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ABSTRACT In this paper, we introduce an intelligent reflecting surface (IRS) to provide a programmable
wireless environment for physical layer security. By adjusting the reflecting coefficients, the IRS can change
the attenuation and scattering of the incident electromagnetic wave so that it can propagate in the desired
way toward the intended receiver. Specifically, we consider a downlinkmultiple-input single-output (MISO)
broadcast system, where the base station (BS) transmits independent data streams to multiple legitimate
receivers and keeps them secret from multiple eavesdroppers. By jointly optimizing the beamformers at
the BS and reflecting coefficients at the IRS, we formulate a minimum-secrecy-rate maximization problem
under various practical constraints on the reflecting coefficients. The constraints capture the scenarios of
both continuous and discrete reflecting coefficients of the reflecting elements. Due to the non-convexity of
the formulated problem, we propose an efficient algorithm based on the alternating optimization and the
path-following algorithm to solve it in an iterative manner. Besides, we show that the proposed algorithm
can converge to a local (global) optimum. Furthermore, we develop two suboptimal algorithms with some
forms of closed-form solutions to reduce computational complexity. Finally, the simulation results validate
the advantages of the introduced IRS and the effectiveness of the proposed algorithms.

INDEX TERMS Intelligent reflecting surface, programmable wireless environment, physical layer security,
beamforming.

I. INTRODUCTION
A variety of wireless technologies have been proposed to
enhance the spectrum- and energy-efficiency due to the
tremendous growth in the number of communication devices,
such as multiple-input multiple-output (MIMO) [1], coop-
erative communications [2], cognitive radio (CR) [3] and
so on. However, these techniques only focus on the signal
processing at the transceiver to adapt the changes of the wire-
less environment, but cannot eliminate the negative effects
caused by the uncontrollable electromagnetic wave propaga-
tion environment [4], [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Matti Hämäläinen.

Recently, intelligent reflecting surface (IRS) has been
proposed as a promising technique due to its capability to
achieve high spectrum-/energy-efficiency through control-
ling the wireless propagation environment [6]. Specifically,
IRS is a uniform planar array consisting of a large number
of composite material elements, each of which can adjust
the reflecting coefficients (i.e., phase or amplitude) of the
incident electromagnetic wave and reflect it passively. Hence,
by smartly adjusting the reflecting coefficients with a prepro-
grammed controller, the IRS can change the attenuation and
scattering of the incident electromagnetic wave so that it can
propagate in the desired way before reaching the intended
receiver, which is called as programmable and controllable
wireless environment. This also inspires us to design the
communication systems by jointly considering the signal
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processing at the transceiver and the optimization of the elec-
tromagnetic wave propagation in the wireless environment.

Compared with the existing related techniques, i.e., tra-
ditional reflecting surfaces [7], amplify-and-forward (AF)
relay [8], active intelligent surface [9], and backscatter com-
munication [10]–[12], IRS has the following advantages.
Firstly, IRS can reconfigure the reflecting coefficients in real
time thanks to the recent breakthrough on micro-electrical-
mechanical systems (MEMS) and composite material [5], [6]
while the traditional reflecting surface only has fixed reflect-
ing coefficients. Secondly, IRS is a green and energy-efficient
technique which reflects the incident signal passively with-
out additional energy consumption while the AF relay and
the active intelligent surface require active radio frequency
(RF) components. Thirdly, although both the IRS and the
backscatter communication make use of passive communica-
tions, IRS can be equipped with a large number of reflecting
elements while backscatter devices are usually equipped with
a single/few antenna(s) due to the limitations of complex-
ity and cost [13]. Besides, IRS only attempts to assist the
transmission of the signals between the intended transmit-
ter and receiver pair with no intention for its own infor-
mation transmission while backscatter communication needs
to support the information transmission of the backscatter
device [14], [15].

Due to the significant advantages, IRS has been introduced
into various wireless communication systems. Specifi-
cally, [16]–[20] consider a downlink single user multiple-
input single-output (MISO) system assisted by the IRS.
In [16], both centralized and distributed algorithms were
developed to maximize the signal-to-noise ratio (SNR) of
the desired signals considering perfect channel state infor-
mation (CSI). Then, in [17], the effect of the reflecting
coefficients on the ergodic capacity was investigated by
considering statistical CSI. Moreover, since achieving con-
tinuous reflecting coefficients on the reflecting elements is
costly in practice due to the hardware limitation, the SNR
maximization problem and transmitter power minimization
problem were studied in [18]–[20] by considering discrete
reflecting coefficients on the reflecting elements. As for a
downlink multi-user MISO system [21]–[23], the spectrum-/
energy-efficiency problem under the individual signal-
to-interference-plus-noise ratio (SINR) constraints was
investigated in [21] and [22] considering continuous or dis-
crete reflecting coefficients on the reflecting elements.
In addition, the minimum-SINR maximization problem was
formulated in [23] by considering the two cases where the
channel matrix between the transmitter and the IRS is of rank-
one and of full-rank.

Furthermore, physical layer security is a fundamental issue
in wireless communications [24]. The basic wiretap chan-
nel introduced by Wyner [25] consists of one transmit-
ter, one legitimate receiver, and one eavesdropper. Then,
the basic wiretap channel has been extended to broadcast
channels [26], Gaussian channels [27], compound wiretap
channels [28], and so on. It is worth noting that, in order to

ensure secret communications, the transmission rate in the
wiretap channel should be lower than the secrecy capacity of
the channel. Thus, MIMO beamforming techniques were fur-
ther introduced to improve the secrecy capacity (improving
SNR of legitimate receivers and suppressing SNR of eaves-
droppers) [29]–[32]. Specifically, both power minimization
and secrecy rate maximization were studied in [30] in a single
user/eavesdropper MIMO systems considering both perfect
and imperfect CSI. Then, the minimum-secrecy-rate of a
single-cell multi-user MISO system was studied in [31] with
a minimum harvested energy constraint, and it was further
extended to a multi-cell network in [32].

