand lines of code (KLoC) for an industrial
project, 10-20 for KLoC for the Microsoft application [14]
and 63000 errors in its 35MLoC for Windows 2000 [15]
registered. Residual faults can lead to failure since several
flaws were recently observed [16]–[18].

The internal metrics are measured through the source
code whereas external metrics are measured by the behav-
ior or functionalities of the software [3]. Generally both
metrics are utilized for software quality measures to mark the
level of software reliability. Changes in the main attributes
of different entities may show design problems or a decrease
in quality and reliability. This is helpful to recognize classes
during the development process which are most expected to
be faulty. The present literature on fault prediction indicates
inadequate ability to attain a less expensive measurement
process [19].

In software engineering, there are many prediction meth-
ods, including security prediction, test effort prediction,
reusability prediction, cost prediction, fault prediction, effort
prediction and quality prediction [20]. SFP is an emerging
field of research that is used to locate faulty classes in
the early stages of software development [21]–[23] using
machine learning [20], [24]. Numerous approaches use typ-
ical machine learning (ML) techniques, for instance Naive
Bayes (NB) [25], Support Vector Machines (SVM) [26],
Decision Trees [27] and Neural Networks [28]. These tech-
niques have been used in SFP, utilizing measurement of
metrics and faulty data from similar projects [24], [29], [30]
or former versions to build fault prediction models. Assume
that the metric can be used to construct a fault prediction
model [31]–[35] to measure software inheritance, coupling,
cohesion, complexity, and size.

Inheritance is a key feature of the object-oriented
paradigm, and its metrics help to identify the complexity of
classes based on SFP [36]. Abreu and Carapuça [37] stated
that the greater the inheritance relation is, the greater number
of methods a class is likely to inherit, making it more complex
and therefore requiring more testing. Inheritance helps reuse
and other factors like complexity, testability etc. [38]. It must
be within limits to aid complications. Many inheritance met-
rics have been proposed to detect the fault propensity and
quality of software systems. The inheritance metric describes

the inheritance tree of the software system, the hierarchy of
the class and the relationship between the superclass and
its subclasses. In addition to generalization and specializa-
tion, it provides code reusability. It should be used with
proper range so that the software system does not become
complex [38].

This paper exclusively validates the impact of inheritance
on software fault prediction. The paper contributes in cat-
aloging the numerous inheritance metrics defined so far in
literature. In addition, explore publicly available datasets
having CK with Inheritance metrics. Finally, experimental
validation of inheritance metrics’ impact on SFP on as many
as 65 different publicly available datasets

The rest of the paper is organized as follows: Section II
provides the theoretical background of Software inheritance,
SFP and datasets. In section III, literature review is presented.
Section IV elaborates methodology used in our research fol-
lowed by Section V which gives an experimental evaluation
of inheritance metrics including comparisons. Section VI,
threats to validity and finally conclusion and future directions
of the research are given in Section VII.

II. THEORETICAL BACKGROUND
A. SOFTWARE INHERITANCE
The software metrics are the basis to measure the complex-
ity, quality of software and estimate cost along with efforts
of projects. Traditional metrics such as function point and
cyclomatic complexity have been employed in the procedure
paradigm. But, these are not simply used in object-oriented
paradigm [39], [40]. Object Oriented programming is com-
plex while comparing it with procedural languages [41].Most
studies stated difficulty in switching to the object-oriented
paradigm from the procedural approach [42]. In Object-
oriented Programming, it is difficult to understand how fea-
tures, for example abstraction, inheritance and encapsulation
relate to each other [43].

It is essential to differentiate amongst the design princi-
ples of object-oriented approach and design principles of
functionally oriented approach. To elucidate several charac-
teristics of object orientation and to allow for better quality
management and administration [32], [40], [44]–[46]. Press-
man [47] points out five situations where object-oriented
metrics can configure.

1) Location: It is related to the information trend when it
is centralized.

2) Encapsulation:means that the objects contain their data
and attributes.

3) Information hiding: means to conceal the features of
the object containing data and attributes.

4) Inheritance: permits the option to deriving a new class
and allowing it the attributes of one class or more par-
tially or fully.

5) Object abstraction : technique permits the designer to
concentrate only on the basic and necessary details of
certain parts of the program.

VOLUME 7, 2019 85263

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

In object-oriented paradigm, inheritance facilitates new
objects to make use of the properties of existing objects.
A superclass or base class is used as the basis for inheritance
and a subclass or derived class that inherits from a superclass.
The main class and the secondary class term, can also be used
as superclass and subclass. The secondary class can have its
own properties and methods, in addition to inheriting visible
properties and methods of its main class. The inheritance
provides:
1) Reusability:-Reusability is a form based on inheritance

to use public methods of the main class without having
to rewrite the same code in the class.

2) Extensibility:- Expand the parent class logic according
to the business logic of the underlying class.

3) Data hiding: - The data storage facility is provided
by inheritance. If the parent class declares the data as
private, the subclass cannot use or change it.

4) Overriding:- Child class can override the parent class
methods so that a meaningful implementation of the
parent class method can be designed in the child
class.

5) Maintainability:- It is easy to go through the code when
the program is divided into parts.

In object-oriented paradigm, inheritance base is an IS-A rela-
tionship that expresses ‘‘X is a Y-type’’. Orange is a fruit;
car is a vehicle, etc. The legacy is one way, ‘‘house is a
building’’, but ‘‘building is not a house’’. The legacy has two
other complementary functions:
1) Specialization: expanding the functionality of an exist-

ing class is called specialization.
2) Generalization: the sharing of similarities between

two or more classes is called generalization [48].
In the literature, inheritance is of different types which are
briefly explained in the following lines:
1) Single inheritance: In a single inheritance, subclasses

inherit only from a parent class.
2) Multiple inheritance: In multiple inheritance, a sub-

class extends or inherits from several primary classes.
The problem with multiple inheritance is that subclasses
must manage dependencies in two or more primary
classes.

3) Multi-level inheritance: In object-oriented technol-
ogy, multilevel inheritance refers to a mechanism in
which a class inherits from a derived class, which
makes the derived class the main class of the new
class.

4) Hierarchical Inheritance: In the hierarchical inheri-
tance, the main class is inherited by many secondary
classes.

5) Hybrid inheritance: the combination of multi-
ple inheritance and multilevel inheritance is called
hybrid inheritance. Subclasses are derived from two
classes, as in multiple inheritances. However, the par-
ent class is not a base class, but these derived
classes.

B. INHERITANCE METRICS AND THEIR USAGE
Inheritance is a characteristic that supports class-level design.
It captures IS-A relationships between classes because class
design is a fundamental part of system development [49].
Employment of inheritance decreases costs of software main-
tenance and testing [32]. Likewise, reuse of software through
inheritance will produce software that is easier to maintain,
understandable and reliable [50]. Harrison et al. performed
an experimental study which shows that lack of inheritance is
easier to understand or maintain as compare to systems with
inheritance [50]. However, Daley’s experiment indicated that
systems employing tertiary inheritance are easier to modify
than systems without inheritance [51].
Inheritance metrics measure many aspects of inheritance,

including depth and breadth in a hierarchy and predomi-
nant complexity [52]. Rajnish and Bhattacherjee also con-
ducted research on class inheritance metrics as in [53]–[58].
However, it is an established fact that deeper the hierar-
chy of inheritance, reuse of the classes is better, but it is
difficult to maintain the system. Designers try to maintain
shallow inheritance hierarchies, discarding reuse through
inheritance for ease of understanding [32]. That is why it
is important to measure complexity of inheritance hierar-
chy in order to resolve the differences between depth and
shallowness.
Several inheritance metrics have been proposed in the

literature which are included in Table 1. In this paper,
we exclusively take these metrics in context of fault
prediction.

