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ABSTRACT The CT scan image is one of the most useful tools for diagnosing and locating lesions in
the kidney. It can provide precise information about the location and size of lesions in many medical
applications. Manual and traditional medical testings are labor-consuming and time-costing. Nowadays,
detecting lesions in CT automatically is an integral assignment to the paramount importance of clinical
diagnosis. Computer-aided diagnosis (CAD) is needed to develop and improve medical testing efficiency.
However, it is still a tremendous challenge to the extant low precision and incomplete detection algorithm.
In this paper, we proposed a lesion detection tool using multi intersection over union (IOU) threshold based
on morphological cascade convolutional neural networks (CNNs). For improving the detection of small
lesions (1–5 mm) and increasing the stableness of network, we proposed two morphology convolution
layers and modified feature pyramid networks (FPNs) in the faster RCNN and combined four IOU threshold
cascade RCNNs. In this lesion detection task, the modified CNN was trained in pytorch framework. The
experiments were conducted in CT kidney images of DeepLesion that are published by hospitals’ picture
archiving and communication systems (PACSs). Finally, our method achieved AP of 0.840 and AUC
of 0.871, and the results demonstrated that our proposed detector is an outstanding tool for detecting lesions
in CT and outperformed in the data set.

INDEX TERMS Kidney lesion detect, deep learning, morphology, RCNN.

I. INTRODUCTION
Nowadays, overwork that brings out human immunity reduc-
ing, excessive salt intake, and worse external environmental
factors such as cold, damp are easy to further cause kidney
disease. As the research of the Kidney International [1] shows
that the population of the chronic kidney disease (CKD) is
beyond 2.8 hundred million and still increase rapidly. And
it is reported the morbidity and mortality of renal diseases
has doubled in the last year by National Institute of Health,
and the incidence of renal disease tends younger and younger.
The nephropathy will be a more and more serious problem,
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so the exact diagnose is of great significant for discovering
and treating renal disease. It is significant for renal function
diagnose to take precaution before symptoms. And under-
standing the location and extent of kidney damage can help
to diagnose and guide treatment. In clinical diagnosis, doctors
and radiologists usually detect kidney disease via computed
tomography (CT). CT scans is one of the most common tools
used for the screening, diagnosis and treatment of lesions.
It can detect small calcification, stones or negative stones
that cannot be clearly detect by standard X-ray examina-
tion. CT can determine the location, extent and hematoma
of the kidney injury, as well as postoperative complications.
And compared with standard X-rays, CT scans are more
detailed.
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The most common kinds of kidney lesions are that renal
cyst, renal stone and hydronephrosis. For quickly find-
ing and locating those renal lesions, comparing with the
time-consuming and laborious traditional diagnosis in CT
scans, the algorithms for automatic detection of lesions can
ameliorate those situations: (1) Saving time of diagnosis,
with the number of patients increasing rapidly, the medical
testing needs more and more time to get the result, so it can
be efficient and effective with using CAD to help diagnose.
(2) Improving the precision of testing, the lesion detection
algorithm can help radiologists and doctors, especially those
do not have much experience to decide where are lesions.
(3) Reducing costs of hospitals and schools, undoubtedly,
training a preeminent radiologist and doctor needs large
money and time.

Nowadays, more and more people and laboratory are
interesting in detection of medical images. And all of them
accommodate their methods to deal with medical images
tasks. Jiang et al.[2] fixing structure and training procedure
that could be applied to resolve a medical imaging problem.
Noll et al. [3] utilized basic kidney shape information to
detect the kidney position. Zhang et al. [4] developed an effi-
cient Hessian based Difference of Gaussians (HDoG) detec-
tor to identify the glomeruli. Greenspan et al. [5] proposed
an early detection of acute renal transplant rejection using
diffusion-weighted MRI. Akkasaligar and Biradar [6] using
wavelet thresholding and Wavelet decomposition method to
process of kidney ultrasound images. van Ravesteijn et al. [7]
presented a CAD system for computed tomography colonog-
raphy that orders the polyps according to clinical relevance.
Grigorescu et al. [8] proposed a novel method for automated
detection and segmentation of all large lesions based on a
local measure for protrusion and clustering based on geodesic
distance. Zhou and Qi [9] focuses on the adaptive imaging
for lesion detection. Moon et al. [10] developed for ana-
lyzing automated breast ultrasound images (ABUS) based
on multi-scale images detection. Li [11] presents Gaussian
Proposal Networks (GPNs) to detect lesion bounding ellipses.
Zhang et al. [12] predicted the subsequent involvement
regions of a tumor. Khalifa et al. [13] proposed a novel frame-
work for the classification of acute rejection versus nonrejec-
tion status of renal transplants. Moveover, Zheng et al. [14]
proposed a CNN based approach that to improve the effec-
tiveness of detection nodules. Tang et al. [15] based on Mask
RCNN proposes a hard negative example mining strategy
to detect lesions. Shin et al. [16] fine-tuned CNN models
pre-trained from natural image data set to medical image
tasks. Arnaud et al. [17] designed a fully automated method
that can both localization and characterization of lesion.
Kolachalama et al. [18] usingDeepNeural Networks to detect
pathological fibrosis renal. Danaee et al. [19] modified a
tool to detection the cancer. Turco et al. [20] dominantly
focused on polycystic kidney disease. Ben-Cohen et al. [21]
detected in computed tomography (CT) examinations, using
both a global context with a fully convolutional network
(FCN). Cuingnet et al. [22] proposed an automatic detection