However, consider the special case when the legitimate
receivers and the eavesdroppers are in the same direc-
tions to the transmitter. In this case, the channel responses
of the legitimate receivers will be highly correlated with
those of the eavesdroppers. The beamformers proposed
in [29]–[32] to maximize the SNR of legitimate receivers
will also maximize the SNR of eavesdroppers. Hence, it is
intractable to guarantee the secret communications with the
use of beamforming only at the transceivers. Hence, we want
to explore the use of the IRS to provide additional commu-
nication links so as to increase the SNR at the legitimate
receivers while suppressing the SNR at the eavesdroppers.
Hopefully, this will create an effect as if the confidential
data streams can bypass the eavesdroppers and reach the
legitimate receivers, as shown in Fig. 1, and thus the secrecy
rate will be improved.

Motivated by the above reasons, in this paper, we study a
programmable wireless environment for physical layer secu-
rity to achieve high-efficiency secret communication. Specif-
ically, we consider a downlinkMISO broadcast systemwhere
the base station (BS) transmits multiple independent confi-
dential data streams to each legitimate receivers and keeps
them secret from the eavesdroppers through the assistance of
the IRS. The contributions of the paper are summarized as
follows:
• To the best of our knowledge, this is the first work to
explore the use of the IRS to enhance the physical layer
secret communication. Particularly, we jointly optimize
the beamformers at the BS and the reflecting coefficients
at the IRS to maximize the minimum-secrecy-rate under
various practical constraints on the reflection coeffi-
cients. The constraints capture both the continuous and
discrete reflecting coefficients of the reflecting elements
on the IRS. However, the objective function is not jointly
concave with respect to both the beamformers and the
reflecting coefficients, and even worse, they are coupled
together. Hence, the formulated problem is non-convex,
which is hard to solve and may require high complexity
to obtain the optimal solutions.

• We solve the formulated problem efficiently in an iter-
ative manner by developing alternating optimization
based path-following algorithm [33], [34]. Specifically,
we use the path-following algorithm to handle the
non-concavity of the objective function and apply the
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alternating optimization to deal with the coupled opti-
mization variables. Besides, we prove that the proposed
algorithm is guaranteed to converge to a local (global)
optimum and the corresponding solution will converge
to a Karush-Kuhn-Tucker (KKT) point finally.

• To further reduce the computational complexity,
we develop two suboptimal algorithms to solve the
formulated problem for two cases. For the first case
with one legitimate receiver and one eavesdropper,
we develop an alternating optimization method to solve
the formulated problem in an iterative manner, but in
each iteration we provide the closed-form solutions,
which leads the algorithm to be low complexity. For
the second case with multiple legitimate receivers and
eavesdroppers, we develop a heuristic closed-form solu-
tion based on zero-forcing (ZF) beamforming, which
further reduces the computational complexity.

• Finally, the simulation results validate the advantages of
the introduced IRS and also show the effectiveness of
the proposed algorithms.

The rest of this paper is organized as follows: Section II
introduces the system model of the downlink MISO broad-
cast system with multiple eavesdroppers. Section III for-
mulates the minimum-secrecy-rate maximization problem.
Section IV develops an efficient algorithm to solve the for-
mulated problem and Section V provides two low-complexity
suboptimal algorithms to solve it in two cases, respectively.
Section VI shows the simulation results to evaluate the per-
formances of the proposed algorithms. Finally, Section VII
concludes the paper.

The notations used in this paper are listed as follows. The
scalar, vector, and matrix are lowercase, bold lowercase, and
bold uppercase, i.e., a, a, andA, respectively. (·)T , (·)H , Tr (·)
and<(·) denote transpose, conjugate transpose, trace, and real
dimension, respectively. CN

(
µ, σ 2

)
denotes the distribution

of a circularly symmetric complex Gaussian (CSCG) random
variable with meanµ and variance σ 2.Cx×y andRx×y denote
the space of x × y complex/real matrices. IK ∈ RK×K is
the identify matrix, 1K = [1, · · · , 1]T ∈ RK×1, and (a)+ =
max(0, a).

II. SYSTEM MODEL
As shown in Fig. 1, we consider a programmable downlink
MISO broadcast system which consists of one BS, one IRS,
K legitimate receivers, denoted as B1, · · · ,BK , and N active
eavesdroppers, denoted as E1, · · · ,EN . The BS and the IRS
are equipped with M antennas and L reflecting elements,
respectively, while the legitimate receivers and eavesdroppers
are all equipped with a single antenna each. The BS sends
K independent confidential data streams with one stream for
each of the K legitimate receivers over the same frequency
band, simultaneously. At the same time, the unauthorized
eavesdroppers are trying to eavesdrop any of the data streams,
independently.

Consider the special case when the legitimate receivers
and the eavesdroppers are in the same directions to the BS.

FIGURE 1. A programmable downlink MISO broadcast system with one
IRS and multiple eavesdroppers.

In this case, the channel responses of the legitimate receivers
will be highly correlated with those of the eavesdroppers.
As aforementioned, it is intractable to guarantee the secret
communications with the use of beamforming only at the
transceivers. Hence, we want to explore the use of the IRS to
provide additional communication links so as to increase the
SNR at the legitimate receivers while suppressing the SNR
at the eavesdroppers. Hopefully, this will create an effect as
if the confidential data streams can bypass the eavesdroppers
and reach the legitimate receivers, and thus the secrecy rate
will be improved. In this paper, we are interested in obtaining
the performance limit of such a system. Hence, similarly
to [16] and [21], we assume that the CSI of all the channels
are perfectly known at the BS.1 In practical systems where
such CSI cannot be obtained perfectly, the results derived in
this paper can be considered as the performance upper bound.
Note that the optimization (in terms of beamformers and
reflecting coefficients) of the system to be presented in the
subsequent sections is done at the BS and that the optimized
reflecting coefficients are transmitted to the IRS to reconfig-
ure the corresponding reflecting elements accordingly.