C. SOFTWARE FAULT PREDICTION
Object-oriented metrics have been empirically validated to
predict design flaws. Large and complex software systems
are usually faulty [11]. It is difficult to keep them away
from faults or to decrease risk of faults in upcoming version.
According to [75], focus of verification and verification activ-
ities is to classify and remove high-risk problems in software.
In order to avoid or squeeze faults, quality control models
for example fault-prone models can be used for prediction of
classes likely to be faulty. In order to attain these objectives,
several researchers studied faults in software and constructed
fault-proneness models base, on the event of failure [10],
[34], [47], [76], [77]. Software prediction models are con-
structed using a variety of machine learning methods, such
as Genetic Programming [78], Decision Trees [79], Neural
Networks [80], Naive Bayes (NB) [21], Case-Based Reason-
ing [81], and Blurring Logic [82].
Software metrics make it easy for developers to audit

and monitor the quality of software design as the project
progresses. In addition, predicting the probability of defec-
tive classes is needed to help the software engineers dur-
ing development to enhance the quality of software and
reduce testing and maintenance costs. For example, in order
to increase the productivity of software testing, software
evaluators can plan tests based on the parts most prone to
faults.

85264 VOLUME 7, 2019

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

TABLE 1. List of inheritance metrics.

Software metrics and fault data for an earlier software
version are utilized to make an SFP model for the next
software version [83]. When a software has faults, it leades
to a disaster because it has a significant human dependency
on it. Therefore, there is an emerging requirement for soft-
ware without faults. Software Companies are expanding to
discover faults in software. Producing software without faults
is a challenging job. To lower costs and improve software
usefulness, it is vital to classify classes which are faulty.Many
software metrics are proposed by the researchers to gauge
the software quality. In object-oriented paradigm, metrics are
beneficial for software engineers to make additional infor-
mation associated with software quality available. Quality
of software can also be monitored through metrics, while
software evaluators use metrics to increase the effectiveness
of testing [84].

D. FAULT PREDICTION TECHNIQUES
The prediction of software faults is the subject of several
studies. Many techniques have been proposed for predicting
a software fault, including Statistical and Machine Learning
methods. These are described as:

1) STATISTICAL METHODS
Statistical methods are used to find a clear mathematical
formula that absolutely identifies how classification should
be performed. Kapila and Singh [85] used two statistical
approaches to carry out his study: Logistic Regression and
Univariate Binary Logistic Regression (UBR) which are use-
ful for analysis of data with binary variables. In Bayesian
inference [85], the design of the model relates the metrics
with the content of software faults and the tendency of faults.
The regression analysis is extensively utilized for prediction

VOLUME 7, 2019 85265

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

of bad smell in the code and linear regression in a case where
only two classes of the dependent variable exist.

2) MACHINE LEARNING
Machine Learning deals with the design, development of
techniques and algorithms which pull out patterns and rules
from vast datasets. Neural Networks have already been
employed in software to construct reliability growth models
to predict overall change or reuse metrics. A Neural Network
is trained to repeat a specified set of precise classification
examples, instead of producing formulas or rules. According
to Mahajan et al. [86] stated methods of machine learning are
better to discover faults in the software since all the effort is
done by a machine.

The Multilayer Perceptron (MLP) is utilized to control
faulty classes and the Radial Base functions are used to
classify the faults according to the different categories of
faults [87]. Xing et al. defines the significance of the model
of Support Vector Machine (SVM). The SVM model can be
used for small amount of data. SVM delivers greater Accu-
racy as compare to other techniques for predicting quality
of software, but the performance of SVM is low in public
datasets [86].

E. DATASETS IN SFP
Many datasets are being used in SFP. They can be divided
into categories of public, private, partial and unknown
datasets [19]. Since 2005, the use of public datasets has
increased from 31% to 52% [24]. In fact, fault information for
private projects is generally not available, and publicly avail-
able datasets have faulty information and are available for
download. There are many fault libraries in tera-PROMISE
repository [88], and D’Ambros repository which is com-
monly used for faults [89].

The tera-PROMISE repository provides many datasets for
many projects. It has an earlier version [90], the NASA
dataset is a valuable asset in the PROMISE repository because
it is a widely used fault prediction library, and 60% of the
articles published from 1991 to 2013 use this library [91].
The PROMISE repository provides product and process
metrics for nominal and digital class labels, which is use-
ful for creating regression and classification models in the
community.

The D’Ambros database contains datasets for five soft-
ware systems, including Eclipse JDT Core, Eclipse PDE UI,
Equinox, Framework, Lucene, and Mylyn.

III. LITERATURE REVIEW
In this section, the focus is on the inheritance metrics, which
can be useful in predicting faults. There is no systematic
review of the literature. Instead of delving into how different
inheritance metrics are useful in SFP.

A. INHERITANCE IN SFP
Object-oriented metrics are used to predict the quality
of object-oriented software. The attributes that determine

software quality include maintainability, fault tolerance,
understandability, fault density, standardized rework rate,
reusability, etc. Several studies were carried out, including
the empirical verification of the object-oriented metrics in
open source software for the prediction of faults using CBO,
LOC, LCOM, NOC and DIT [10], reuse analysis of object-
oriented systems using metrics of inheritance, coupling and
cohesion [92], heuristic review of CK metrics [93], reusable
metrics for object-oriented design [94] and empirical analysis
of CK metrics for object-oriented design complexity [95].

The CK metric suite is the most used set of metrics for
object-oriented software. Chidamber et al. developed and
implemented a new set of software statistics for object-
oriented systems [32]. Briand et al. [76] investigated the
collection of object-oriented design statistics introduced by
Basili et al. [34]. R. Subramanyam validated theWMC, CBO
and DIT statistics as predictors of class error counts [95].

Many empirical evaluations of classification algorithms
for predicting errors are performed by investigations [96].
Findings by Basili et al. revealed that different CK metrics
are related to fault proneness [34]. Tang et al. analyzed CK
metric suite and found none of the examined parameters
significant except for RFC and WMC [97]. Briand et al have
extracted 49 metrics to identify a suitable model for SFP. The
results showed that all metrics except NOC were significant
predictors of fault-proneness [76]. Briand and Wust found
that the DIT metric related to fault proneness in an inverse
manner and the NOC metric is a non-significant predictor of
fault-proneness [98]. Yu et al chose eight metrics and they
investigated the relationship between these metrics and error
sensitivity. First, they examined the correlation between the
metrics and found four strongly correlated subsets. Then they
used univariate analysis to find out which statistics could
detect errors [35]. Malhotra and Jain studied the relationship
between object-oriented measurement data and fault prone-
ness using the logistic regression method. Receiver Operat-
ing Characteristic (ROC) analysis was used and the perfor-
mance of predicted models is thus evaluated on the basis of
ROC [35]. Yeresime et al studied the application of linear
regression, logistic regression and artificial neural network
methods for prediction of software errors on CK metrics.
Their results indicate the importance of weighted method per
class (WMC) for fracture classification [99].

The literature review reveals that the DIT and NOC met-
rics that address the inheritance aspect are used for SFP
within the CK metrics. Therefore, it is considered essential
to validate the usefulness of the inheritance metrics in the
SFP context.

IV. METHODOLOGY
The aim of this experiment is to validate the impact of
inheritance on SFP. From literature review it appeared that
Chidamber and Kemerer metric suite (CK) are widely used
in SFP, so we wanted to compare the results of CK metrics
without Inheritance (CK−inheritance) and Inheritance with CK
(Inheritance+CK).

85266 VOLUME 7, 2019

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

FIGURE 1. Research methodology.

In this experiment, dataset Inheritance+CK consists of 6-
10metrics, having inheritancemetrics {ic, mfa, noai,
nomi, doc, fanin, fanout, ifanin} and CK
metrics {wmc, cbo, rfc, lcom, dit, noc}
depending on the availability in base datasets of Table 2
whereas CK−inheritance consist of 4 metrics {wmc, cbo,
rfc, lcom}. Table 2 is a source table that contains
65 public base datasets having CK metrics and one or more
Inheritance metrics. Then each base dataset is further split
into two datasets for example Inheritance +CK (6-10 met-
rics) and CK−inheritance (4 metrics) to make comparison.
Table 4 showed the preprocessing results where 35 base
datasets are dropped. Finally table 5 showed the results of
Inheritance+CK and CK−inheritance exclusively for remaining
30 base datasets.

The research method consists of four interrelated stages,
as shown in Figure 1, which includes the phases of selec-
tion, preprocessing, experimentation/evaluation and Com-
parison/Findings. The first stage includes the choice of
CK metrics, inheritance metrics and evaluation metrics.
The choice of CK and the inheritance metrics are based
on two criteria, indicated as Criterion-1 and Criterion-2
in Figure 1.