and segmentation of kidneys in 3D CT images using ran-
dom forests. Zhang et al. [23] did for identification of small
structures (blobs) from medical images to quantify clini-
cally relevant features. Mahapatra et al. [24] designed an
automatic detected disease tissues algorithm. However, all
those networks are not suitable for the lesion detection of
kidney, due to those mentioned methods cannot deal neatly
with the problem of sparse and small lesions in kidney and
cannot achieve a high precision and comprehensive detec-
tor. However, unlike the common image classification and
object detection, the detection kidney of medical image needs
resolves lots of extra problems [25]. Such as, lacking a
large-scale annotated image data set and only those has pro-
fessional knowledge can label the image annotation. CAD is
the most popular and interesting hot area as the deep learning
becomingmore andmore comprehensive, especially in image
processing. Detection lesions tend to be one of themost popu-
lar research. In a word, convolutional neural network (CNN)
is shown a valid tool for a range of computer vision tasks,
including medical imaging detection, which is indispensable
for the algorithm to diagnosis precise and comprehensive.
Contrast to the traditional diagnosis ways of CT, it has a
better performancewith high accuracy and spends less time to
detect the lesion, and it will relieve thework of the radiologist.
CAD [26] tools help the radiologist especially the young
and inexperienced doctor to deal with recognition lesions in
medical image.

Based on our data set (DeepLesion) [27] and the actual
situation that lesions are most small and distribute sparsely,
we use faster rcnn as the baseline. Our proposed net-
work is multi stages network which improved from two
stage network, but more accurate than two stages network.
To deal with this problem and to improve detection fea-
ture maps, we use an effective and exact residual neural
network (ResNet) as backbone for obtaining kidney lesion
feature maps. Because the shallow layers made from more
high-resolution convolutional feature maps that include more
spatial information and the deep layers containing more
low-resolution feature maps that including more semantic
information [30]. In conclusion, our method focuses on
improving those following three points: (1) Using two kinds
of kernel of convolution image to achieve the effect of math-
ematical morphology image processing. After dilating and
eroding, the small goals in CT image can be detected unde-
manding. (2) Combine modified feature pyramid networks
P2, P3, P4, P5, P6, P7 with ResNet101 in multi IOU thresh-
olds cascade network at the Faster RCNN baseline. (3) Var-
ious data augment methods, including flipping, resizing (the
image size 512x512 is sub-sampled by factors of 2 down to
256x256 and up to 1024x1024 and cropping image with the
center of kidney. The framework of the proposed method is
shown in Fig. 1, which mainly makes of two steps, that is
different size of kidney feature maps acquiring for localiza-
tion and classification and multi-IOU cascade RCNN. In the
first stage, getting several different sizes feature maps via two
kinds of morphology convolution layers and backbone with
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FIGURE 1. The Framework of the proposed kidney lesion detection method which mainly includes two steps: the acquisition of six different sizes
lesions detection feature maps and multi-IOU cascade RCNN.

feature pyramid networks. Subsequently, the region proposal
network and four IOU thresholds will deal with those feature
maps with diverse anchor size and then output class pre-
diction score and four coordinate of boundary box. Without
doubt, our experiment shows a high accuracy, high speed
and with no human involvement program of kidney lesions
detection in CAD.

II. METHOD
Given an input (2D CT images), the network of Fig. 1 detects
renal lesions following those steps. In the first step, the input
image via two kinds of convolution kernels of morphological
operations [28] (eroding and dilating) will generates erosion
and dilation image layers (Section III-A); In the second
step, six different sizes feature maps are exacted through
the backbone including ResNet and FPN from three paths
images (the original image, erosion layer and dilation layer)
(Section III-B); In the final step, the RPN and four IOU
thresholds are cascaded to deal with those different sizes fea-
ture maps to give the class prediction score and coordinates
regression (Section III-C).

