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ABSTRACT In a new era for machine vision, some image enhancement algorithms can be used to
improve the quality of an imageset without reference. To assess the performance of imageset enhancement,
the existing average criterion utilizes a no-reference image quality metric to calculate the quality score
of each enhanced image, and quantifies the performance of an enhancement algorithm by the mean
value of all scores. If the quality scores of some images fluctuate greatly, their mean value difficultly
reflects the degradation or worst cases during imageset enhancement. Therefore, this paper analyzes and
illustrates the need and significance of consistency enhancement assessment, and then proposes a subset-
guided consistency enhancement assessment criterion for an imageset without reference. By measuring
the subset of an imageset, the proposed criterion firstly calculates the difference of quality scores of
each image before and after enhancement and then filters the outlier data outside confidence interval, and
finally quantifies the consistency enhancement performance of an enhancement algorithm according to its
consistency enhancement degree. When a small subset is used to guide its large imageset, the average
criterion judges a consistency or non-consistency enhancement algorithm with a 16.7% false identification
ratio, and also makes one misjudgment about the optimal-consistency algorithm, while the proposed criterion
always correctly judges the non-consistency or optimal-consistency enhancement algorithm. This paper can
help the scientific community to select a robust enhancement algorithm in the degradation or worst cases.
As compared with the average criterion, the proposed criterion is more robust in terms of subset-guided
consistency enhancement assessment, which may effectively find an optimal-consistency or non-consistency
enhancement algorithm for the rest of an imageset.

INDEX TERMS Imageset enhancement, no-reference image quality, consistency enhancement assessment,
subset guided.

I. INTRODUCTION

With the progress of intelligent image processing and
machine vision, there have been some image enhancement
algorithms for unmanned surveillance systems, where the
performance of an image enhancement algorithm may be
measured by a no-reference image quality metric [1], [2].
After obtaining an enhanced image, the enhancement per-
formance for the image is quantified by its quality score.
When assessing the quality enhancement of an imageset
which contains many images, the existing criterion is the
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average criterion, where a no-reference image quality metric
is used to respectively measure each image in the enhanced
imageset, and then calculate the mean value of their qual-
ity scores on all images of the imageset. The enhancement
algorithm with a higher mean value can be selected in future
applications. However, under some special circumstances,
the image enhancement algorithm with a higher mean value
can’t improve all images in an imageset. When the quality
score of an initial image is greater than that of its enhanced
image in an imageset, it is impossible to prevent this degrada-
tion case only by the average criterion. In such applications as
unmanned driving and biomedicine, any degradation or worst
case can’t be ignored, because a fatal accident may occur.
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Therefore, when assessing the quality enhancement of an
imageset, the quality score of an enhanced image may be
fewer than that of its initial image, and this problem has
attracted increasing attention. Although the average criterion
is good in most situations, it still has its own limitation when
choosing an enhancement algorithm for a large imageset.

In the era for machine vision, the amount of image data
is increasing quickly, and the enhancement task is gradu-
ally oriented to an imageset. For an increasing number of
images, an assessment criterion is urgently needed to find
an image enhancement algorithm with consistency perfor-
mance for pattern recognition, intelligent monitoring or other
machine vision applications. Based on the basic motivation,
this paper proposes a subset-guided consistency enhancement
assessment criterion for an imageset without reference. The
proposed criterion can provide a performance assessment
mechanism for different image enhancement algorithms,
and then find an optimal-consistency or non-consistency
enhancement algorithm for an imageset.

In the past few years, underwater image enhancement has
drawn considerable attention in both image processing and
computer vision [3]. Without loss of generality, this paper
takes an underwater imageset as an example to expound the
proposed assessment criterion. When assessing the imageset
enhancement under a prior model-based metric, a lightweight
data-driven approach should be added especially for under-
water imaging in unknown scenes, where the difference of
quality scores of each image before and after enhancement
need be fully considered. Theoretically, this difference repre-
sents the gain ability of each image enhancement algorithm
under the same metric.

The remaining part of this paper is organized as follows:
Section II introduces various underwater image enhancement
algorithms, and Section III analyzes typical metrics for no-
reference image quality evaluation, and Section IV describes
the subset-guided consistency enhancement assessment cri-
terion. Through extensive experiments, Section V illustrates
the relative advantages of the proposed criterion. Section VI
concludes the paper.