In the second preprocessing phase, other metrics in
addition to the CK and inheritance are discarded. The
CK−inheritance and Inheritance+CK dataset are created, and
then these datasets are kept consistent. Then, the datasets
will be cleaned and filtered to eliminate the associated
anomalies. The final form of the dataset is used for the
experimental phase in which the Artificial Neural Network
(ANN) is constructed and cross-validation is performed on
the datasets of CK−inheritance and Inheritance+CK . This phase
also includes the calculation of evaluation metrics; Accuracy,
Precision, Recall, F1-score, and TNR score for CK−inheritance

and Inheritance+CK respectively. According to the evaluation
metrics, a score is calculated for both dataset to determine
the superior. In the last phase, comparisons are made and the
results are taken to determine the impact of the inheritance
metrics in the SFP context.

A. SELECTION PHASE
The first stage includes the choice of CK metrics, inheritance
metrics and evaluation metrics. The choice of CK and inher-

itance metrics is based on two criteria, called Criterion-1 and
Criterion-2 as below.

1) SELECTION OF CK METRICS AND INHERITANCE METRICS
The basic selection is to have a set of data that contains CK
metrics in addition to inheritance metrics. With respect to
the inheritance metrics discussed in section II, we only select
those metrics that meet the following criteria.

2) CRITERION -1: DATASET MUST BE PUBLICLY AVAILABLE
This criterion is met because the fault information of the
software projects is seriously less accessible. The reason is
that fault information for large / business projects is accu-
mulated in the software files that are propriety and in small
projects, there is not enough fault information. As a result,
tagged data is rarely available. The availability of the public
dataset will allow the evaluation of the inheritance metrics in
SFP. Finally, 65 base datasets with CK metrics and inheri-
tance metrics were found [89], [100]–[109]. The CK metrics
consist of the class-weighted method (WMC), the Depth of
the Inheritance Tree (dit), the Number of Children (noc),
the Coupling Between Objects (cbo), Response For a Class
(rfc), the Lack of Cohesion in the Methods (lcom).). In addi-
tion to the CK metrics, in this dataset there are 8 metrics
of inheritance in general; which are the Inheritance Cou-
pling (ic), Functional Abstraction Measure (mfa), Inherited
Attribute Number (noai), Inherited Method Number (nomi),
Dependent of the Son (doc), number of classes that are called
class methods (fanIn), number of methods called per class
(fanOut) and number of immediate base classes(ifanin)

Out of these 65 datasets, 60 are located on tera-PROMISE
servers [88] and 5 datasets on D’Ambros servers [110].
Table 2 shows the description of these datasets where the 1st
column shows the name of the base dataset with the version (if
applicable). The details on the total instances, the percentage
of fault and number of metrics are shown in columns 2, 3 and
4 respectively. In general, CK and eight different inheritance
metrics are found in these datasets, where Xis marked if the
metric data is present in the corresponding base dataset and
× is marked in case the metric data is not available.
Unfortunately, the eight metrics along with the CKmetrics

could not be found together in a single dataset. However,
together we can use CK metrics and {ifanin,dit,

VOLUME 7, 2019 85267

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

TABLE 2. Source datasets.

noai,noc,nomi} in one dataset, {noai, nomi} in one
dataset,{ic} in two datasets,{fanin, fanout, noai,
nomi} in 5 datasets, {ic, mfa} in 52 datasets and
{doc, ic, fanin} in 4 datasets.

3) CRITERION -2: CORRELATION MUST NOT BE
≥ 0.7 OR ≤ −0.7
Metrics tend to correlate when they address a similar aspect
of programming, such as inheritance in our case. A high
correlation (such as ≥ 0.7 OR ≤ −0.7) is a form of redun-
dancy, which requires the redundant metric to be removed.

TABLE 3. Pearson and Spearman’s correlation coefficient between pair
features.

The reason is that maintaining the redundant metric can be
detrimental, cause confusion in the mining algorithm and
uncover a low-quality pattern [111]. In addition, the ben-
efits of discarding correlated metrics are much better than
cost [112]. In the case of a lower correlation, even close to
≥ 0.7 OR ≤ −0.7, the abandonment of any metric would
deprive the dataset of important exclusive information.

To examine, if the metrics show the second criterion,
we perform the Pearson correlation coefficient (r) and the
Spearman correlation coefficient (p) for the pairs found in
the publicly available datasets. We take two unfiltered dataset
characteristics that are shown in Table 3, where 27 pairs
are found in the available datasets. When there are several
datasets available against any pair, we combine them and
calculate the value of r and p.

Table 3 shows the Pearson correlation coefficient and the
Spearman correlation coefficient of each pair and the value
of r and p in the respective columns separated by a semi-
column. However, all relationships are positively correlated,
but none is equal to ≥ 0.7 OR ≤ −0.7. Table 3 further shows
that none of the pairs has non-linear correlation either. Finally,
the ten metrics that include two of the CK metrics also meet
the second criterion.

4) SELECTION OF EVALUATION METRICS
The machine learning models based on the classification are
evaluated through their performance when classifying the
unknown instances. A confusion matrix is a way of reflecting
its performance, Catal enumerated numerousmetrics, derived
from the confusion matrix [35]. Malhotra and others also
offer a general description of several evaluation measures
used in SFP. According to their findings, TPR is the most
commonly used evaluation measure in SFP, followed by
Precision [24]. Consequently, we chose Accuracy, Precision,
Recall, F1-score and TNR for the evaluation of the models
used in this document.

In the SFP domain, the positive class is the faulty class.
Then, if the classifier declares that any faulty instance is
faulty, the classification is truly positive. If the classifier
declares that an instance is fault-free when in fact it is faulty,
the classification is false negative. If the classifier declares
any instance as faulty, when in fact it has no faults, then
the classification is false positive. Finally, if the classifier
declares that any instance is free of faults when in fact it has
no faults, then the classification is true negative.

Accuracy indicates the proportion of the total number of
correct predictions between the total number of correct and

85268 VOLUME 7, 2019

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

TABLE 4. Filtered datasets.

incorrect predictions. Precision represents the proportion of
correctly ranked error-prone classes across the total number
of classified error-prone classes. Recall is the ratio of cor-
rectly predicted error-prone classes between all actual classes
that are prone to errors. F1-score (also F-score or F-measure)
is a measure of the Accuracy of a test. It concerns both
the Precision and the Recall of the test. The F1-score is the
harmonic mean of Precision and Recall, with an F1-score
reaching the best value at 1 (perfect Precision and Recall) and
the worst at 0.

B. PREPROCESSING PHASE
1) REMOVE NON-CK AND NON-INHERITANCE FEATURES
The selected dataset contains many non-CK and non-
inheritance metrics, including loc, ca and so on. As we
aim to evaluate CK−inheritance and Inheritance+CK metrics
in the SFP, these non-CK and non-inheritance metrics are

removed. This may affect the performance of SFP, but it may
be possible to summarize the impact of inheritance metrics
on SFPs.

2) UNIFORMITY OF LABELS
All metrics have continuous values in the corresponding
dataset, and inconsistencies can be found in the class tag
(BUG), which is solved by the following rules.

BUG =
{

FALSE Defects = 0, N, No, FALSE
TRUE Otherwise

}
(1)

Among them, FALSE is used for fault-free, TRUE is used
for faulty instance.

3) SPLITTING/MERGING
Since our objective is to quantify the impact of the chosen
inheritance metrics, we divided each dataset into further two
datasets as CK−inheritance and Inheritance+CK of these 65 base
datasets (after discarding the non-CK and non-inheritance
metrics). The CK−inheritance consists of 4 metrics by exclud-
ing the DIT and NOC metrics from the set of CK metrics,
since these are inheritance metrics. The Inheritance+CK con-
sists of 6 metrics of CK with other available inheritance
metrics. As a result, this dataset consists of 6-10 metrics
established according to the availability of the inheritance
metrics in the dataset. Finally, table 4 is divided into two equal
parts to show the statistics of two datasets that are formed by
dividing a base dataset that mentions the name of the dataset
in the first column. Followed by the number of features in
which the CK−inheritance has 4 features and Inheritance+CK

has between 6 and 10 features. The cumulative numbers of
instances in these 65 base datasets are 70,101.