A. MORPHOLOGICAL OPERATIONS
Morphology is a theory and technique for the analysis and
processing of geometrical structures and commonly suitable
to digital image process. Morphological image processing is
a group of non-linear operations associates with the shape
or morphology. The basic morphological operations include
dilation, erosion, opening and closing. Morphological oper-
ations depend on the correlation of pixel values, not on their
absolute numerical values. So, morphological operations are
quite suitable to the processing of binary images, such as
lesions in the kidney. There aremany functions ofmorpholog-
ical operations. (1) noise elimination; (2) image independent
elements isolation and image adjacent elements joins; (3) the
maximum or minimal region finding in the image. The appli-
cation of our data set is that, reduce some noise of the CT scan
and make the lesion more obvious. In the Fig.2, we show the
comparison of effect of dilation and erosion.

FIGURE 2. Outputs of the morphological operations layer. (a) The original
image, (b) dilation, (c) erosion.

1) DILATION
The process of dilation is that use a kernel (called B) to
convolve the image (called A), and the center of the kernel B
is called anchor point. When the kernel B makes convolution
with image A, assign the maximum pixel value of the area B
to the anchor point. The image is convolved with a kernel
which can be of any shape and size, and we used a 3x3 square.
At its center, we call it an anchor point. The dilation is an
operation of finding the local maximum. When the kernel B
is convolved with the image, find the maximum value of the
pixel of the region covered by the kernel B and give this to
the anchor point. This will cause the highlighted area in the
image to grow gradually. The dilation formula is shown as
below:

dst(x, y) = max
(x ′,y′):element(x ′,y′)=0

src(x + x ′, y+ y′) (1)

Replacing the value of (x, y) with the maximum value in
the surrounding area (x+x’, y+y’), images will be more
highlighting and the black area will shrink. The application
of CT scans as the FIG. 2(a) shows, the lesion is a black area
in the white kidney, after dilation, the lesion becomes more
contrast and centralized [29]. The dilation can be understood
as the center of B (an anchor point) sliding along the outer
boundary of A. For the highlight area, the dilation replaces
outside no highlight area pixel with inside highlight area
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pixel. After dilation, the image is larger than the original
image.

2) EROSION
Erosion and dilation are the opposite operations, and erosion
is to find the local minimum. We use the kernel B make
convolution with image A, assign the minimum pixel value
of the area B to the anchor point. A 3x3 square kernel with
the anchor point we choose. The erosion is an operation
of finding the local minimum that is, when the kernel B is
convolved with the image, the minimum value of the pixel of
the region covered by the kernel B, and then the minimum
value is assigned to the pixel specified by the anchor point.
This will cause the dark area in the image to grow gradually.
The erosion formula is shown as below:

dst(x, y) = min
(x ′,y′):element(x ′,y′)=0

src(x + x ′, y+ y′) (2)

find the surrounding area (x+x’, y+y’) of point (x, y) of
minimum value and then assign to (x, y). After erosion,
images will allow thicker lines to get skinny. The application
in CT scans as the FIG. 2(c) shows, the area of the lesion will
expand larger and the kidney will shrink. The erosion can be
known as the kernel B sliding along the inter boundary of
A. For the highlight area, the dilation substitute for inside
highlight area pixel with outside no highlight area pixel.
After erosion, the image is smaller than the original image.
In a sum, we added two kind of kernel (dilation kernel and
erosion kernel) before the inputting image to backbone, after
morphological operations, there are three paths of imputing
image.

B. ACQUIRING FEATURE MAPS
Faster RCNN [30] is proposed from 2015, but it still the most
exact and accurate detection network. It is still the basic of
many target detection algorithms. The original Faster RCNN
mainly involves four parts: (1) convolution layers: using a
set of basic convolution (conv)+ rectified linear unit (relu)+
pooling layers to extract the feature maps of the input image.
The feature maps will be used for subsequent RPN layers and
fully connected layers. (2) Region propose network (RPN):
the RPN network is mainly used to generate region proposals.
First, a bunch of anchor box is generated. After cutting and
filtering, it is judged by softmax classifier that the anchors
area belong to the foreground or the background, that is, it is
a goal or not a goal, so this is a dichotomy classifier. At the
same time, another path from the bounding box regression
corrects the anchor box, forming a more precise proposal.
(3) Region of interest (RoI) Pooling: this layer uses the feature
map generated by the RPN and the feature map obtained
by the last layer of backbone to obtain a fixed-size proposal
feature map. Then the full connection (FC) layers operation
can be used for target recognition and location. (4) Classifier:
this layer will fully connect the fixed-size feature map from
the RoI Pooling layer and softmax is used to classify specific
categories. At the same time, the bounding box regression

operation is completed by Smooth L1 Loss Layer [30] to
obtain the precise location of the goal.