A. CHANNEL MODEL
The baseband equivalent channel responses from the BS to
the IRS, from the BS to Bk , from the BS to En, from the
IRS to Bk , and from the IRS to En are denoted by F ∈
CL×M , hHd,k ∈ C1×M , gHd,n ∈ C1×M , hHr,k ∈ C1×L , and
gHr,n ∈ C1×L , respectively, with 1 ≤ k ≤ K and 1 ≤
n ≤ N . Specifically, without loss of generality, we adopt
a Rician fading channel model, which consists of LoS and

1In practice, the optimization processing only requires the CSIs of the
composite channels, i.e.,Hk andGn, defined in (15) and (16). Hence, we can
first turn off the IRS and enable the users to send orthogonal pilot sequences
to the BS for estimating the last rows ofHk andGn. Next, we can turn on each
reflecting element on the IRS successively in L time slots and keep the other
reflecting elements closed. Then, the users send orthogonal pilot sequences
to the BS in the each time slot. Finally, the first L rows in Hk and Gn can
be estimated by subtracting the last rows of Hk and Gn from the estimated
channel gains.
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non-LoS (NLoS) components, i.e.,

h =
√

κh

κh + 1
hLoS +

√
1

κh + 1
hNLoS, (1)

with h ∈ H =
{
F,hd,k ,hr,k , gd,n, gr,n

}
, where κh, hLoS,

and hNLoS are the Rician factor, LoS components, and NLoS
components of channel h, respectively. The NLoS compo-
nents hNLoS are i.i.d. complex Gaussian distributed with
zero mean and unit variance. We define a vector aX (ϑ) =[
1, ej

2πd
λ

sinϑ , · · · , ej
2πd
λ (X−1) sinϑ

]T
, where d is the antenna

element separation, λ is the carrier wavelength, X is the
dimension of the vector and ϑ is the angle, which can be
interpreted as either angle of departure (AoD) or angle of
arrival (AoA) depending on the context. We set d/λ = 1/2
for simplicity. Hence, the LoS components in (1) can be
modeled as

hLoSd,k = aM (ϑd,k ) and hLoSr,k =aL(ϑr,k ), for 1 ≤ k ≤ K ,

(2)

gLoSd,n = aM (ϑ̃d,n) and gLoSr,n =aL(ϑ̃r,n), for 1 ≤ n ≤ N ,

(3)

FLoS
= aL

(
ϑAoA

)
aHM

(
ϑAoD

)
, (4)

where ϑd,k , ϑr,k , ϑ̃d,n, ϑ̃r,n are the AoA or AoD of a signal
from the BS to Bk , from the IRS to Bk , from the BS to En,
and from the IRS to En, respectively. ϑAoD and ϑAoA are the
AoD from the BS and the AoA to the IRS, respectively.

B. REFLECTING COEFFICIENT MODEL
The reflecting coefficient channel of the IRS [16] is given by
2 = diag(θ ) ∈ CL×L with θ = [θ1, θ2, · · · , θL]T ∈ CL×1

and θl ∈ 8 for 1 ≤ l ≤ L, where diag(·) denotes a diagonal
matrix whose diagonal elements are given by the correspond-
ing vector and 8 denotes the set of reflecting coefficients
of the IRS. In this paper, we consider the following three
different sets of reflecting coefficients, which lead to three
different constraints for the reflecting coefficients.
• Continuous Reflecting Coefficients: In this scenario,
we further consider two detailed setups with the opti-
mized or constant amplitude. Specifically, the reflecting
coefficient set for the optimized amplitude with contin-
uous phase-shift is denoted by

81 =

{
θl

∣∣∣|θl |2 ≤ 1
}
, (5)

and the reflecting coefficient set for the constant ampli-
tude with continuous phase-shift is denoted by

82 =

{
θl

∣∣∣θl = ejϕl , ϕl ∈ [0, 2π)
}
. (6)

• Discrete Reflecting Coefficients: In this scenario,
the reflecting coefficient set has constant amplitude and
discrete phase-shift, which is given by

83=

{
θl

∣∣∣θl=ejϕl ,ϕl ∈{0, 2πQ , · · · , 2π (Q−1)Q

}}
, (7)

whereQ is the number of reflecting coefficient values of
the reflecting elements on the IRS.

Note that, it is costly in practice to achieve continuous
reflecting coefficient on the reflecting elements due to the
hardware limitation. Hence, applying the discrete reflect-
ing coefficient on the reflecting elements, i.e., 83, is more
practical than applying the continuous reflecting coefficients,
i.e., 81 and 82. But, it is also important to investigate the
system performance with 81 and 82 since it serves as the
upper bound to that with 83.

C. SIGNAL MODEL
Let sk be the confidential message dedicated to Bk . It
is assumed that all messages transmitted are CSCG, i.e.,
sk ∼ CN (0, 1) for 1 ≤ k ≤ K . Then, the signal transmitted
from the BS can be expressed as

x =
∑K

k=1
wksk , (8)

where wk is the downlink beamforming vector for sk . The
received signals at Bk and eavesdropped by En can be
expressed as

yBk =
[
hHr,k2F+ h

H
d,k

] K∑
i=1

wixi + uBk , 1 ≤ k ≤ K , (9)

yEn =
[
gHr,n2F+ g

H
d,n

] K∑
i=1

wixi + uEn , 1 ≤ n ≤ N , (10)

respectively, where uBk and uEn are the received noises at Bk
and En, respectively. It is assumed that all noises are Gaus-
sian distributed with zero mean, i.e., uBk ∼ CN

(
0, σ 2

k

)
and

uEk ∼ CN
(
0, δ2n

)
, respectively.

According to (9), the achievable transmission rate of the
k-th confidential message received at Bk can be written as

RBk = ln

1+

∣∣(hHr,k2F+ hHd,k )wk ∣∣2∑K
i6=k

∣∣(hHr,k2F+ hHd,k )wi∣∣2 + σ 2
k

 . (11)

According to (10), if En attempts to eavesdrop the k-th
confidential message, the achievable wiretapped rate of the
k-th message received at En can be written as

REk,n = ln

1+

∣∣∣(gHr,n2F+gHd,n)wk ∣∣∣2∑K
i6=k

∣∣∣(gHr,n2F+gHd,n)wi∣∣∣2+δ2n
 . (12)

Since each eavesdropper can eavesdrop any of theK confi-
dential messages, the achievable secrecy rate (in nats/sec/Hz)
for transmitting sk to Bk and keeping it confidential from
all the N eavesdroppers should be the minimum-secrecy-rate
among Bk and En for 1 ≤ n ≤ N , which is given by [32]

Ck = min
∀n

{
RBk − R

E
k,n

}
. (13)
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III. PROBLEM STATEMENT
A. PROBLEM FORMULATION
In this paper, we attempt to jointly optimize the beamforming
vector, i.e., W = [w1, · · · ,wk ] ∈ CM×K , and reflecting
coefficients, i.e., θ , to maximize the minimum-secrecy-rate
among all the legitimate receivers. Mathematically, the opti-
mized problem can be generally formulated as

(P1) : max
W ,θ

min
∀k

Ck

s.t.
∑K

k=1
‖wk‖2 ≤ P, (14a)

θl ∈ 8, 1 ≤ l ≤ L, (14b)

where P denotes the maximum transmit power at the BS and
8 may be set as 81, 82, and 83, respectively.