4) CLEANING
In this phase, the redundant instances were removed from
the CK−inheritance and Inheritance+CK datasets because they
are useless and, at times, confusing for the model. Con-
sequently, 39,352 of 70,101 instances in the CK−inheritance

partition and 32,733 instances in the Inheritance+CK par-
tition are redundant against these 65 base datasets, which
are deleted accordingly. After that, inconsistent instances
are also removed. The inconsistency in the instances is an
anomaly of the dataset [63], where the instances have the
same values for all the metrics but have different class labels.
In our case, there are 7,357 inconsistent instances in the
CK−inheritance and 9,085 in the Inheritance+CK dataset (after
deleting the redundant instances). These non-inheritance and
non-CKmetrics segregated the instances with each other, and
when discarded, these segregated instances become inconsis-
tent. After removing redundant and inconsistent instances,
17,017 instances remain in 65 datasets of CK−inheritance

dataset and 23,146 instances remain in Inheritance+CK

dataset.

VOLUME 7, 2019 85269

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

5) FILTRATION
In this phase, two filters are used; Number of instances
≥100 and skewness≤ 9: 1. The first filter is used so that a ten-
fold cross-validation would be possible without replacement,
which is usually the case with model validation. This filter
deletes 25 datasets from CK−inheritance and 28 datasets in
Inheritance+CK .

6) SKEWNESS ≤ 9:1
Skewness indicates that a fault or no-fault instance should
constitute ≥10% and ≤90% of the dataset. This filter is used
because if there are only 100 instances in the worst case,
there should be at least one instance from both classes if there
is no hierarchical 10-fold cross validation that is replaced.
Further, this filter deletes 6 each dataset from CK−inheritance

and Inheritance+CK respectably. Finally, after cleaning and
filtering, datasets were trimmed to only 34 in CK−inheritance

and 31 in Inheritance+CK (shown in the last row of third and
eight columns of Table 4).

In addition, one dataset jedit-4.2-4.3 was dropped
while making one to one mapping between CK−inheritance

and Inheritance+CK datasets. So finally 30 datasets each
remained for the experiment.

V. EXPERIMENT AND RESULTS
A. EXPERIMENT SETUP
1) DATASET
30 filtered datasets each for CK−inheritance and Inheritance+CK ,
as shown in Table 4.

2) TOOLS
R 3.4.3 Language [53] in R Studio 1.1.383 [54].

3) SPLIT-TECHNOLOGY VERIFICATION
Ten-fold stratified cross-validation without replacement.

4) CLASSIFIERS
ANN is used for classification. Unlike Naive Bayes and
tree-based algorithms, neither of these algorithms requires
discretization of the dataset. In addition, they can even han-
dle a single feature, which exists in two datasets. ANN is
most effective technique, used for classification task which is
performed on object-oriented metrics [113]. The latest trend
in software defect prediction is the use of ANN [4], [114].
Secondly the selection of technique for modeling is made
while keeping in view the statistical description of the training
dataset. It’s the dataset that leads us to ANN and in turn we
conclude results.

30 filtered-clean datasets shown in table 4 are used for
building and validating ANN. Model building of ANN is
done using nnet 7.3-12 package of R 3.4.3 language [115].
Stratified splitting without replacement is done for ten-fold
cross-validation.

The input to ANN, datasets are normalized using the min-
max algorithm. Min-max scaling is used to make the data

TABLE 5. Experimental results.

FIGURE 2. Accuracy comparison of Inheritance+CK with CK−Inheritance.

aligned to the bounds of activation function which is sigmoid
in our case. Detail design of ANN implementation is shown in
Algorithm 1. ANN is set to have only one hidden layer. A loop
changes the number of units for that single layer, from zero to
100 in each fold. For every iteration, a model is built and least
error carrier model out of the 100 models has been selected
for that fold. Accuracy Precision, Recall, F1-score and TNR
are saved for CK−inheritance and Inheritance+CK datasets.
Accumulative results of 30 datasets are shown in Table 5.

B. COMPARISION AND FINDINGS
The main objective of this work is to experimentally vali-
date inheritance metrics’ impact in SFP, while the secondary
objective is to obtain the best results of the machine learn-
ing algorithms. This is exactly how datasets are filtered
and experiments are designed. Table 5 shows the results
of the experiments where Accuracy, Recall, F1-score, and
TNR are calculated for 30 datasets each for CK−inheritance

and Inheritance+CK . Figure 2-6 graphically compares the
performance differences of ANN in CK−inheritance and
Inheritance+CK through evaluation metrics that show that
Inheritance+CK has superior results.

Figure 7 reflects the absence of outliers in the results
across the datasets. It can therefore be safely stated that

85270 VOLUME 7, 2019

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

Algorithm 1 Single-Layer ANN Model Building and
Result Collection
1 function buildANN (30 datasets);
Input : 30 datasets
Output: Accuracy, Precision, Recall, F1-score and TNR

of the datasets with number of units of the best
model in each dataset

2 for currentDataset ← 1 to 30 do
3 currentDataset← minMaxScale(currentDataset)
4 stratifiedSplit(currentDataset, k←10)
5 for k ← 1 to 10 do
6 trainset← currentDataset[k-1]
7 testset← currentDataset[k]
8 centModels← ∅
9 for units← 1 to 100 do
10 centModels← {centModels} ∪

trainANN(trainset, units)
11 end
12 currentModel← bestModel(centModels)
13 thisFoldAcc, thisFoldRecall←

currentModel(testset)
14 thisDatasetAcc← {thisDatasetAcc} ∪

{thisFoldAcc}
15 thisDatasetPre← {thisDatasetPre} ∪

{thisFoldPPre}
16 thisDatasetRecall← {thisDatasetRecall} ∪

{thisFoldRecall}
17 thisDatasetf1scr← {thisDatasetf1scr} ∪

{thisFoldf1scr}
18 thisDatasettnr← {thisDatasettnr} ∪

{thisFoldtnr}
19 end
20 allDatasetAcc← {allDatasetAcc} ∪

mean(thisDatasetAcc)
21 allDatasetPre← {allDatasetPre} ∪

mean(thisDatasetPre)
22 allDatasetRecall← {allDatasetRecall} ∪

mean(thisDatasetRecall)
23 allDatasetf1scr← {allDatasetf1scr} ∪

mean(thisDatasetf1scr)
24 allDatasettnr← {allDatasettnr} ∪

mean(thisDatasettnr)
25 end
26 return allDatasetAcc, allDatasetPre, allDatasetRecall,

allDatasetf1scr, allDatasettnr

the averages of performance measures are not biased and
hence the out performance of Inherticance + CK metrics
prevails.

In order to further validate the impact of inheritance in
SFP, the following comparisons are taken between these two
datasets.

FIGURE 3. Precision comparison of Inheritance+CK with CK−Inheritance.

FIGURE 4. Recall comparison of Inheritance+CK with CK−Inheritance.

FIGURE 5. F1-score comparison of Inheritance+CK with CK−Inheritance.

1) OVERALL COMPARISON
In order to validate the overall comparison between
CK−inheritance and Inheritance+CK datasets for example
which have yielded better results. In this regards, last four
rows of table 5 show the sum, median, average and standard
deviation of Accuracy, Precision, Recall, F1-score and TNR
for these two datasets. The findings are explained as under:

(a) The overall sum of Inheritance+CK dataset is 22.915,
16.884, 15.511, 15.950, 24.004 and CK−Inheritance

dataset is 21.881, 15.057, 13.655, 14.071, 22.919 for
Accuracy, Precision, Recall, F1-score, and TNR.

(b) The overall median of Inheritance+CK dataset is 0.762,
0.546, 0.526, 0.542, 0.841 and CK−Inheritance dataset is
0.71, 0.441, 0.402, 0.405, 0.811 for Accuracy, Precision,
Recall, F1-score and TNR.

(c) The overall average of Inheritance+CK dataset is 0.764,
0.563, 0.517, 0.532, 0.8 and CK−Inheritance dataset is
0.729, 0.502, 0.455, 0.469, 0.765 for Accuracy, Preci-
sion, Recall, F1-score and TNR respectively.

VOLUME 7, 2019 85271

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

FIGURE 6. TNR comparison of Inheritance+CK with CK−Inheritance.

FIGURE 7. Box plot.