Il. IMAGE ENHANCEMENT ALGORITHMS

The image enhancement refers to highlighting useful infor-
mation and removing or weakening useless information
according to a specific requirement, which aims to make the
enhanced image more suitable for the vision characteristics
of human eyes or machine [4]. There are some classical
underwater image enhancement algorithms for challenging
situations such as dynamic or unknown scenes. For instance,
the contrast enhancement is a fundamental enhancement
mechanism, which makes the probability density function
of image gray level meet the form of approximate uniform
distribution so as to increase the dynamic range of an image
and improve the image contrast [5]. Typically, the con-
trast limited adaptive histogram equalization (CLAHE) [6]
algorithm is an improvement of the traditional histogram
equalization, which can overcome noises by limiting the
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image contrast. When the underwater imaging environment
is assumed to have low-backscatter, shallow-water condi-
tions, the assumptions make it possible to design a simple
frequency-domain inverse filter (IF) for image restoration [7].
In the field of color constancy, the dynamic threshold white
balance (DTWB) [8] algorithm is also a common image
enhancement algorithm. For underwater image enhancement,
Voronin et al. [9] proposed a hybrid equalization (HE)
algorithm by combining multiple physical model-based
enhancement methods. Giiraksin et al. [10] proposed a
novel contrast stretching (CS) algorithm especially for under-
water image enhancement. Igbal er al. [11] proposed an
unsupervised color model (UCM) algorithm for improving
low-quality underwater images. Each of these algorithms has
its own advantages and disadvantages in a certain applica-
tion scenario, and it is beyond the scope of this work to
comprehensively assess the state-of-the-art underwater image
enhancement algorithms. Some assumptions in an enhance-
ment algorithm may fail for a different imageset, and no
algorithm has constant superiority due to different properties
of underwater imaging and lighting conditions [12]. By intro-
ducing the definition of consistency enhancement degree, this
paper aims to provide an effective assessment criterion by
measuring the subset of an imageset without reference, and
find an optimal-consistency or non-consistency enhancement
algorithm for the rest of the imageset.

Ill. NO-REFERENCE IMAGE QUALITY METRICS

In the process of image acquisition, transmission and storage,
it is inevitable that image quality will be affected. The image
quality metric has been concerned by many researchers.
A variety of image quality metrics have also been proposed,
and these metrics can be divided into subjective metric and
objective metric. The subjective metric mainly relies on the
observers to evaluate the images and obtain their mean opin-
ion score. For a large imageset, the subjective metric has some
shortcomings such as heavy workload and low efficiency.
The objective metric is used to obtain the quantitative quality
score of an image. According to whether reference images
are needed during the quality evaluation, the objective metrics
are divided into three types: full-reference, reduced-reference
and no-reference. In this work, the used image quality met-
rics belong to no-reference type. The no-reference image
quality metric is challenging due to the absence of reference
image and the ever-changing content of different images to be
evaluated.

Based on a prior model, a no-reference image quality
metric can measure the image quality without any refer-
ence. For a gray image, the common quality metrics uti-
lize its contrast and edge sharpness. For the quality eval-
uation of a color image, Wang et al. [13] put forward a
universal mechanism by transforming a color image into
gray images and then measuring the image quality, where
the process of transforming color image into gray image
will cause a certain quality loss. The existing color qual-
ity metrics are focused on saturation, brightness, sharpness,
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contrast, chrominance or other feature representations [14].
Panetta ef al. [15] proposed a human-visual-system-inspired
underwater image quality metric which reflects the human
visual perception. For unmanned surveillance systems, a no-
reference image quality metric is needed in prior model-based
manner.

Due to the complicated underwater environment and light-
ing conditions, the underwater image enhancement is a
challenging task, where an underwater image is degraded
by wavelength-dependent absorption, forward scattering and
backward scattering [16]. Blasinski et al. [17] provided an
open-source underwater image simulation tool. However,
there still exists a gap between the synthetic underwater
images with reference and real-world underwater images
without reference. According to Shannon’s information the-
ory, the Entropy metric is widely used to represent the
information uncertainty and complexity of an image as a
no-reference image quality metric [18]. In addition,
the underwater color image quality evaluation (UCIQE) is
served as a no-reference metric [19], where the measurements
of chrominance variation, average saturation, and luminance
contrast of an underwater image are linearly combined.
The UCIQE metric is widely used to evaluate underwater
image quality. In our experiments, the model coefficients
are set to the values given in [19]. As long as the non-
consistency or consistency performance can be fairly judged
under the Entropy or UCIQE metric, the proposed criterion
will be valuable for an imageset without reference.