B. PROBLEM TRANSFORMATION
(P1) is hard to solve due to the non-concave objective func-
tion. In order to find the solution of (P1) efficiently, we will
transform it into the following equivalent formulation.

To begin with, denoting Hk =

[
diag(hHr,k )F

hHd,k

]
∈

C(L+1)×M , and Gn =
[
diag(gHr,n)F

gHd,n

]
∈ C(L+1)×M , we have

∣∣∣(hHr,k2F+ hHd,k )wk ∣∣∣2 = ∣∣∣vHHkwk
∣∣∣2 , (15)∣∣∣(gHr,n2F+ gHd,n)wk ∣∣∣2 = ∣∣∣vHGnwk ∣∣∣2 , (16)

where v = [v1, v2, · · · , vL+1]T = [θ; 1] ∈ C1×(L+1).
Then, RBk in (11) and REk,n in (12) can be rewritten as

RBk = ln

(
1+

∣∣vHHkwk
∣∣2

bk (W , v)

)
1
= f Bk (W , v) , (17)

REk,n = ln

(
1+

∣∣vHGnwk ∣∣2
qk,n (W , v)

)
1
= f Ek,n (W , v) , (18)

where bk (W , v) =
∑K

i6=k

∣∣vHHkwi
∣∣2 + σ 2

k and qk,n(W , v) =∑K
i6=k

∣∣vHGnwi∣∣2 + δ2n . Thus, it is straightforward to know
that (P1) can be transformed into the following equivalent
form:

(P2) : max
W ,v

R(W , v) 1= min
∀k,∀n

{
f Bk (W , v)− f

E
k,n (W , v)

}
s.t. vl ∈ 8, 1 ≤ l ≤ L, vL+1 = 1, (19a)

(14a).

However, the transformed problem (P2) is still hard to
solve sinceR(W , v) is not jointly concave with respect toW
and v, and even worse, they are coupled together. In the next
section, we will develop an iterative algorithm to solve (P2)
efficiently.

IV. MINIMUM-SECRECY-RATE MAXIMIZATION
In this section, we will propose two techniques to jointly
solve the above challenging problem. Firstly, we apply the
path-following algorithm to handle the non-concavity of the

objective function. Then, we apply the alternating optimiza-
tion technique to deal with the coupled optimization vari-
ables. Finally, we analyze the convergence of the proposed
algorithm.

A. PATH-FOLLOWING ALGORITHM DEVELOPMENT
In this part, we will develop path-following iterative
algorithm to solve (P2) with the non-concave objective func-
tion, i.e., R(W , v). In particular, the basic idea of the path-
following is to follow a solution path of a family of the
approximated problems of (P2). For example, R(W , v) is
approximated by a concave lower bound function, which is
obtained by applying linearly interpolating between the non-
concave term f Bk (W , v) and the non-convex term f Ek,n (W , v),
respectively. Specifically, the approximated problem has a
local (global) optimal value and can be increased in each iter-
ation, which finally leads to a local (global) optimal solution
of (P2) [33].

To begin with, let (W (t), v(t)) denote the solution of (P2)
in the t-th iteration. Then, in order to find the concave lower
bound function of R(W , v) to develop path-following algo-
rithm, we can fist find the lower bound function of f Bk (W , v)
and the upper bound function of f Ek,n(W , v) at (W

(t), v(t)). The
details are given in the following lemma.
Lemma 1: The lower bound function of f Bk (W , v) and

the upper bound function of f Ek,n (W , v) at
(
W (t), v(t)

)
in the

(t + 1)-th iteration of path-following algorithm are given by

f Bk (W , v) ≥ f Bk (W
(t)
, v

(t)
)+2

<

{
(w(t)

k )
H
HH
k v

(t)(vHHkwk
)}

bk (W
(t)
,v(t) )

−

∣∣∣(v(t))HHkw
(t)
k

∣∣∣2
bk (W

(t)
,v(t) )(bk (W

(t)
,v(t) )+

∣∣∣(v(t))HHkw
(t)
k

∣∣∣2)
×

(∣∣vHHkwk
∣∣2+bk (W , v))− ∣∣∣(v(t))HHkw

(t)
k

∣∣∣2
bk (W

(t)
,v(t) )

1
= f Bk (W , v;W

(t)
, v

(t)
), (20)

f Ek,n(W , θ ) ≤ f Ek,n(W
(t)
, v

(t)
)+(1+

∣∣∣(v(t))HGnw(t)
k

∣∣∣2
qk,n(W

(t)
,v(t) )

)−1

×(
∣∣vHGnwk ∣∣2
qk,n(W ,v)

−

∣∣∣(v(t))HGnw(t)
k

∣∣∣2
qk,n(W

(t)
,v(t) )

)

≤ f Ek,n(W
(t)
, v

(t)
)+ (1+

∣∣∣(v(t))HGnw(t)
k

∣∣∣2
qk,n(W

(t)
, v(t) )

)−1

×(
∣∣vHGnwk ∣∣2

qk,n(W ,v;W
(t)
,v(t) )
−

∣∣∣(v(t))HGnw(t)
k

∣∣∣2
qk,n(W

(t)
,v(t) )

)

1
= f Ek,n(W , v;W

(t)
, v

(t)
), (21)

where

qk,n(W , v;W
(t)
, v

(t)
) = δ2n +

∑K

i6=k
<{(w(t)

i )HGHn v
(t)

× (2vHGnwi−(vH )
(t)
Gnw

(t)

i )}, (22)

Proof: Please refer to Appendix A.
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Then, from (20) and (21), we know the lower bound of
R(W , v) is given by

R(W , v) = min
∀k,∀n

{
f Bk (W , v)− f

E
k,n (W , v)

}
≥ min
∀k,∀n

{
f Bk (W , v;W

(t)
, v

(t)
)−f Ek,n(W , v;W

(t)
, v

(t)
)
}

1
= Rlb(W , v;W

(t)
, v

(t)
). (23)

Note that, according to (20) and (21), the equality in (23)
holds whenW = W (t) and v = v(t).
Thus, a family of the approximated problems of (P2) is

given as follows:

(P2−t) : max
W ,v

Rlb(W , v;W
(t)
, v

(t)
)

s.t. (14a) and (19a).