We modified the first and third step to help us apply
and suit for our data. The first step is made up of two
parts, that is, ResNet101 and six layers (P2, P3, P4, P5,
P6, P7) feature pyramid network. The original backbone
of Faster RCNN is VGG16, but our experiment showed
that the VGG16 has a lower performance than ResNet101.
The VGG16 contains 16 convolution layers and fully con-
nect layer. However, when the network becoming deeper,
the overfitting will be a problem that needs to be solved.
ResNet101 deals with the problem by shortcut connection as
the network’s depth increasing. ResNet101 includes 33 build-
ing blocks and each block has three layers, adding the first
convolution layer and fully connect layer, finally 101 layers.
Compared with VGG16’s 16 layers, ResNet101 is a quite
deeper bottleneck architecture network. As our flow chart
shows, the ResNet backbone can be summarized as five
bottlenecks that is conv1, conv2_x, conv3_x, conv4_x and
conv5_x. The conv1 layer uses a 7x7 kernel to convolute
the inputting image and the stride is 2, and its depth is 64,
so the conv1 output 512x512x64 layers. After conv1 layer,
a 3x3 max polling with stride 2 is adopted to down sampling
and select features which are easy to distinguish and reduce
some parameters. The conv2_x-conv5_x have some same
configurations. That includes three layers: (1) a 1x1 kernel
convolution; (2) a 3x3 kernel convolution; (3) a 1x1 kernel
convolution. The first 1x1 convolution kernel is made use
of reducing the number of channels to 1/4, corresponding,
the third 1x1 convolution kernel is employed to recover the
number of channels. Those two convolutional layers effective
decrease the computing cost and parameters. The second con-
volution kernel doesn’t change the number of channels. The
conv2_x has three bottlenecks; con3_x has 4 this structure;
con4_x has 23 building blocks; and con5_x has 3 bottle-
necks. Different building blocks or bottlenecks connect to the
resent. The con2_x outputs 256x256x256 dimension feature
maps, the reason why divides 2 is that the stride of each
first convolution layer is 2 and for improving the application
ability, the number of each feature map channels multiple
2. Alike, the conv3_x outputs 128x128x512; the conv4_x
outputs 64x64x1024, and the conv5_x outputs 32x32x2048,
that is, the final feature map shrinks 32 times of the imputing
image. By the way, the batch normalization (BN) layer also
used in the network. However, the original Faster RCNN
only takes the conv4_x feature maps as the boundary box
coordinates regression and conv5_x feature maps as the input
of the RPN network, which results of those small goals
cannot be detected and located effectively, due to deeper layer
feature maps loss plentiful small goals spatial and semantic
informations.

For fixing this question, we modified feature prime net-
works of ResNet101 [31] to keep the information of shallow
layers feature maps. These convolution layers will be used to
produce FPN [32]. We designed three kinds of FPN networks
of 4 layers (P2, P3, P4, P5), 5 layers (P2, P3, P4, P5, P6)
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and our 6 layers (P2, P3, P4, P5, P6, P7), as shown as
TAB1. From the result, we finally choose the 6 layers FPN
network. The P2 layer is composed of corresponding conv2_x
by 1x1 convolution kernel plus P3 layer with up sampling,
and P2 dimension is 256x256x256. P3 is made up of corre-
sponding conv3_x by 1x1 convolution kernel add P4with a 2x
up sampling, and P3 dimension is 128x128x256. Similarly,
P4 is 64x64x256 and P5 is 32x32x256. For the last two layers,
P6 is obtained by convolving P5 with 3x3, stride = 2, that is,
the down sampling, so the size of P6 is: 16x16x256. The same
operation for P7, so P7 is 8x8x256. The reason to design the
P2-P4 is that helps the network to find and location the small
lesion, because of the shallow layer containing more small
goals information. And as the backbone becoming deeper,
the small objects information will dismiss because of the
convolution and polling, and there are only those big targets
in the deep feature map layer. On the other hand, the cause for
us to add P6 and P7 layers is that help detect the large lesions.
And according to the size of the anchor box, we cautiously
choose 6 anchor base size for each feature pyramid network
layers via K-means clustering algorithm. And though this
program, we got six anchor sizes: [10, 11], [15, 16], [22, 23],
[33, 33], [50 49], [77, 78]. Obviously, even the biggest anchor
size is not the large goal. Because the official Pascal VOCdata
set has various classes that has to including all anchor sizes
but those anchor sizes are not suitable for our data set. After
we change those anchor sizes, we also change the ratio of the
anchor box from [0.5, 1.0, 2.0] to [0.9, 1.0, 1.1] to apply our
data set in testing process. Each size of feature map layer only
uses one size of anchor box with three ratios for coordinate
regression. Such as for P2, only adopts anchor size 10 with
0.9, 1.0, 1.1 ratios to predict the goals region. And P3 uses a
15 anchor size with 3 ratios sliding window (3x3 convolution
kernel) and two 1x1 convolution kernels to get the lesion
region proposal; P4 with a 22 anchor base size; P5 with a
33 anchor size; P6 50; P7 77. Later, all those different sizes
of feature maps are handled by the RPN network.