In this paper, “algorithm”, “metric” and “criterion” have
different meanings. For various imagesets, each algorithm or
metric has its strength and limitation. In fact, the proposed
criterion doesn’t depend on any state-of-the-art enhancement
algorithm or no-reference image quality metric. To the best
of our knowledge, the existing algorithms or metrics still
depend on the average criterion for imageset enhancement
assessment [20], [21], but they don’t consider consistency
enhancement performance. Therefore, the proposed criterion
will be mainly compared with the average criterion.

IV. CONSISTENCY ENHANCEMENT ASSESSMENT

A. ANALYSIS OF CONSISTENCY ENHANCEMENT

This section will utilize six simple but effective enhancement
algorithms, i.e., the IF algorithm [7], the DTWB algo-
rithm [8], the HE algorithm [9], the CLAHE algorithm [6], the
CS algorithm [10] and the UCM algorithm [11] to improve
a single underwater image. Based on these image enhance-
ment algorithms, Fig. 1 illustrates the subjective results of
an initial image and its enhanced images, whose quality
evaluation depends on the human visual perception system.
However, some machine vision applications have to depend
on no-reference image quality metrics such as Entropy or
UCIQE.

Under the Entropy metric, the initial image and its
enhanced images are evaluated respectively, and the quality
scores are drawn into a line graph, as shown in Fig. 2. It can
be seen that the quality scores of two enhanced images are
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FIGURE 1. Subjective comparison of image enhancement algorithms.
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FIGURE 2. Quality scores of the initial image and its enhanced images.

reduced, where the IF, HE, CLAHE and UCM algorithms can
enhance the quality of the initial image, but the DTWB and
CS algorithms reduce the quality of the initial image.

As shown in Fig. 3, the imageset A is composed of six
underwater images, and the six images are numbered as:
IMG1, IMG2, IMG3, IMG4, IMGS5 and IMG6. Here, the
imageset A is used to illustrate what the consistency enhance-
ment assessment is. Firstly, the Entropy metric is applied to
obtain the initial quality score of each initial image in the
imageset A. Then, the IF, DTWB, HE, CLAHE, CS and
UCM algorithms are respectively implemented to enhance
the imageset A. Finally, the Entropy metric is applied to
obtain the new quality score of each enhanced image in the
imageset A. The evaluation results are shown in Fig. 4 to
Fig. 9.

As can be seen from Fig. 4, Fig. 6, Fig. 7 and Fig. 9, the new
quality score of each enhanced image is higher than that of

VOLUME 7, 2019



H. Liu et al.: Subset-Guided Consistency Enhancement Assessment Criterion for an Imageset Without Reference

IEEE Access

(a) IMG1 (b) IMG2 (c) IMG3
(d) IMG4 (e) IMGS5 (f) IMG6
FIGURE 3. The imageset A.
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FIGURE 4. Performance of the IF algorithm.
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FIGURE 5. Performance of the DTWB algorithm.

its initial image in the imageset A. Therefore, the IF, HE,
CLAHE and UCM algorithms are regarded as consistency
enhancement. On the contrary, according to the Fig. 5 and
Fig. 8, after the imageset A is enhanced by the DTWB
algorithm or CS algorithm, there are a few cases where
the new quality score of an enhanced image is lower than
that of the initial image, and thus the algorithm is regarded
as non-consistency enhancement (N/CE) for an imageset.
Among the four consistency enhancement algorithms, the HE
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FIGURE 6. Performance of the HE algorithm.
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FIGURE 7. Performance of the CLAHE algorithm.
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FIGURE 8. Performance of the CS algorithm.

algorithm has relatively significant enhancement effect on the
small subset. In a similar application scenario, HE is usually
regarded as the optimal-consistency enhancement algorithm
for a large imageset. In the following, the consistency perfor-
mance will be judged and quantified.