However, (P2 − t) is still a non-convex problem due to the
following reasons:
• First, W and v are coupled in the terms of vHHkwk
and vHGnwk , which makes the objective function
Rlb(W , v;W

(t)
, v

(t)
) not jointly concave with respect to

(W , v).
• Second, it is straightforward to know that (19a) with
8 = 81 is a convex set but a non-convex set with
8 = 82 and 8 = 83.

In subsection IV-B, we will first develop alternating opti-
mization method to deal with the coupled optimization vari-
ables in (P2−t) with 8 = 81, and then we will extend it to
the scenarios with 8 = 82 and 8 = 83, respectively.

B. ALTERNATING OPTIMIZATION WITH CONTINUOUS
AND DISCRETE REFLECTING COEFFICIENTS
1) THE SOLUTION OF (P2) WITH 8 = 81
In this part, we develop the alternating optimization to solve
(P2− t) when 8 = 81 in constraint (19a), which leads con-
straint (19a) to be a convex set. Hence, the non-convexity of
(P2− t) only stems from the coupled optimization variables.
In fact, although the objective functionRlb(W , v;W

(t)
, v

(t)
)

is non-concave due to the coupledW and v, f Bk (W, v;W
(t)
, v

(t)
)

in (20) is biconcave in W and v, i.e., f Bk (W , v;W
(t)
, v

(t)
)

is concave both in W with fixed v and in v with fixed
W . Similarly, for the domain qk,n(W , v;W

(t)
, v

(t)
) ≥ 0,

the function
∣∣vHGnwk ∣∣2

qk,n(W ,v;W
(t)
,v(t) )

in (21) is a biconvex function

with respect to W and v, which leads to a biconvex func-
tion f Ek,n(W , v;W

(t)
, v

(t)
) with respect to W and v. Hence,

Rlb(W , v;W
(t)
, v

(t)
) is a biconcave function inW and v.

Therefore, we know (P2 − t) with 8 = 81 has convex
constraints and concave objective function inW with fixed v
and in v with fixed W . Hence, we can apply the alternating
optimizationmethod to solve (P2−t) in an alternatingmanner
efficiently. Specifically, the alternating algorithm decouples
(P2− t) into the following two subproblems for the optimiza-
tion ofW and v, respectively,

(P3−A) : max
W

Rlb(W , v;W
(t)
, v

(t)
)

s.t. (14a),

and

(P3−B) : max
v

Rlb(W , v;W
(t)
, v

(t)
)

s.t. (19a) with 8 = 81.

Note that (P3−A) is an optimization subproblem for solving
W with a given v and (P3−B) is an optimization subproblem
for solving v with a givenW .

As aforementioned, we know both (P3 − A) and
(P3 − B) are convex optimization problems, which can be
solved optimally and efficiently by using CVX [35]. Thus,
problem (P2) with8 = 81 can be solved efficiently by alter-
nately solving (P3−A) and (P3−B) in an iterative manner of
path-following algorithm. In particular, the algorithm steps of
the alternating optimization based path-following algorithm
are summarized in Algorithm 1.

Algorithm 1 Alternating Optimization Based Path-
Following Algorithm

1: InitializeW (0), v(0) and t = 0.
2: repeat
3: t ← t + 1,
4: Set v = v(t−1) and calculateW (t) by solving the convex

optimization problem (P3− A),
5: SetW = W (t) and calculate v(t) by solving the convex

optimization problem (P3− B),

6: until 0 =
(
R(W (t),v(t))−R(W (t−1),v(t−1))

)
R(W (t),v(t))

converges.

2) THE SOLUTIONS OF (P2) WITH 8 = 82
In this part, we extend the above alternating optimization to
solve (P2− t) when8 = 82 in constraint (19a), which leads
constraint (19a) to be a non-convex set. To handle this non-
convex constraint, we propose the following two methods:

• In the first method, we introduce a positive constant
relaxation factor λ to reformulate (P2− t) with8 = 82
as the following optimization problem,

(P4−t) : max
W ,v

Rlb(W , v;W
(t)
, v

(t)
)+ λ

L+1∑
l=1

|vl |2

s.t. (14a) and (19a) with 8 = 81.

Note that the added nonnegative quadratic term

λ
L+1∑
l=1
|vl |2 attempts to force the inequality holds for vl ,

i.e., |v|l = 1.
However, the objective of (P4 − t) is to maxi-

mize the summation of concave and convex functions,
which belongs to a non-convex problem. To further
deal with this challenge, we use the first-order Taylor
series expansion to approximates the convex function
as an affine function [36]. Then, we iteratively solve
the approximated convex optimization problem until
the convergence is met. Specifically, the approximated
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problem is

(P4− A) : max
W ,v

Rlb(W , v;W
(t)
, v

(t)
)

+ λ
∑L+1

l=1
<

{
(v(t)l )

H
(2vl − v

(t)
l )
}

s.t. (14a), and (19a) with 8 = 81.

Finally, the only non-convex term in (P4 − A) stems
from the coupled W and v in the objective function
Rlb(W , v;W

(t)
, v

(t)
), which can be solved efficiently

by applying the same alternating optimization method,
i.e., Algorithm 1.

However, this method has the main drawbacks that
we use the approximation in (P4− t) and there is no
beforehand choice for the relaxation factor λ to speed
up the convergence [32]. Hence, we further propose the
direct projection method in the next part.