C. MODIFY CASCADE FOUR IOU THRESHOLDS NETWORK
In the Faster RCNN, the intersection over union is used to
classify the positive sample or negative sample when the
RPN network inspect proposes the region of goals and ground
truth and also the testing process. The IOU threshold of the
official Faster RCNN code is 0.5, that means when the sample
area of overlap dividing area of union is great than 0.5, this
sample will be defined as positive sample. On contrast, if less
than 0.5, this sample will be classified as negative sample.
We set the rate of positive samples to negative samples to
1:3, that in one batch of 256 samples training at the same
time, the 1/3 samples are chosen as positive samples and the
2/3 samples are randomly selected with negative samples.
But if there is not enough positive samples in one batch of
training, the cascade RCNN [33] algorithm will complement
with others negative samples, which may easy result for over
fitting. In Faster RCNN, the IOU threshold is 0.5 to prevent
using negative samples to replenish positive samples, but it

will take a question that lots of noise samples that have huge
differences with the ground truth are classified as positive
samples, that is, when the threshold is taken as 0.5, there will
be more false detections, because the threshold of 0.5 will
cause more background in the positive sample, which is the
reason for more false detection. So that, the algorithm trained
numerous of wrong samples and made the detector had a low
accuracy and worse performance. Obviously, enhancing the
IOU threshold [34] is seemed right method to improve the
precision of the detector with dismissing somewrong positive
samples and can reduce false detections. However, the detec-
tion effect is not necessarily the best. The main reason is that
the higher the IOU threshold, the less the number of positive
samples, so the greater risk of over fitting.

To deal with this dilemma, we added and improved cascade
RCNN. We proposed a four IOU (0.5, 0.55, 0.6, 0.7) thresh-
olds cascade RCNN, as shown in Fig. 3. As the flow chart
shown, each branch RCNN has different positive samples and
negative samples though different IOU thresholds. The input
of the next network is the output of the last network plus
the samples proposed from region proposed network with the
set unique IOU threshold. The interpretation of cascade four
IOU thresholds RCNN is that after the first-time boundary
box coordinates regression, the IOU of the samples and the
ground truth will be increased. For example, if a sample’s
IOU is 0.52, and after the first box coordination’s regression,
the IOU increased to 0.57, and then this sample is sent to
the second cascade RCNN; the IOU will be improved further
and closer to the Grand Truth. After four IOU thresholds
(0.5, 0.55, 0.6, 0.7) cascade RCNN network, the IOU of the
sample is improved a lot. That is, there are multiple headers
with increasing IOU thresholds, and each level uses the box
after the previous level of refinement as input. This ensures
that each header can get enough positive samples, and the
quality of the positive samples can be upgraded step by step.

FIGURE 3. The architecture of modified cascade RCNN with four different
IOU thresholds.
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This operation is also working during testing. In the test,
used the average of four header outputs as the final score
of this proposal, which prove that the result will be further
improved. The improvement we did is to develop the more
cascade RCNN networks and find the IOU threshold between
0.55 to 0.65 is the most suitable for our data set, so we add
one 0.55 IOU threshold RCNNbetween 0.5 and 0.6, the result
shown the AP improved.

In conclusion, we modified the network as follows: (1) We
joined two morphology operations (dilation and erosion)
before the inputting image in backbone by two different con-
volution kernels and change the size of the network inputting
image size to 1024x1024 for detecting small goals unde-
manding. After morphological operations, there are three
paths of imputing image to the backbone. (2) Used and
improve FPN. Based on ResNet101, we compared the dif-
ferent size of FPN, including 4 layers FPN, 5 layers FPN and
our 6 layers FPN. The 4 layers and 5 layers FPN making up
of P2, P3, P4, P5 and P6 show a much lower precision in
detecting medium and large goals and also a litter bit lower
precision in detecting small goals, shown as TAB1. As the
network flow chart shows, the P6 and P7 are added to help
locating the large target. But compared with ResNet101 that
does not contain shallow feature maps location and semantic
information, the FPN whether 4 layers and 5 layers FPN or
our 6 layers FPN are have a greater performance in small,
medium and large goals detection, those different size feature
maps will be sent to RPN to deal with different anchor box
sizes and strides which we use K-means to cluster those
lesions’ annotation bounding box size. (3) Modify the cas-
cade RCNN via skillfully adding an IOU threshold RCNN.
Obviously, after we improve feature pyramid network and
combining with ResNet101, the accuracy increased, but there
still are some false detections and miss detections, as shown
in the FIG.1. We adopted the cascade multi IOU threshold
RCNN to refine and correct the sample’s class prediction
scores and box coordinates. After the RPN output the region
with a given IOU, the first step will revise the bounding box
coordinates so that IOU between the sample and the ground
truth can be augmenting and the sample will be closer to
the annotation. The effect of IOU threshold between 0.5 to
0.7 is best, we carefully choose 0.5, 0.55, 0.6 and 0.7 for
cascade four RCNN. The output of the class prediction score
is chosen the biggest from the four RCNN and the bounding
box regression is from the last RCNN. The result proven our
change is valid.