B. THE PROPOSED CRITERION

After defining the consistency enhancement algorithm
through experimental data, a subset-guided consistency
enhancement assessment (SCEA) criterion is proposed for
an imageset without reference. The general process of the
proposed SCEA criterion is outlined. Firstly, the proposed
criterion calculates the difference of quality scores of
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FIGURE 9. Performance of the UCM algorithm.

each image before and after enhancement for an imageset.
Secondly, the criterion parameters are determined accord-
ing to a certain application scenario and the confidence
interval is used to filter the outlier data [22]. Then, the con-
sistency or non-consistency of an enhancement algorithm
is judged according to the valid data. Finally, the proposed
criterion utilizes the consistency enhancement degree (D)
to quantify the consistency performance of a consistency
enhancement algorithm. The flow chart of the proposed
SCEA criterion is shown in Fig. 10, and the detailed steps
of SCEA are explained as follows:

Step 1: The proposed criterion uses a no-reference image
quality metric Q to evaluate the quality scores on all images
(I, I, ..., I,) in an initial imageset which usually is a small
subset of an imageset without reference, and obtains the
initial quality score ¢; of an initial image /; as one parameter
in the SCEA equations, where i(i = 1,2, ...n) is the image
number, and n is the amount of all images in the initial
imageset.

Step 2: The image quality enhancement is performed on
all images in the initial imageset by using an image enhance-
ment algoritpm E, so as to obtain an enhanced imageset
Uy 1y, o 1.

Step 3: The image quality is respectively evaluated on each
enhanced images Ii/ by using the image quality metric Q of
Step 1, and thus the new quality score B; is obtained. If §; is
greater than the initial quality score «;, it indicates that under
the image quality metric Q, the image enhancement algorithm
E improves the quality of initial image /;; on the contrary,
If B; is fewer than «;, it indicates that under the image quality
metric Q, the enhancement algorithm E reduces the quality of
initial image I;.

Step 4: The quality score difference (QSD;) of initial image
I; and enhanced images Il./ is obtained from the difference
between the initial quality score ¢; and new quality score ;.
If the value of QSD; is positive, it means that under the
image quality metric Q, the image enhancement algorithm E
improves the quality of initial image I;.

OSD; = Bi — «i ey
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FIGURE 10. Flow chart of the proposed SCEA criterion.

Step 5: The proposed criterion calculates the mean value
U of the quality score differences of all images. The equation
is as follows:

1 n
U=_%__ 0D @
Then, it calculates the standard deviation S of QSD;:
s=1 /5" (osp, - vy 3
=~ 2., (@SDi - U) 3

Step 6. The proposed criterion determines the parameter A
according to the requirements of an application scenario, and
substitutes the parameter into the following equation:

e=x1-S )

The proposed criterion calculates the parameter ¢, and gets
the confidence interval [U — e, U + ¢], and then uses the
confidence interval to filter the outlier data. The QSD; values
outside confidence interval are regarded as outlier data for
the imageset. The proposed criterion will discard them, and
keep the OSD; values in confidence interval as valid data.
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For example, with A = 1.96, [U —¢,U +¢] is a 95%
confidence interval so as to remove few error data.

Step 7: Sort the valid data in ascending order by the OSD;
subscript number, and sort it into QSDy, OSD,, ..., OSD,,,
where j(j = 1,2,...,m) is the new image subscript, and
m(m < n) is the amount of valid data.

Step 8: Compare the valid data with zero. If all valid
data are greater than zero, it indicates that under the image
quality metric Q, the image enhancement algorithm E is the
consistency enhancement algorithm, then the flow continues
to Step 9; Otherwise, the image enhancement algorithm E is
N/CE, where the degradation case occurs.

Step 9: Based on the above valid data, the minimum quality
score (QSD,;,,) of OSD; is obtained to represent the worst
case:

OSD,;, = min {QSDy, OSD,, ..., QSD,, } 3)

Then, the mean quality score (QSD,,,) of QSD; is also calcu-
lated as the average case of valid data:

0SD,,, = ave {QSDy, QSD,, ..., OSD,,} (6)

In general, the consistency performance with high QSD,,,,
but low OSD,,;,,, or low OSD,,,, but high OSD,,,;, is unsatis-
factory in such applications as marine automation and aquatic
robots. For risk-sensitive assessment, the mean value or stan-
dard deviation difficultly reflects the degradation or worst
cases during imageset enhancement. To ensure both gain
fairness and worst-case resilience, QSD,,,,, and OSD,,;, have
the similar importance in the mathematical foundation.