• In the second method, we can apply the projection
method to project the solution of (P2) with 8 = 81
into 8 = 82 directly. Specifically, denote the solutions
of (P2) with8 = 81 and (P2) with8 = 82 as (W†, v†)
and (W‡, v‡), respectively. Thus, the (W‡, v‡) can be
obtained by solving the following projection problem:

(P4− B) : v‡ = argmin
v

∥∥∥v− v†∥∥∥2
s.t. (19a) with 8 = 82.

From [23], the optimal solution to (P4− B) is given by

v‡ = exp(j arg(v†)), (27)

and W ‡
= W †. Note that, to further improve the per-

formance of this method, we can rerun the following
adjusted Algorithm 1 to iteratively update the obtained
(W ‡, v‡):
– Initialize W0

= W ‡, v0 = v‡ and t = 0. Then,
perform the following steps iteratively until the
objective function converges.

– t ← t + 1, set v = v(t−1) and calculate W (t) by
solving the convex optimization problem (P3−A),

– SetW = W (t), project the solution of (P3−B) into
82 by (27), and denote it as ṽ,

– Update v(t) using the following rule:

v(t) =

{
ṽ, if R(W (t), ṽ) ≥ R(W (t), v(t−1)),
v(t−1), otherwise.

(28)

3) THE SOLUTION OF (P2) WITH 8 = 83
In this part, we develop algorithms to solve (P2) when
8 = 83 in constraint (19a), which leads the optimized prob-
lem belongs to a class of combinatorial optimization problem,
which is an NP-hard problem in general. Thus, it will cause
intractable complexity to obtain the optimal solution. Hence,
we will use the similar heuristic projection method in the
above to solve this problem efficiently.

To begin with, we denote the solution of 8 = 83 as
(W §, v§). Then, we can directly project v†, the solution of
(P2) with 8 = 81, into 83 to obtain (W §, v§), i.e.,

v§l =

e
jϕq̂ , where q̂=argmin

1≤q≤Q

∣∣∣v†l −ejϕq ∣∣∣ , 1 ≤ l≤ L,
1, l = L + 1,

(29)

where v§l and v
†
l are the l-th element of v§ and v†, respectively.

W §
= W †. Note that the rest steps to update (W§, v§) are

similar as the second method in subsection IV-B.2, which is
omitted here for brevity.

C. CONVERGENCE ANALYSIS
In this part, we analyze the convergence of the proposed
alternating optimization based path-following algorithm,
i.e., Algorithm 1, which is given in the following theorem.
Theorem 1: The value of the objective function increases

in each iteration of Algorithm 1, i.e., R(W (t), v(t)) ≤
R(W (t+1), v(t+1)), which guarantees to converge to a local
(global) optimum.

Proof: To begin with, we have

R(W (t), v(t)) =
(a)

Rlb(W (t), v(t);W (t), v(t))

≤

{
max
W

Rlb(W , v(t);W (t), v(t))
}

=
(b)

Rlb(W (t+1), v(t);W (t), v(t))

≤

{
max
v

Rlb(W (t+1), v;W (t), v(t))
}

=
(c)

Rlb(W (t+1), v(t+1);W (t), v(t))

≤
(d)

R(W (t+1), v(t+1)), (30)

where (a) is because the equality in (23) holds when W =
W (t) and v = v(t), (b) and (c) are because W (t+1) and
v(t+1) are the optimal solutions of the convex optimization
problems of (P3 − A) and (P3 − B), respectively, and (d) is
because Rlb(W (t+1), v(t+1);W (t), v(t)) is the lower bound of
the functionR(W , v) in (23).
Furthermore, due to (14a) and (19a), we know W (t)

and v(t) are both bounded. According to Cauchy’s theo-
rem [32], we know the sequence of (W (t), v(t)) will converge
to (W∗, v∗) as t →∞, i.e.,

0 = lim
t→∞

{
R(W (t), v(t))−R(W∗, v∗)

}
≤ lim

t→∞

{
R(W (t+1), v(t+1))−R(W∗, v∗)

}
= 0. (31)

Hence, we have proved the R(W (t), v(t)) ≤ R(W (t+1),

v(t+1)), which can guarantee to converge to a local (global)
optimum.
Theorem 2: The corresponding solution (W∗, v∗) will

converge to a Karush-Kuhn-Tucker (KKT) point finally.
Proof: Please refer to Appendix B
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However, although the convergence of the proposed algo-
rithm is guaranteed, it requires solving the convex optimiza-
tion problems (P3− A) and (P3− B) whose complexity are
in the order of O((KN + 1)K 2M2) and O((KN + L + 1)
(L + 1)2) [37], respectively. Hence, we will develop the
methods to reduce the computational complexity in the next
subsection. Note that, since the solutions with 81 can be
projected into 82 and 83 directly, thus we only consider
8 = 81 when developing the low-complexity algorithms.

V. SUBOPTIMAL ALGORITHMS WITH LOW-COMPLEXITY
In this section, two suboptimal algorithms are developed to
further reduce the complexity. Firstly, we develop an alter-
nating optimization algorithm for the case with one legitimate
user and one eavesdropper, where the closed-form solutions
are provided in each iteration. Then, we develop an non-
iterative suboptimal algorithm based on ZF beamforming for
the case with multiple legitimate users and eavesdroppers.

A. ALTERNATING OPTIMIZATION FOR (P2)
WITH K = 1 AND N = 1
In this section, we develop a low-complexity algorithm to
solve (P2) for the case with K = 1 and N = 1. Although
there is no-interference in the objective function, the problem
is still non-convex and hard to solve due to the coupled W
and v. Thus, we also need to apply alternating optimization
to decouple W and v. Fortunately, we can obtain the closed-
form solutions in each iteration, which leads it to be a low-
complexity algorithm.