TABLE 1. The comparison of AP small, medium, large between different
layers FPN and Res101.

III. EXPERIMENTS AND RESULTS
A. DATASET AND MATERIALS
The DeepLesion [27] is the largest medical CT scan image
data sets is published by National Institutes of Health (NIH)
in Journal ofMedical Imaging, aiming to help people improve
the machine learning in CAD. In total, there are 4,427 unique
patients collecting from 2010 in hospitals picture archiving
and communication system (PACS). But we only focus on the
kidney lesion detection, after discarded some noise samples,
we picked out 956 kidney images from the DeepLesion and
form a kidney data set. We labeled 1120 lesions annotation
with renal stone, kidney cyst and hydronephrosis, and the
renal cyst is the most part. The ground truth of the dataset
is annotated by radiologists in clinically meaningful medical
images. The slice intervals of the CT study in the data set
range between 0.25 and 22.5 mm. About 48.3 percentages
of them are 1 mm and 48.9 percentages are 5 mm. After NIH
covert the DICOMfile to 16-bit PNG file, we usedMATLAB
to transform the original images with no contrast to readable
images by subtracting 32768 pixels. The CT scan images are
saved by non-contrast pictures for high fidelity stored. The
most common lesions of kidney are that renal cyst, renal stone
and hydronephrosis. In our work, we focus on the lesion of
kidney, in this data set, we include various types of lesion,
in Fig. 4. But results from a small amount of renal stone and
hydronephrosis, we use unified all annotation (lesion). As we
all know, the number of the data set is a vital factor of deep
learning, so it is not satisfied to train an excellent detector
only with those original images. After we divided 156 images
into the testing set, we used various data augments, including
flipping, cropping, resizing. Flipping is the most popular data
augments way to double the data. A lot of experiment showed
that is an efficient method.

FIGURE 4. Examples of (a) kidney stone, (b) hydronephrosis, and (c) renal
cyst, respectively.

Except flipping, for helping detect the small goal,
we resized the image from 512x512 to 256x256, because
the same lesion in the 512x512 image occupies more pixels
and space than 256x256 images, that is, after we training
the network with 256x256 and 512x512 images, the same
kind of lesions only testing in the 512x512 images also can
learn the small goals in small images which can improve the
micro objects detection. In the same way, resizing 512x512 to
1024x1024 can increase the accuracy detection of large goals.
And cropping the kidney in images for focusing on detecting
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those big goals. For the objectivity, all those augment data
only used for training.

B. EVALUATION
To quantify the effect and utility of the parameter and network
proposed [35], a plentiful experiment is conducted.We divide
the data set into a trainval set and a test set. The trainval set
contains 800 original CT images, 800 flip CT images and
800 crop CT images, totally, 2400 images. And the valuation
set occupied 20 percentage of the trainval set. The test set
including 156 CT images are randomly selected by program
to evaluate the performance of the algorithm, but the test set
does not change the learning algorithm or parameters accord-
ingly. The pixel of original CT scan images is 512x512. And
the size of most lesions only ranges from 10x11 to 77x78,
all those lesions are not the large target. So, we adjusted the
anchor base size for suiting our data set.

1) HARDWARE AND SOFTWARE SETUP
Experiments were conducted on a Workstation with Intel
Core i5, 2.7GHz CPU, 8GB RAM under Ubuntu 18, and a
NVIDIA GTX 1080 video processing card with 8GB mem-
ory. Cascade RCNN was deployed in pytorch 1.0 framework,
and Faster RCNN was conducted tensorflow-gpu 1.8. And
both frameworks are based on python3.5, cuda 9.0 and cudnn
7.1.4. MATLAB 2018a is used for image pro-processing and
post-experiments, such as image pixel operation, plotting,
mathematical formulation, and experimental analysis.