Step 10: To leverage both worst case and average case,
Equation (7) provides a case-combined solution as a weighted
contribution of minimum and average differences. As a linear
combination function of both QSD,,, and QSD,,,;,, the con-
sistency enhancement degree D, is expressed as follows:

Dee = (1 — ) - OSDyye + 1 - OSDyyiyy @)

where a weighting factor € [0, 1] indicates the relative
importance of the QSD,,;, component which depends on a
specific application scenario. Although the adaptive selection
of u is very challenging, it is practical that p is set to a fixed
value [23], [24]. Further, since QSD,,, and OSD,,;, have a
similar order of magnitude in quality score difference, “u =
0.5 is regarded as a simple but reasonable tradeoff point
between OSD,,,, and OSD,,;,. The reason behind (7) is that
the index D, expects to strike a balance between gain fairness
and worst-case resilience, which helps the scientific com-
munity to adaptively select a robust enhancement algorithm.
In the following, one typical scenario is needed to prove
that the average criterion is possibly biased when choosing
an enhancement algorithm, while the proposed criterion can
avoid the extreme cases. According to (7), the proposed
criterion can obtain the consistency enhancement degree D,
of the consistency enhancement algorithm E under the image
quality metric Q.

Based on the subset of an imageset, these consistency
enhancement algorithms can be screened out from various
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TABLE 1. The mean quality score of the initial imageset A and enhanced
imageset A (under the Entropy metric).

Imageset A Mean quality score
Initial 6.4150
IF Enhanced 6.5304
DTWB Enhanced 6.3056
HE Enhanced 7.2401
CLAHE Enhanced 7.1856
CS Enhanced 6.6696
UCM Enhanced 6.8651

image enhancement algorithms through above SCEA steps.
A higher D., value means that its enhancement algorithm
is more robust in terms of consistency enhancement perfor-
mance. With the highest D, value, the optimal-consistency
enhancement algorithm can be selected for the rest of an
imageset.

V. EXPERIMENTAL RESULTS

A. COMPARISON BETWEEN SCEA CRITERION AND
AVERAGE CRITERION

When an image quality metric is always giving better or worse
scores for an enhancement algorithm, the existing average
criterion can provide an assessment result similar to that
of the proposed SCEA criterion. In contrast with other
data-driven approaches, the SCEA criterion is still compu-
tationally lightweight [25], [26]. When N/CE is unbearable
in some occasional cases, the SCEA criterion has its own
unique advantages by assessing the consistency performance
of an enhancement algorithm. The SCEA criterion is not
dependent on any enhancement algorithm. In the following,
the IF, DTWB, HE, CLAHE, CS and UCM algorithms are
respectively applied to enhance different imagesets.

Under the Entropy metric, the mean quality scores of the
initial imageset A and enhanced imageset A are respectively
calculated, and the experimental results are given in Table 1.
The enhanced imageset A is successively obtained by six
enhancement algorithms. As can be seen from Table 1,
the mean quality score of the enhanced imageset A by the IF,
HE, CLAHE, CS or UCM algorithm is higher than that of the
initial imageset A, where the CS algorithm is relatively better
than the IF algorithm for the imageset A. However, in Fig. §,
the CS algorithm reduces the quality score of IMG6, which
is N/CE; IF is a consistency enhancement algorithm. There-
fore, the enhancement algorithm with a higher mean quality
score is not necessarily a consistency enhancement algorithm.
There is a potential problem to rank the enhancement algo-
rithm only by the average criterion. If the CS algorithm is
applied to the rest of an imageset, it may generate the serious
degradation for individual images.

Under the Entropy metric, the SCEA criterion is
respectively applied to calculate the D, value of the imageset
A by six enhancement algorithms. The experiment adopts
the criterion parameters © = 0.5 and A = 2.0 with the
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TABLE 2. The Dce value of imageset A (under the Entropy metric).

Enhancement algorithms D, value
IF 0.0220
DTWB N/CE
HE 0.5964
CLAHE 0.5862
CS N/CE
UCM 0.4163

97% confidence interval. The results are shown in Table 2.
It can be found from Table 2 that IF, HE, CLAHE and UCM
are the consistency enhancement algorithms. Among them,
the D., value of the HE algorithm is the highest, which is
regarded as the optimal-consistency enhancement algorithm
for the imageset A. On the contrary, the DTWB and CS
algorithms are N/CE. The experimental results are consistent
with the conclusion in Section IV. In contrast with the aver-
age criterion, the SCEA criterion can more robustly assess
the consistency performance of each image enhancement
algorithm in the application scenario.