Specifically, (P2) with K = 1 and N = 1 can be solved by
alternately solving the following two subproblems:

(P5−A) : max
w1

ln
(
1+ |h̃

H
1 w1|

2
)
− ln

(
1+ |g̃H1 w1|

2
)

s.t. ‖w1‖
2
≤ P, (32)

which is an optimization problem of w1 for a given v with
h̃
H
1 = vHH1 and g̃H1 = vHG1, and

(P5−B) : max
v

ln
(
1+

∣∣∣vH h̄1∣∣∣2)− ln
(
1+

∣∣∣vH ḡ1∣∣∣2)
s.t. |vl |2 ≤ 1, 1 ≤ l ≤ L + 1, (33)

which is an optimization problem of v for a given w1 with
h̄1 = H1w1 and ḡ1 = G1w1. Note that in constraint (33),
we have relaxed constraint (19a) due to vL+1. To make the
solution of v in the above problem (P5− B) to satisfy (19a),
we need to set v∗L+1 as 1 and v∗l = vl/ exp(j arg(vL+1)) for
1 ≤ l ≤ L after the convergence. Besides, constraints (33)
can be regarded as the per-antenna power constraints with the
maximum power of one [38].

In the following two parts, we provide the solutions to
(P5− A) and (P5− B), respectively.

1) THE OPTIMAL SOLUTION TO (P5− A)
This problem is the downlink MISO beamforming problem
for basic wiretap channel, which has been studied in [39].

In particular, the optimal solution to (P5− A) is given by

w∗1 =
√
P

(
I + Pg̃1g̃

H
1

)− 1
2 q∥∥∥∥(I + Pg̃1g̃H1 )− 1
2 q
∥∥∥∥ , (34)

where q is the eigenvector of matrix Z corresponding to the
largest eigenvalue, and

Z = (I + Pg̃1g̃
H
1 )
−

1
2 (I + Ph̃1h̃

H
1 )(I + Pg̃1g̃

H
1 )
−

1
2 . (35)

2) THE SOLUTIONS TO (P5− B)
In this part, we develop the efficient algorithm to solve
(P5− B) in an iterative manner,2 and we provide the closed-
form solutions in each iteration. To do so, we first introduce
the following lemma.
Lemma 2: Let x be a positive real number, and define

f (y) = −xy+ ln y+ 1, then we have − ln x = maxy>0 f (y),
and the optimal corresponding solution in the right hand side
of this equation is y∗ = 1/x.

Proof: This proof is similar in [41], which is omitted
here for brevity.
According to lemma 2, (P5 − B) can be equivalently

rewritten as

(P6) : max
v,y

ln(1+
∣∣∣vH h̄1∣∣∣2)− y(1+∣∣∣vH ḡ1∣∣∣2)+ ln y

s.t. y > 0 and (33). (36)

This reformulated problem is still non-convex, but it is convex
in v or y with the other variable is fixed. Then, we can
further apply alternating optimizing to optimize v and y in
an iterative manner. Specifically, the alternating optimization
subproblems are given as follows:

(P6−A) : max
y>0

−y(1+
∣∣∣vH ḡ1∣∣∣2)+ ln y,

which is a convex optimization problem of y for a given v,
and

(P6−B) : max
V�0

ln(1+ h̄
H
1 Vh̄1)− yḡ

H
1 Vḡ1

s.t. Tr(eHl Vel) ≤ 1, 1 ≤ l ≤ L + 1, (37)

which is a convex optimization problem of V = vvH for a
given y, where el ∈ R(L+1)×1 is a unit vector with the l-th
entry being one and other entries being zero. Note that since
the rank of the optimal V of (P6−B) must be one, which will
be proved in Appendix C, there is no need to add the rank-one
constraint for variable V .

In the following, we show the optimal solutions to
(P6−A) and (P6−B), respectively. Specifically, according to

2Note that although (P5−B) can be solved by transforming it into a convex
semidefinite programming (SDP) by applying semidefinite relaxation (SDR)
technique, but solving the SDP problems requires very high complexity,
which is in the order of O((N + 1)4.5) [40].
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Lemma 2, it is straightforward to know the optimal solution
to (P6− A) is given by

y∗ = (1+
∣∣∣vH ḡ1∣∣∣2)−1, (38)

Next, since (P6 − B) is a convex problem, it is straight-
forward to know that strong duality holds for (P6− B) [42].
Hence, we can obtain its optimal solution by solving its dual
problem. To begin with, the Lagrangian dual of problem
(P6− B) can be written as

(P6−C) : min
χ

L (χ) s.t. χl ≥ 0, 1 ≤ l ≤ L + 1, (39)

where χ = [χ1, · · · , χL+1]T ∈ R(L+1)×1 is the dual variable
and

L (χ) = maxV�0 { ln(1+ h̄
H
1 Vh̄1)− yḡ

H
1 Vḡ1

+

∑L+1

l=1
χl(1− eHl Vel) } . (40)

Then, the optimal solution to (P6 − B) can be obtained by
iteratively solving (40) with fixed χ and updating χ by sub-
gradient methods, e.g., the ellipsoid method. The details for
the subgradient methods have been studied in [43], which
are omitted here for brevity. Then, we have the following
theorem.
Theorem 3: If the optimalχ∗ is given, the optimal solution

for (P6− B) is given by V∗ = v∗(v∗)H with

v∗ =

√(
1− 1

(ε∗)2

)+
ε∗

(
diag

(
χ∗
)
+ yḡ1ḡ

H
1

)−1
h̄1, (41)

where ε∗=
∥∥∥(diag(χ∗)+yḡ1ḡH1 )−0.5h̄∥∥∥.

Proof: Please refer to Appendix C.
The convergence for the above algorithm is also guaran-

teed, the proof is similar to the proof of theorem 1, which
is omitted here for brevity. Besides, the detailed steps of the
above algorithm are summarized in Algorithm 2.

Algorithm 2 Alternating Optimization Method

1: Initialize w(0)
1 , v(0), y(0) and t = 0.

2: repeat
3: t ← t + 1,
4: Set v = v(t−1), then calculateW (t) by (34),
5: Set v = v(t−1) and w1 = w(t)

1 , then calculate y(t) by
(38),

6: Initialize χ = χ (0) and i = 0, set w1 = w(t)
1 and y =

y(t),
7: repeat
8: i ← i + 1, set χ = χ (i−1), then calculate v(t) by

(41),
9: Calculate χ (i) according to the ellipsoid

method [43],
10: until Convergence.
11: until Convergence.