It is validated that Inheritance+CK has better results of the
sum, median and average for all evaluation metrics whereas
standard deviation is better for CK−Inheritance.

2) ONE-ONE COMPARISON
Experimental results of evaluation metrics including Accu-
racy, Precision, Recall, F1-score, and TNR are shown in
table 5 for Inheritance+CK and CK−Inheritance datasets which
are created from the base dataset shown in the first column.
In order to do one-on-one comparison, the results of evalu-
ation metrics of Inheritance+CK and CK−Inheritance datasets
are compare to see the greater values for each base dataset.
The results are summarized in table 6 which shows that:

(a) The Accuracy and TNR show that inheritance+CK has
superior results in 26 datasets whereas CK−Inheritance

is superior in only 4 datasets. So inheritance+CK

attained 87% of total datasets as compare to 13% for
CK−Inheritance.

(b) The Precision shows that inheritance+CK has superior
results in 23 datasets whereas CK−Inheritance is superior
in only 7 datasets. So Inheritance+CK attained 77% of
total datasets as compare to 23% for CK−Inheritance.

(c) The Recall and F1-score show that inheritance+CK has
superior results in 24 datasets whereas CK−Inheritance

is superior in only 5 datasets. So Inheritance+CK

attained 83% of total datasets as compare to 17% for
CK−Inheritance.

(d) The F1-score shows that inheritance+CK has superior
results in 25 datasets whereas CK−Inheritance is superior
in only 5 datasets. So Inheritance+CK attained 83% of
total datasets as compare to 17% for CK−Inheritance.

TABLE 6. One-one comparison of CK−Inheritance and Inheritance+CK .

FIGURE 8. One to one comparison.

Out of total 30 datasets, Inheritance+CK datasets has supe-
rior results as one-one comparison with CK−inheritance for
all evaluation metrics. The graphical representation is shown
in Figure 8.

3) CK METRICS COMPARISON
Most of the times CK metrics set is considered a better
performer in SFP. In order to validate that adding inheritance
metrics in CK metrics set will enhance the results of fault
prediction. So average is calculated on the results of experi-
ment shown in table 5 by grouping the datasets having {CK}
metrics. Then adding two inheritance metrics {ic, mfa}
into CK (8metrics set). Followed by three inheritance metrics
{nomi, noai, ifanin} (9 metrics set)and finally four
inheritance metrics {fanin, fanout, nomi, noai}.
THE Results are summarized in Table 7 and graphically
represented in Figure 9. The findings are:
(a) The accuracy shows that CK metrics average results is

69.3 and after adding two inheritance metrics the result
enhanced to 75.3. Subsequently after adding three inher-
itance metrics the result enhanced to 82.6 and finally
91.3 after adding four metrics. It clearly validated that
adding inheritance metrics into CKmetrics will increase
the results gradually.

(b) Similarly TNR shows that CK average results is 68.8 and
after adding two inheritance metrics the result enhanced
to 79.1. Subsequently after adding three inheritancemet-
rics the result enhanced to 82.2 and finally 96.3 after
adding four metrics. It clearly validated that adding
inheritance metrics into CK metrics will increase the
results gradually

VI. THREATS TO VALIDITY
This study depends on datasets extracted from NASA and
tera-PROMISE repositories and there is not enough informa-

85272 VOLUME 7, 2019

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

TABLE 7. Comparison of CK with inheritance metric.

FIGURE 9. Comparison with CK metrics.

tion available about the faults whether these belongs to any
particular family of software faults.

In this study, the fault does not specify any particular
family of software fault. Hence the predictive ability may not
be generalized to all families of software faults. Similarly,
the selected datasets cover few software product with varying
in design, team, scope etc. Occurrence of fault may not be
the consequence of inheritance alone. Finally Selected inher-
itance metrics do not address all the dimensions associated
with the inheritance in software product. Hence the general-
ization of selected inheritance metrics may not be result of all
the dimensions of inheritance.

VII. CONCLUSION AND FUTURE WORK
In this paper, the impact of inheritance metrics on SFP is
validated. The validation is performed through experiments
on 65 publicly available datasets. The predictive capability
of CK metrics is accepted in the testing community, which
prevails in our experiments also. However, exclusion of inher-
itance metrics from CK suite can significantly degrade the
predictive capability of the suite. Moreover, adding more
inheritance metrics to the CK suite significantly upgrades
the predictive capability. This advocates the viability of the
inheritance metrics in combination with CK measures in
software fault prediction.

This work implies that testing community can safely
use inheritance metrics to predict software faults. More-
over, the higher the figures of inheritance metrics indicate
the induction of faults. This directs the software develop-
ers/designers to keep the inheritance metrics minimum. As
regards future work, we expect some researchers would redo
our experiment and also try to evaluate inheritance metrics
other than the ones we used. Apart from that, regression-

based machine learning techniques to predict faults using
inheritance metrics would be interesting work to do.

REFERENCES

[1] Software Bug. Accessed: Nov. 30, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Softwarebug

[2] R. Van Der Meulen and J. Rivera, ‘‘Gartner says worldwide it spending
on pace to reach $3.8 trillion in 2014,’’ Gartner, Stamford, CT, USA,
Jan. 2014.

[3] Ö. F. Arar and K. Ayan, ‘‘Software defect prediction using cost-sensitive
neural network,’’ Appl. Soft Comput., vol. 33, pp. 263–277, Aug. 2015.

[4] R. Jayanthi and L. Florence, ‘‘Software defect prediction techniques using
metrics based on neural network classifier,’’ Cluster Comput., pp. 1–12,
2018.

[5] C. Kaner, J. Bach, andB. Pettichord, Lessons Learned in Software Testing.
Hoboken, NJ, USA: Wiley, 2008.

[6] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge,
U.K.: Cambridge Univ. Press, 2008.

[7] B. Hailpern and P. Santhanam, ‘‘Software debugging, testing, and verifi-
cation,’’ IBM Syst. J., vol. 41, no. 1, pp. 4–12, 2002.

[8] B. S. Ainapure, Software Testing and Quality Assurance. Pune, India:
Technical Publications, 2009.

[9] S. A. Sherer, ‘‘Software fault prediction,’’ J. Syst. Softw., vol. 29, no. 2,
pp. 97–105, 1995.

[10] T. Gyimothy, R. Ferenc, and I. Siket, ‘‘Empirical validation of object-
oriented metrics on open source software for fault prediction,’’ IEEE
Trans. Softw. Eng., vol. 31, no. 10, pp. 897–910, Oct. 2005.

[11] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, ‘‘Where the bugs are,’’ ACM
SIGSOFT Softw. Eng. Notes, vol. 29, no. 24, pp. 86–96, 2004.

[12] L. Pelayo and S. Dick, ‘‘Applying novel resampling strategies to software
defect prediction,’’ in Proc. NAFIPS Annu. Meeting North Amer. Fuzzy
Inf. Process. Soc., Jun. 2007, pp. 69–72.

[13] H. B. Yadav and D. K. Yadav, ‘‘A fuzzy logic based approach for phase-
wise software defects prediction using software metrics,’’ Inf. Softw.
Technol., vol. 63, pp. 44–57, Jul. 2015.

[14] S. McConnell, Code Complete. London, U.K.: Pearson, 2004.
[15] M. Shaw, ‘‘Sufficient correctness and homeostasis in open resource coali-

tions,’’ in Proc. ISAW-4-Int. Softw. Archit. Workshop, 2000, pp. 46–50.
[16] G. Noto La Diega and I. Walden, ‘‘Contracting for the ‘Internet of

Things’: Looking into the nest,’’ School Law, QueenMary, Univ. London,
London, U.K., Res. Paper 219, 2016.

[17] K. Osborn, ‘‘Software glitch causes F-35 to incorrectly detect targets in
formation,’’ Military, San Francisco, CA, USA, Tech. Rep., Mar. 2015.
[Online]. Available: https://www.military.com/defensetech/
2015/03/24/software-glitch-causes-f-35-to-incorrectly-detect-targets-in-
formation

[18] W. Grice, ‘‘Divorce error on form caused by uk government software
glitch could affect 20,000 people,’’ Independ. Digit. News Media Ltd.,
London, U.K., Tech. Rep., Dec. 2015.