B. THE ROBUSTNESS OF SCEA

When providing an enhancement algorithm for an imageset,
due to the huge image quantity and abundant enhancement
algorithms, a small subset may be extracted from a large
imageset in order to reduce cost. Some enhancement algo-
rithms are applied to enhance the quality of the subset. The
enhancement algorithm with strong consistency performance
is judged and selected, which will be applied to the rest of the
imageset.

Although being available in most situations, the average
criterion may lead to potential problems in a few cases, and
the following experiment indicates that such problems may
happen. To validate that the proposed SCEA criterion is more
competitive rather than the average criterion in a certain
application scenario, we randomly select 200 images as the
imageset D from a large-scale underwater imageset [27].
Then, we randomly select 50 images as the imageset C from
the imageset D, and randomly select 5 images as the subset B
from the imageset C. To verify the subset-guided enhance-
ment, experiments are respectively performed on subset B,
imageset C and imageset D.

Under the UCIQE metric, the mean quality scores of the
initial subset B and enhanced subset B are given in Table 3.
According to the quantitative results, different enhancement
algorithms can be ranked. As can be seen from Table 3,
the mean quality scores of the enhanced subset B by the
DTWB, HE, CLAHE and UCM algorithms are higher than
that of the initial subset B. According to the average criterion
on subset B, the DTWB, HE, CLAHE and UCM algorithms
have consistency enhancement performance, where CLAHE
is the optimal-consistency enhancement algorithm among the
six algorithms. In a subset-guided framework, DTWB, HE,
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TABLE 3. The mean quality score of subset B, imageset C and imageset D
(under the UCIQE metric).

Mean quality score

Subset B Imageset C ~ Imageset D
Initial 0.4550 0.4697 0.4640
IF Enhanced 0.4530 0.4670 0.4615
DTWB Enhanced 0.4566 0.4404 0.4147
HE Enhanced 0.5553 0.5596 0.5591
CLAHE Enhanced 0.5570 0.5545 0.5545
CS Enhanced 0.4472 0.4612 0.4554
UCM Enhanced 0.5288 0.5331 0.5312

CLALE and UCM are considered as consistency enhance-
ment algorithms on imageset C and imageset D, where
CLAHE is optimal.

In the verification experiment, the mean quality scores
of the initial imageset C, initial imageset D and enhanced
imageset C, enhanced imageset D are also given in Table 3.
With the expansion of the imageset, when the DTWB algo-
rithm is applied to enhance the imageset C and imageset D,
the mean quality score of the enhanced imageset C and
enhanced imageset D is fewer than the initial imageset C
and initial imageset D. It means that the DTWB algorithm
is N/CE on imageset C and imageset D, which is different
from the assessment result on subset B. Therefore, the aver-
age criterion gives one false identification among the six
enhancement algorithms. When using the subset B to guide
the imageset C and imageset D, the average criterion judges a
consistency or non-consistency enhancement algorithm with
a 16.7% false identification ratio among the six algorithms.
The reason for this phenomenon is that the DTWB algorithm
is N/CE. The N/CE algorithm may produce serious degrada-
tion when applying to a large imageset. In addition, HE is the
optimal-consistency enhancement algorithm on imageset C
and imageset D, which is inconsistent with the assessment
result on subset B. The average criterion also makes one
misjudgment about the optimal-consistency enhancement
algorithm on the three imagesets. In summary, when a subset-
guided algorithm is used for a large imageset, the existing
average criterion may lead to the false identification or
misjudgment.

The following will verify whether the SCEA criterion is
more robust than the average criterion when a subset is used
to guide its imageset. Under the UCIQE metric, with A = 2.0
and u = 0.5, the SCEA criterion successively calculates the
D¢, value on subset B by each enhancement algorithm, and
the results are shown in Table 4. It can be seen that IF, DTWB
and CS are N/CE, while HE, CLAHE and UCM are con-
sistency enhancement algorithms where HE is optimal. In a
subset-guided framework, the IF, DTWB and CS algorithms
are considered as N/CE on imageset C and imageset D; HE,
CLAHE and UCM are considered as consistency enhance-
ment algorithms on imageset C and imageset D, where HE is
optimal. In the verification experiment, the SCEA criterion
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TABLE 4. The D¢e value of subset B, imageset C and imageset D (under
the UCIQE metric).