2) TRAINING PROCESSES
Firstly, we labeled 956 CT volumes, then use data augments
(flip, crop, resize). Secondly, the Faster RCNN was imple-
mented using ResNet101 and FPN in tensorflow framework,
and the cascade RCNN was trained in ResNet101 pre-trained
file of ImageNet in pytorch framework. In the end, when
the loss is stable, stop training and use 156 volumes without
annotations to test the result. According to our hardware,
we carefully choose those parameters to get better perfor-
mance. The original Faster RCNN we set the training learn-
ing rate as 0.001; train momentum as 0.9; training weight
decay as 0.001 after 30000 iterations; training gamma as 0.1;
training batch size as 128 with mini_batch 2; IOU threshold
to use as a bounding box regression training example as
0.5; anchor strides as 4, 8 and 16; and its training time is
8 hours and one second can test 8 images. The Faster RCNN+
means Faster RCNNwith data augments with ResNet101 and
Faster RCNN with 5 layers FPN have same training learning
rate, train momentum, training weight decay and training
gamma with the original Faster RCNN; training batch size
is 256 with mini_batch 2; in different, the for the 5 layers
FPN with different anchor stride for P2-P6 is 4, 8, 16, 32,
64 and 3 ratios (0.9, 1.0, 1.1) and the FPN channels is 256;
and training time are both 10 hours and one second can
test 8 images and 5 images. The Faster RCNN++ is that
Faster RCNN+ plus morphological operations, and parame-
ters of Faster RCNN++with two branch Res101 and 5 layers

FPN are same as Faster RCNN+; and their training time is
10 hours and 11 hours, and one second can test 8 images and
5 images. The cascade RCNN++means the original cascade
RCNN adds data augments and morphological operations;;
and its training time is 22 hours, and one second can test
3 images. The cascade RCNN using 5 layers (P2, P3, P4, P5,
P6) FPN as backbone and cascade three different IOU thresh-
olds (0.5, 0.6, 0.7) RCNN; and its training time is 18 hours,
and one second can test 3 images. The layers sequence of our
proposed network is two morphological convolution layers,
ResNet101 with six layers FPN backbone to extract feature
maps and then four cascade RCNN used to classified and
calculate boundary box coordinates. And the kernels size of
two morphological and backbone convolution layers are both
3x3 with the pad of 1 and the stride of 2. And the kernel size
of backbone and RPN pooling layers are both 2x2 with the
stride of 2. The optimization algorithm we used is Stochastic
Gradient Descent (SGD).

And the number of channels of FPN is 256; the anchor
size of each layer is 4, 8, 16, 32, 64; use SGD optimizer and
with a 0.02 initial learning rate and 0.0001 weight decay. The
configuration of our network is that 6 layers FPN (P2, P3, P4,
P5, P6, P7) with the set anchor stride that is 10 for P2; 15 for
P3; 22 for P4; 33 for P5; 50 for P6; 77 for P7, those box sizes
are clustered by Kmeans, and the four unique IOU thresholds
(0.5, 0.55, 0.6, 0.7) are cascaded for get a better performance
detector; the learning rate is 0.005 and the weight decay is
0.0001 with 0.9 momentum to ensure the loss will not be nan
during training. The training iterations of Faster RCNN with
ResNet101 is 60000 iterations achieving best performance;
Faster RCNN+ with ResNet101 is 45000 iterations; Faster
RCNN+ with FPN is 30000 iterations; Faster RCNN++
with ResNet101 is 55000 iterations; Faster RCNN++ with
FPN is 30000 iterations; Cascade RCNN++ with FPN is
45000 iterations; Our network with FPN is 20 hours with
40000 iterations. Our network has drawback in training cost
and test speed shown in frames per second (FPS) as TAB2,
although it is slower than the One-stage detection algorithm,
it does not matter in medical images test, due to it does not
need on-time detections.

3) RESULTS
Comparison our modified the cascade RCNN and others
networks’ results as following. We improved the cascade
RCNN network, we compared 4 layers, 5 layers and 6 layers
feature pyramid networks of the performance of detecting
small, medium and large goals as shown in TAB1. Without
doubt, our modified 6 layers FPN outperformed 4 layers,
5 layers FPN and ResNet101 (without FPN), particularly in
the detection and location of large objects, because the added
layers (P6 and P7) are deep layers feature maps that contain
more information about large targets. The index to evaluate
our network and others are AP, AUC, Spec, Sens, and F1.
In the detection task, samples are classified by dichotomy
to positive and negative samples. The true positive (TP) is
that a sample is positive and also is predicted to a positive
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TABLE 2. Comparing AUC, AP, (Specificity) Spec, (Sensitivity) Sens F1 and
FPS of our proposed kidney lesion detection method with other
backbones and other networks.

sample. A sample is positive, but is predicted to be a negative
that is false negative (FN). And we define a sample is false
positive (FP) when the sample is a negative sample, but
classified as positive. The true negative (TN) is meaning the
sample is a negative sample, and also classified as negative.