[19] C. Catal and B. Diri, ‘‘Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction problem,’’
Inf. Sci., vol. 179, no. 8, pp. 1040–1058, 2009.

[20] C. Catal, ‘‘Software fault prediction: A literature review and current
trends,’’ Expert Syst. Appl., vol. 38, no. 4, pp. 4626–4636, 2011.

[21] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code
attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

[22] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, ‘‘Dictionary
learning based software defect prediction,’’ in Proc. 36th Int. Conf. Softw.
Eng., 2014, pp. 414–423.

[23] N. Seliya, T. M. Khoshgoftaar, and J. Van Hulse, ‘‘Predicting faults in
high assurance software,’’ in Proc. IEEE 12th Int. Symp. High Assurance
Syst. Eng., Nov. 2010, pp. 26–34.

[24] R. Malhotra, ‘‘A systematic review of machine learning techniques for
software fault prediction,’’ Appl. Soft Comput., vol. 27, pp. 504–518,
Feb. 2015.

[25] T. Bayes, ‘‘An essay towards solving a problem in the doctrine of
chances.[facsimil],’’ Revista de la Real Academia de Ciencias Exactas,
Físicas y Naturales, vol. 95, no. 1, pp. 11–60, 2001.

[26] N. Cristianini, J. Shawe-Taylor, and R. Holloway, An Introduction to
Support Vector Machines and Other Kernel-Based Learning Methods.
Cambridge, U.K.: Cambridge Univ. Press, 2000.

[27] J. R. Quinlan, ‘‘Induction of decision trees,’’ Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

VOLUME 7, 2019 85273

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

[28] B. Kröse, B. Krose, P. van der Smagt, and P. Smagt, An Introduction
to Neural Networks. Pennsylvania, PA, USA: College of Information
Sciences and Technology, 1993.

[29] I. H. Laradji, M. Alshayeb, and L. Ghouti, ‘‘Software defect predic-
tion using ensemble learning on selected features,’’ Inf. Softw. Technol.,
vol. 58, pp. 388–402, Feb. 2015.

[30] A. A. Asad and I. Alsmadi, ‘‘Evaluating the impact of software metrics
on defects prediction. part 2,’’ Comput. Sci. J. Moldova, vol. 22, no. 1,
pp. 127–144, 2014.

[31] J.-C. Chen and S.-J. Huang, ‘‘An empirical analysis of the impact of soft-
ware development problem factors on software maintainability,’’ J. Syst.
Softw., vol. 82, no. 6, pp. 981–992, 2009.

[32] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[33] W. Li and S. Henry, ‘‘Maintenance metrics for the object oriented
paradigm,’’ in Proc. 1st Int. Softw. Metrics Symp., 1993, pp. 52–60.

[34] V. R. Basili, L. C. Briand, and W. L. Melo, ‘‘A validation of object-
oriented design metrics as quality indicators,’’ IEEE Trans. Softw. Eng.,
vol. 22, no. 10, pp. 751–761, Oct. 1996.

[35] R. Malhotra and A. Jain, ‘‘Fault prediction using statistical and machine
learning methods for improving software quality,’’ J. Inf. Process. Syst.,
vol. 8, no. 2, pp. 241–262, 2012.

[36] L. H. Son, N. Pritam, M. Khari, R. Kumar, P. T. M. Phuong, and
P. H. Thong, ‘‘Empirical study of software defect prediction: A systematic
mapping,’’ Symmetry, vol. 11, no. 2, p. 212, 2019.

[37] F. B. E. Abreu and R. Carapuça, ‘‘Candidate metrics for object-oriented
software within a taxonomy framework,’’ J. Syst. Softw., vol. 26, no. 1,
pp. 87–96, 1994.

[38] S. Chawla and R. Nath, ‘‘Evaluating inheritance and coupling metrics,’’
Int. J. Eng. Trends Technol., vol. 4, no. 7, pp. 2903–2908, 2013.

[39] N. Fenton, ‘‘Software measurement: A necessary scientific basis,’’ IEEE
Trans. Softw. Eng., vol. 20, no. 3, pp. 199–206, Mar. 1994.

[40] R. G. Fichman and C. F. Kemerer, ‘‘Object-oriented and conven-
tional analysis and design methodologies,’’ Computer, vol. 25, no. 10,
pp. 22–39, Oct. 1992.

[41] G. Pascoe, ‘‘Elements of object-oriented programming,’’ Byte, vol. 11,
no. 8, pp. 139–144, 1986.

[42] M. Kölling, ‘‘The problem of teaching object-oriented programming, Part
1: Languages,’’ J. Object-Oriented Program., vol. 11, no. 8, pp. 8–15,
1999.

[43] K. Eliason. Difference Between Object-Oriented Programming and Pro-
cedural Programming Languages. Accessed: Mar. 29, 2019. [Online].
Available: https://neonbrand.com/website-design/procedural-vs-object-
oriented-programming-a-review

[44] S. Mäkelä and V. Leppänen, ‘‘Observation on lack of cohesion metrics,’’
in Proc. Int. Conf. Comput. Syst. Technologies-CompSysTech, vol. 6,
2006, pp. II-10-1–II-10-6.

[45] M. Thapaliyal and G. Verma, ‘‘Software defects and object oriented
metrics-an empirical analysis,’’ Int. J. Comput. Appl., vol. 9, no. 5,
pp. 41–44, 2010.

[46] S. D. Conte, H. E. Dunsmore, and Y. Shen, Software Engineering Metrics
and Models. Redwood City, CA, USA: Benjamin Cummings, 1986.

[47] L. C. Briand, J. Wüst, and H. Lounis, ‘‘Replicated case studies for
investigating quality factors in object-oriented designs,’’ Empirical Softw.
Eng., vol. 6, no. 1, pp. 11–58, 2001.

[48] D. Parson, Object-Oriented Programming with C++. DP Publications
Ltd., 1994.

[49] K. Rajnish, A. K. Choudhary, and A. M. Agrawal, ‘‘Inheritance metrics
for object-oriented design,’’ Int. J. Comput. Sci. Inf. Technol., vol. 2, no. 6,
pp. 13–26, 2010.

[50] R. Harrison, S. J. Counsell, and R. V. Nithi, ‘‘An evaluation of the MOOD
set of object-oriented software metrics,’’ IEEE Trans. Softw. Eng., vol. 24,
no. 6, pp. 491–496, Jun. 1998.

[51] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood, ‘‘Evaluating
inheritance depth on the maintainability of object-oriented software,’’
Empirical Softw. Eng., vol. 1, no. 2, pp. 109–132, 1996.

[52] G. Krishna and R. K. Joshi, ‘‘Inheritance metrics: What do they mea-
sure?’’ in Proc. 4th Workshop Mech. Specialization, Generalization Her-
itance, 2010, p. 1.

[53] K. Rajnish and V. Bhattacherjee, ‘‘Maintenance of metrics through class
inheritance hierarchy,’’ in Proc. Int. Conf. Challenges Opportunities IT
Ind., 2005, p. 83.

[54] K. Rajnish and V. Bhattacherjee, ‘‘A new metric for class inheritance
hierarchy: An illustration,’’ in Proc. Nat. Conf. Emerg. Princ. Practices
Comput. Sci. Inf. Technology, 2006, pp. 321–325.

[55] K. Rajnish and V. Bhattacherjee, ‘‘Class inheritance metrics and devel-
opment time: A study,’’ Int. J. Titled PCTE J. Comput. Sci., vol. 2, no. 2,
pp. 22–28, 2006.

[56] K. Rajnish and V. Bhattacherjee, ‘‘Applicability of weyuker property 9 to
object-oriented inheritance tree metric—A discussion,’’ in Proc. 10th Int.
Conf. Inf. Technol. (ICIT), 2007, pp. 234–236.

[57] K. Rajnish and V. Bhattacherjee, ‘‘Class inheritance metrics-an analytical
and empirical approach,’’ J. Comput. Sci., vol. 7, no. 3, pp. 25–34, 2008.

[58] K. Rajnish, V. Bhattacherjee, and S. Singh, ‘‘An empirical approach to
inheritance tree metric,’’ in Proc. Nat. Level Tech. Conf. (Techno Vis.),
2007, pp. 145–150.