Enhancement D, value
algorithms Subset B Imageset C ~ Imageset D

IF N/CE N/CE N/CE

DTWB N/CE N/CE N/CE

HE 0.0690 0.0596 0.0643

CLAHE 0.0678 0.0576 0.0633

CS N/CE N/CE N/CE

UCM 0.0454 0.0374 0.0401
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FIGURE 11. The quality score of subset B (under the UCIQE metric).

successively calculates the D, value on the imageset C
and imageset D by each enhancement algorithm. The actual
results are also shown in Table 4, where the IF, DTWB and CS
algorithms are always N/CE, while HE, CLAHE and UCM
are always consistency enhancement algorithms, and HE is
always optimal among the six algorithms. The assessment
results on imageset C and imageset D are consistent with
the assessment result on subset B. It means that when per-
forming the subset-guided enhancement for a large imageset,
the proposed SCEA criterion can correctly judge each con-
sistency or non-consistency enhancement algorithm, and the
selection of an optimal-consistency enhancement algorithm
is also enough robust.

As shown in Fig. 11 to Fig. 13, we take the DTWB
algorithm and HE algorithm as typical examples, and draw
the quality score graph of one-by-one images in initial
subset B, initial imageset C, initial imageset D and enhanced
subset B, enhanced imageset C, enhanced imageset D
respectively by the two algorithms. According to Fig. 11 to
Fig. 13, the DTWB algorithm almost enhances the subset B.
However, because the DTWB algorithm is N/CE, for larger
imageset C and imageset D, the performance of the DTWB
algorithm is poor. This is consistent with the results in Table 3.
In addition, with the expansion of the imageset, the DTWB
algorithm is always N/CE, while HE is always the consistency
enhancement algorithm whose consistency enhancement
performance is better than that of the DTWB algorithm.
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FIGURE 12. The quality score of imageset C (under the UCIQE metric).
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FIGURE 13. The quality score of imageset D (under the UCIQE metric).

This is also consistent with the results in Table 4. With
a highest D, value on subset B, the optimal-consistency
enhancement algorithm can be correctly selected for image-
set C or imageset D, which indicates during imageset
enhancement assessment, the proposed SCEA criterion is
more robust than the existing average criterion when using
a subset to guide its large imageset.

C. COMPLEXITY ANALYSIS

The computational complexity is analyzed through compar-
ing the execution time between the proposed SCEA criterion
and existing average criterion. Based on Matlab R2016a,
the complexity test is conducted on a 64-bit PC with Intel
Core i3-8100 CPU @3.60 GHz and 4 GB RAM. The ini-
tial subset B is sequentially enhanced by the IF, DTWB,
HE, CLAHE, CS and UCM algorithms so as to obtain the
enhanced subset B. The average criterion and SCEA criterion
are respectively used to assess the consistency enhancement
performance of each algorithm. The computational results are
presented in Table 5. As evidenced by the results in Table 5,
the execution time of the SCEA criterion is nearly twice that
of the average criterion. There are three general explanations
as follows. Firstly, each enhanced image usually enriches its
color and contrast information, so the complexity to evaluate
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TABLE 5. Complexity comparison between the average criterion and
SCEA criterion on subset B (Seconds).

Enhancement - o
algorithms Average criterion SCEA criterion

IF 10.1019 19.5540
DTWB 9.9755 18.2683
HE 10.2324 18.7670
CLAHE 10.6320 18.2794
CS 10.4197 19.1720
UCM 10.3292 19.4102

an enhanced image is slightly greater than that to evaluate
its initial image. Secondly, the SCEA criterion performs the
image quality metric twice to evaluate an image before and
after enhancement, while the average criterion only performs
that once. Thirdly, the complexity of the SCEA or average
criterion is mainly in the operation of performing a metric.
Given an imageset with image quantity N, the computational
complexity of the average criterion is O(N), while that of the
SCEA criterion is nearly O(2N). Overall, the complexity of
the SCEA criterion and average criterion is still in the same
order of magnitude.

VI. CONCLUSION

To assess the performance of imageset enhancement,
this paper proposes a subset-guided consistency enhance-
ment assessment criterion for different image enhancement
algorithms. By leveraging both prior model-based metric
and data-driven approach, the proposed criterion is more
robust than the existing average criterion when choosing a
consistency enhancement algorithm for the rest of an
imageset without reference. The proposed criterion can be a
useful supplement to the average criterion during imageset
enhancement, especially in high-risk challenging situations.
In the future work, we tend to construct a publicly available
underwater imageset with the degradation or worst cases
and the corresponding benchmark. Moreover, more intelli-
gent assessment criterion will be investigated for various
enhancement algorithms by combining prior model with
dynamic learning.
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