Firstly, we introduced the sensitive(3) and the speci-
ficity(4), those formulas are following:

sens =
TP

(TP+ FN )
(3)

spec =
TN

(FP+ TN )
(4)

The recall is called sensitive in medicine diagnose, that is the
proportion of samples that are classified to be positive among
all samples that are positive. In the medical testing, peo-
ple commonly define those high-risk things such as lesions
as positive categories. The aftereffect of omitting lesions
(positive samples) is quite damaging, such as misdiagnosis,
which may lead to delayed treatment of patients. In medicine
diagnosis, try our best to reduce the rate of missed diagnosis,
that is, to improve the sensitive is more important than to
improve the precision. The specificity is that among the all
negative sample, the ratio of how much negative samples can
be predicted. This definition is similar with sensitive, and the
difference between the two is only the object is different,
the sensitive is for the positive example, and the specificity
is for negative examples. The specificity is also considered
an important indicator in medical testing. That is, the false
detection rate is high as the specificity low. Therefore, in the
medicine diagnose, specificity and sensitivity need to be
considered at the same time. The precision(5) is calculated
by this formula:

prec =
TP

(TP+ FP)
(5)

F1 =
2 ∗ P ∗ R
(P+ R)

(6)

Based on the recall and precision results, we plotted RP
curve with recall as the transverse axis, precision as the lon-
gitudinal axis to measure the generalization ability of those
network, shown as Fig.5, and the area under the RP curve
is the average precision (AP) to balanced evaluate recall and
precision. From the PR curve, it is obvious that our modified
network has a better performance than others, that is, more

FIGURE 5. P-R curves of various methods on the test set of kidney lesion
CT images.

FIGURE 6. ROC curves of various methods on the test set of kidney lesion
CT images.

TABLE 3. Comparing the detection confidence of case CT images of
various algorithms.

protruding at the top right. Similarly, in order to evaluate the
receiver operating characteristic plotted receiver operating
characteristic (ROC) curve with false positive rate (FPR)
as the transverse axis and true positive rate (TPR) as the
longitudinal axis in Fig.6, and from this ROC curve, it shows
that our network (red line) is most outstanding in top left. And
the area under ROC curve is the AUC which quantifies the
classification ability of ROC curve. The classification ability
is closely related to probability, threshold value. The better
the classification ability (the greater the AUC), the more
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FIGURE 7. Lesion detection results for sample kidney CT images of various methods. (a) The original image. (b) Ground truth. (c) Our network.
(d) Cascade RCNN++. (e) Faster RCNN++(FPN). (f) Faster RCNN++(Resnet). (g) Faster RCNN+(FPN). (h) Faster RCNN+(Resnet). (i) Faster RCNN(Resnet).

reasonable the output probability, the more credible the result
of sorting. We also used F1- Measure (6) to comprehensive
measure those algorithms. All those comparison are shown
in TAB2. In a sum, our modified model has achieved greater
results of AUC, AP, Sensitive and F1. Among them, our

proposed method with 0.871 of AUC, 0.840 of AP, 0.838 of
sensitive and 0.839 of F1-Measure outperforms than others
model. And the Faster RCNN++ with FPN has a better
Specificity of 0.876. For visualizing the performance of those
algorithms, we selected 8 CT scan volumes and test the
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inference process to present our results, as shown in Fig. 7.
We displayed all confidence of each lesions detection result
shown as tab3. Without doubt, our modified model has a
comprehensive and accurate score among them.

IV. DISCUSSION AND CONCLUSION
In sum, medical image lesion detection by RCNN shows
advantages in timesaving and labor-saving in location and
analysis lesions. Previous researches proven deep learning
is a practicable algorithm in CAD, but those cannot meet
the requirement of accuracy and comprehensiveness. In this
study, we proposed morphological cascade convolutional
neural networks, which is a high precise and robust detector
of kidney lesions in CT scan image. In our network, two kinds
of morphological operations were proposed firstly to make
small goals more conspicuous and easier detect. Secondly,
we modified a six layers FPN to generate different sizes
feature maps for overall location and classification with our
set anchor sizes and ratios. Finally, we developed a four IOU
threshold cascade RCNN to archive high precision detection.
The validation experiments were conducted on CT image,
and the results proven our proposed cascade RCNN is greater
outperforming in detecting lesions. However, there also some
questions in medical image test. Our network has a low
precision when there are many and complicate goals such as
polycystic kidney. And in some complex images and lesions,
there are some misdetections and false detections that need
to improve. Despite those, comparing with those state-of-art
algorithms, our modified network is an efficient and accurate
detector, and is also of huge application value in other lesion
or organ detection.
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