[59] F. B. Abreu and R. Carapuça, ‘‘Object-oriented software engineering:
Measuring and controlling the development process,’’ in Proc. 4th Int.
Conf. Softw. Qual., vol. 186, pp. 1–8, 1994.

[60] J. Bansiya and C. G. Davis, ‘‘A hierarchical model for object-oriented
design quality assessment,’’ IEEE Trans. Softw. Eng., vol. 28, no. 1,
pp. 4–17, Jan. 2002.

[61] S. Henry and D. Kafura, ‘‘Software structure metrics based on informa-
tion flow,’’ IEEE Trans. Softw. Eng., no. 5, pp. 510–518, Sep. 1981.

[62] M. Lorenz and J. Kidd, Object-Oriented Software Metrics: A Practical
Guide. Upper Saddle River, NJ, USA: Prentice-Hall, 1994.

[63] B. Henderson-Sellers,Object-OrientedMetrics: Measures of Complexity.
Upper Saddle River, NJ, USA: Prentice-Hall, 1996.

[64] W. Li, ‘‘Another metric suite for object-oriented programming,’’ J. Syst.
Softw., vol. 44, no. 2, pp. 155–162, 1998.

[65] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi, ‘‘A software com-
plexity model of object-oriented systems,’’ Decis. Support Syst., vol. 13,
nos. 3–4, pp. 241–262, 1995.

[66] A. Lake and C. Cook, ‘‘Use of factor analysis to develop oop software
complexitymetrics,’’ inProc. 6th Annu. OregonWorkshop Softw.Metrics,
Silver Falls, OR, USA, 1994, pp. 251–266.

[67] K. Rajnish and Y. Singh, ‘‘An empirical and analytical view of new
inheritance metric for object-oriented design,’’ Int. J. Comput. Appl.,
vol. 65, no. 12, pp. 44–50, 2013.

[68] S. Mal and K. Rajnish, ‘‘New quality inheritance metrics for object-
oriented design,’’ Int. J. Softw. Eng. Appl., vol. 7, no. 6, pp. 185–200,
2013.

[69] P. Gulia and R. S. Chillar, ‘‘New proposed inheritance metrics to measure
the software complexity,’’ Int. J. Comput. Appl., vol. 58, no. 21, pp. 1–4,
2012.

[70] F. T. Sheldon, K. Jerath, and H. Chung, ‘‘Metrics for maintainability
of class inheritance hierarchies,’’ J. Softw. Maintenance Evolution, Res.
Pract., vol. 14, no. 3, pp. 147–160, 2002.

[71] D. Mishra and A. Mishra, ‘‘Object-oriented inheritance metrics in the
context of cognitive complexity,’’ Fundamenta Informaticae, vol. 111,
no. 1, pp. 91–117, 2011.

[72] K. Rajnish and V. Bhattacherjee, ‘‘Applicability of Weyuker property 9
to object-oriented inheritance tree metric—A discussion,’’ in Proc. 10th
Int. Conf. Inf. Technol. (ICIT), 2007, pp. 234–236.

[73] J. Chen and J. Lu, ‘‘A new metric for object-oriented design,’’ Inf. Softw.
Technol., vol. 35, no. 4, pp. 232–240, 1993.

[74] Y. Lee, ‘‘Measuring the coupling and cohesion of an object-oriented
program based on information flow,’’ in Proc. Int. Conf. Softw. Qual.,
1995, pp. 232–240.

[75] B. W. Boehm and P. N. Papaccio, ‘‘Understanding and controlling soft-
ware costs,’’ IEEE Trans. Softw. Eng., vol. SE-14, no. 10, pp. 1462–1477,
Oct. 1988.

[76] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, ‘‘Exploring the
relationships between design measures and software quality in object-
oriented systems,’’ J. Syst. Softw., vol. 51, no. 3, pp. 245–273, 2000.

[77] R. Shatnawi and W. Li, ‘‘The effectiveness of software metrics in iden-
tifying error-prone classes in post-release software evolution process,’’
J. Syst. Softw., vol. 81, no. 11, pp. 1868–1882, 2008.

[78] M. Evett, T. Khoshgoftar, P.-D. Chien, and E. Allen, ‘‘GP-based software
quality prediction,’’ in Proc. 3rd Annu. Conf. Genetic Program., 1998,
pp. 60–65.

[79] T. M. Khoshgoftaar and N. Seliya, ‘‘Comparative assessment of software
quality classification techniques: An empirical case study,’’ Empirical
Softw. Eng., vol. 9, no. 3, pp. 229–257, 2004.

[80] T.-S. Quah and M. M. T. Thwin, ‘‘Application of neural networks for
software quality prediction using object-oriented metrics,’’ in Proc. Int.
Conf. Softw. Maintenance (ICSM), 2003, pp. 116–125.

[81] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, ‘‘Comparing case-based
reasoning classifiers for predicting high risk software components,’’
J. Syst. Softw., vol. 55, no. 3, pp. 301–320, 2001.

85274 VOLUME 7, 2019

S. R. Aziz et al.: Experimental Validation of Inheritance Metrics’ Impact on SFP

[82] X. Yuan, T. M. Khoshgoftaar, E. B. Allen, and K. Ganesan, ‘‘An applica-
tion of fuzzy clustering to software quality prediction,’’ in Proc. 3rd IEEE
Symp. Appl.-Specific Syst. Softw. Eng. Technol., 2000, pp. 85–90.

[83] C. Catal, U. Sevim, and B. Diri, ‘‘Software fault prediction of unlabeled
program modules,’’ in Proc. World Congr. Eng., vol. 1, 2009, pp. 1–6.

[84] N. E. Fenton and M. Neil, ‘‘A critique of software defect prediction mod-
els,’’ IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 675–689, Sep./Oct. 1999.

[85] H. Kapila and S. Singh, ‘‘Bayesian inference to predict smelly classes
probability in open source software,’’ Int. J. Current Eng. Technol., vol. 4,
no. 3, pp. 1724–1728, 2014.

[86] R. Mahajan, S. K. Gupta, and R. K. Bedi, ‘‘Design of software fault
prediction model using BR technique,’’ Procedia Comput. Sci., vol. 46,
pp. 849–858, 2015.

[87] S. M. Jamali, ‘‘Object oriented metrics (a survey approach),’’ Citeseer,
Tech. Rep., 2006.

[88] G. Boetticher. (2007). The Promise Repository of Empirical Software
Engineering Data. [Online]. Available: http://promisedata.org/repository

[89] M. D’Ambros, M. Lanza, and R. Robbes, ‘‘An extensive comparison of
bug prediction approaches,’’ in Proc. 7th IEEEWork. Conf. Mining Softw.
Repositories (MSR), May 2010, pp. 31–41.

[90] J. S. Shirabad and T. J. Menzies, ‘‘The promise repository of software
engineering databases,’’ Ph.D. dissertation, School Inf. Technol. Eng.,
Univ. Ottawa, Ottawa, ON, Canada, 2005, vol. 24.

[91] D. N. Card and W. W. Agresti, ‘‘Measuring software design complexity,’’
J. Syst. Softw., vol. 8, no. 3, pp. 185–197, 1988.

[92] C. Catal, ‘‘Performance evaluation metrics for software fault prediction
studies,’’ Acta Polytechnica Hungarica, vol. 9, no. 4, pp. 193–206, 2012.

[93] R. Kumar and D. Gupta, ‘‘A heuristics based review on CK metrics,’’ Int.
J. Appl. Eng. Res., vol. 7, no. 11, p. 2012, 2012.

[94] B. M. Goel and P. K. Bhatia, ‘‘Investigation of reusability metrics for
object–oriented designing,’’ in Proc. NCETCIT, May 2012, pp. 104–110.

[95] R. Subramanyam andM. S. Krishnan, ‘‘Empirical analysis of CKmetrics
for object-oriented design complexity: Implications for software defects,’’
IEEE Trans. Softw. Eng., vol. 29, no. 4, pp. 297–310, Apr. 2003.

[96] R. Bender, ‘‘Quantitative risk assessment in epidemiological studies
investigating threshold effects,’’ Biometrical J., J. Math. Methods Biosci.,
vol. 41, no. 3, pp. 305–319, 1999.

[97] A. Kaur and I. Kaur, ‘‘An empirical evaluation of classification algorithms
for fault prediction in open source projects,’’ J. King Saud Univ.-Comput.
Inf. Sci., vol. 30, no. 1, pp. 2–17, 2018.

[98] M.-H. Tang, M.-H. Kao, and M.-H. Chen, ‘‘An empirical study on
object-oriented metrics,’’ in Proc. 6th Int. Softw. Metrics Symp., 1999,
pp. 242–249.

[99] P. Yu, T. Systa, and H.Muller, ‘‘Predicting fault-proneness using OOmet-
rics. An industrial case study,’’ in Proc. 6th Eur. Conf. Softw. Maintenance
Reeng., 2002, pp. 99–107.

[100] M. Jureczko and L. Madeyski, ‘‘Towards identifying software project
clusters with regard to defect prediction,’’ in Proc. 6th Int. Conf. Predic-
tive Models Softw. Eng., 2010, p. 9.

[101] T. Menzies and J. S. Di Stefano, ‘‘How good is your blind spot sampling
policy,’’ in Proc. 8th IEEE Int. Symp. High Assurance Syst. Eng., 2004,
pp. 129–138.

[102] T. Menzies, J. DiStefano, A. Orrego, and R. Chapman, ‘‘Assessing pre-
dictors of software defects,’’ in Proc. Workshop Predictive Softw. Models,
2004, pp. 1–5.

[103] Softlab. Accessed: Feb. 10, 2009. [Online]. Available:
http://softlab.boun.edu.tr

[104] N. Niu and A. Mahmoud, ‘‘Enhancing candidate link generation for
requirements tracing: The cluster hypothesis revisited,’’ in Proc. 20th
IEEE Int. Requirements Eng. Conf. (RE), Sep. 2012, pp. 81–90.

[105] S. Wagner, ‘‘A Bayesian network approach to assess and predict software
quality using activity-based quality models,’’ Inf. Softw. Technol., vol. 52,
no. 11, pp. 1230–1241, 2010.

[106] W. Abdelmoez, K. Goseva-Popstojanova, and H. Ammar, ‘‘Maintainabil-
ity based risk assessment in adaptive maintenance context,’’ in Proc. 2nd
Int. Predictor Models Softw. Eng. Workshop (PROMISE), Philadelphia,
PA, USA, 2006.

[107] W. Abdelmoez, M. Shereshevsky, R. Gunnalan, H. H. Ammar, B. Yu,
S. Bogazzi, M. Korkmaz, and A. Mili, ‘‘Quantifying software architec-
tures: An analysis of change propagation probabilities,’’ in Proc. 3rd
ACS/IEEE Int. Conf. Comput. Syst. Appl., Jan. 2005, p. 124.

[108] D. E. Monarchi and G. I. Puhr, ‘‘A research typology for object-oriented
analysis and design,’’ Commun. ACM, vol. 35, no. 9, pp. 35–48, 1992.

[109] M. Shepperd, Q. Song, Z. Sun, and C. Mair, ‘‘Data quality: Some com-
ments on the NASA software defect datasets,’’ IEEE Trans. Softw. Eng.,
vol. 39, no. 9, pp. 1208–1215, Sep. 2013.

[110] M. D’Ambros, M. Lanza, and R. Robbes, ‘‘An extensive comparison of
bug prediction approaches,’’ in Proc. 7th IEEEWork. Conf. Mining Softw.
Repositories (MSR), May 2010, pp. 31–41.

[111] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2011.

[112] J. Jiarpakdee, C. Tantithamthavorn, and A. E. Hassan, ‘‘The impact of
correlated metrics on defect models,’’ 2018, arXiv:1801.10271. [Online].
Available: https://arxiv.org/abs/1801.10271

[113] A. K. Luhach, D. Singh, P.-A. Hsiung, K. B. G. Hawari, P. Lingras, and
P. K. Singh, inProc. 1nd Int. Conf. Adv. Informat. Comput. Res. (ICAICR),
vol. 955. Shimla, India: Springer, Jul. 2018, 2018.

[114] D.-L. Miholca, G. Czibula, and I. G. Czibula, ‘‘A novel approach for soft-
ware defect prediction through hybridizing gradual relational association
rules with artificial neural networks,’’ Inf. Sci., vol. 441, pp. 152–170,
May 2018.

[115] R Core Team et al., ‘‘R: A language and environment for statistical
computing,’’ Vienna, Austria, 2013.

SYED RASHID AZIZ received the M.Sc. degree
in computer science from Al-Khair University,
Islamabad, Pakistan, in 1998, and the M.S. degree
in software engineering from COMSATS Uni-
versity, Islamabad, in 2008. He is currently pur-
suing the Ph.D. degree in software engineering
with Bahria University, Islamabad. He has been
involved in many national and enterprise level
business application projects, since 1986 and pro-
vides consultancy to private, public military, and

government organization for automation and teaching courses to students at
various tiers. His research interests include big data, software fault tolerance,
software reliability, software testing, the Internet of Things, service-oriented
computing, and data warehousing.

TAMIM AHMED KHAN received the B.E. degree
(Hons.) in software engineering from Sheffield
University, U.K., in 1995, the M.B.A. degree in
finance and accounting from Presston University,
Islamabad, Pakistan, in 1997, the M.S. degree in
computer engineering from CASE, Texila Univer-
sity, Pakistan, in 2006, and the Ph.D. degree in
software engineering from Leicester University,
U.K., in 2012. He is currently a Professor with the
Department of Software Engineering, Bahria Uni-

versity, Islamabad, Pakistan. His research interests include service-oriented
architectures, E-learning, and software quality assurance.

AAMER NADEEM received the M.Sc. degree
in computer science from Quaid-i-Azam Univer-
sity (QAU), the M.S. degree in software engi-
neering from the National University of Sciences
and Technology (NUST), and the Ph.D. degree
in computer science from Mohammad Ali Jinnah
University (MAJU). During his Ph.D., he was a
Visiting Scholar with The Chinese University of
Hong Kong (CUHK) under a research collabora-
tion. He is the Head of the Software Engineering

Program at the Capital University of Science and Technology (CUST), where
he is also the Head of the Center for Software Dependability (CSD), a
research group, working in the areas of software reliability, software fault
tolerance, formal methods, and safety-critical systems. He has over 30 years
of teaching, research, and industry experience in computer science and
software engineering. He has supervised 46 master’s and two Ph.D. research
theses in the areas of software testing, fault tolerance, and formal methods.
He has authored or coauthored over 90 papers in reputable international
journals and conferences. He is a Reviewer or Editorial Board Member
of several international peer-reviewed journals and conferences. He is an
Approved Ph.D. Supervisor for scholars funded by indigenous fellowship
schemes of the Higher Education Commission (HEC) of Pakistan. He is a
professional member of the Association for Computing Machinery (ACM).

VOLUME 7, 2019 85275

	INTRODUCTION
	THEORETICAL BACKGROUND
	SOFTWARE INHERITANCE
	INHERITANCE METRICS AND THEIR USAGE
	SOFTWARE FAULT PREDICTION
	FAULT PREDICTION TECHNIQUES
	STATISTICAL METHODS
	MACHINE LEARNING

	DATASETS IN SFP

	LITERATURE REVIEW
	INHERITANCE IN SFP

	METHODOLOGY
	SELECTION PHASE
	SELECTION OF CK METRICS AND INHERITANCE METRICS
	CRITERION -1: DATASET MUST BE PUBLICLY AVAILABLE
	CRITERION -2: CORRELATION MUST NOT BE 0.7 OR -0.7
	SELECTION OF EVALUATION METRICS

	PREPROCESSING PHASE
	REMOVE NON-CK AND NON-INHERITANCE FEATURES
	UNIFORMITY OF LABELS
	SPLITTING/MERGING
	CLEANING
	FILTRATION
	SKEWNESS 9:1

	EXPERIMENT AND RESULTS
	EXPERIMENT SETUP
	DATASET
	TOOLS
	SPLIT-TECHNOLOGY VERIFICATION
	CLASSIFIERS

	COMPARISION AND FINDINGS
	OVERALL COMPARISON
	ONE-ONE COMPARISON
	CK METRICS COMPARISON

	THREATS TO VALIDITY
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	SYED RASHID AZIZ
	TAMIM AHMED KHAN
	AAMER NADEEM