B. HEURISTIC ALGORITHM FOR (P2)
WITH K ≥ 1 AND N ≥ 1
In this subsection, we provide the heuristic algorithm for (P2)
with K ≥ 1 and N ≥ 1. Specifically, when L → ∞,
we can assume the received signal from the BS to users can
be ignored due to the total powers of received signals are
dominated by the signals from the BS and through the IRS to
the users with asymptotically large L. In addition, according
to the Rician channel model introduced in (1) and (4), when
κF → ∞ and κhr,k → ∞ and κgr,n → ∞, the channel
responses from the BS to the IRS, from the IRS to Bk and
from the IRS to En are dominated by LoS components since
the NLoS components can be practically ignored. Besides,
we also assume all legitimate receivers are in the same direc-
tions to the IRS, i.e., ϑr,k = ϑr,i holds for 1 ≤ i, k ≤ K .
Hence, the total power of received signals at the legitimate
receivers can be given by∣∣∣aHL (ϑr,k)2aL(ϑAoA)

∣∣∣2∥∥∥∥∥(aHM (ϑAoD)
) K∑
k=1

wk

∥∥∥∥∥
2

, (42)

Then, it is straightforward to know the optimal θ∗ to maxi-
mize the total received signal power in (42) is given by

θ∗l =exp
(
j
(l−1)2πλ

d
(sinϑr,k−sinϑAoA)

)
, 1 ≤ l ≤ L.

(43)

Substituting (43) into (11) and (12), the throughput of k-th
confidential message at Bk and En can be written as

R̂Bk = ln

1+

∣∣∣ĥHk wk ∣∣∣2∑K
i6=k

∣∣∣ĥHk wi∣∣∣2 + σ 2
k

 , (44)

R̂Ek,n = ln

1+

∣∣∣ĝHn wk ∣∣∣2∑K
i6=k

∣∣∣ĝHn wi∣∣∣2 + δ2n
 , (45)

respectively, where ĥ
H
k = (hHr,k2F+ h

H
d,k ) and ĝHn =

(gHr,n2F+ g
H
d,n). Next, we apply the ZF beamforming

scheme,3 which forces the information leakage to En to be
zero, i.e.,

Ĝ
H
W = 0, (46)

where Ĝ =
[
ĝ1, · · · , ĝN

]
∈ CM×N . Thus, the ZF beam-

formerW can be expressed as

W = XUP, (47)

where X ∈ CM×(M−N ) consists of (M − N ) singular
vectors of Ĝ corresponding to the zero singular values,
U = [u1, · · · ,uK ] ∈ C(M−N )×K subject to ‖uk‖ = 1 for
1 ≤ k ≤ K . P = diag(p) ∈ RK×K with p = [p1, · · · , pK ]T ∈
RK×1 subject to

∑K
k=1 pk = P.

3Note thatM ≥ N is required in the studied system if ZF beamforming is
adopted.
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Therefore, problem (P2) can be changed as the following
the minimal-SINR maximization problem, i.e.,

(P7) : max
U,p

min
∀k

γk
1
=

pk
∣∣∣x̂Hk uk ∣∣∣2∑K

i6=k pi
∣∣∣x̂Hk ui∣∣∣2 + 1

s.t.
∑K

k=1
pk = P and ‖uk‖ = 1.

where x̂Hk = ĥ
H
k X/σk . From [44], we know the optimal

beamformer in problem (P2) has the following structure

u∗k =

(∑K
i6=k zix̂ix̂

H
i + IK

)−1
x̂k∥∥∥∥(∑K

i6=k zix̂ix̂
H
i + IK

)−1
x̂k

∥∥∥∥ , (49)

where the unique and positive zk4 for 1 ≤ k ≤ K can be
obtained by solving the following equations [44]:

z∗k =
γ ∗

x̂Hk
(∑K

i6=k x̂ix̂
H
i + IK

)−1
x̂k
, (50)

γ ∗ =
P∑K

k=1

(
x̂Hk (

∑K
i6=k x̂ix̂

H
i + IK )

−1
x̂k
)−1 , (51)

Note that γ ∗ is the optimal value of the objective function in
(P7), and we know γ ∗k = γ

∗ holds for all 1 ≤ k ≤ K [45].
Using this fact, we have the following equation:

p∗

γ ∗
= 4Yp∗ +41K , (52)

where 4 = diag([ 1

|x̂H1 u1|
2 , · · · ,

1

|x̂HK uK |
2 ]) ∈ RK×K , Y =

[Yik ] ∈ RK×K with Yik = |x̂
H
i uk |

2
if i 6= k and Yik = 0

if i = k . Then, we know the optimal power allocation p is
given as follows

p∗ = γ ∗
(
Ik − γ ∗4Y

)
41K . (53)

VI. SIMULATION RESULTS
In this section, we present simulation results to validate the
advantages of using the IRS to improve the secret communi-
cation of the downlink MISO broadcast system. It is assumed
that the noise variances σ 2

k at Bk and δ2n at En are the same and
normalized to one. Themaximum transmit powerP is defined
in dB with respect to the noise variance. For performance
comparison, we also show the performances of two subopti-
mal baseline schemes. In particular, for the ‘‘Rand’’ baseline,
we randomly select the reflecting coefficients of the IRS from
82 with equal probability and apply Algorithm 1 without
updating the reflecting coefficients anymore to obtain the
beamforming design; and for the ‘‘Without IRS’’ baseline,
we assume that the channels from the BS to the IRS, from the
IRS to Bk , and from the IRS to En are blocked, i.e., F = 0,
hHr,k = 0, and gHr,n = 0, respectively, with 1 ≤ k ≤ K and

4In fact, zk is the power allocation for the virtual dual uplink network [44],
which is strictly positive

1 ≤ n ≤ N , and then we apply Algorithm 1 to obtain the
beamforming design. This represents the worst-case scenario
to achieve secret communication in the absence of the IRS.
In addition, we assume that the legitimate receivers and the
eavesdroppers are in the same directions to the BS and the
IRS, i.e., ϑd,k = ϑd,i and ϑr,k = ϑr,i for 1 ≤ i, k ≤ K , and
ϑ̃d,n = ϑ̃d,i and ϑ̃r,n = ϑ̃r,i for 1 ≤ i, n ≤ N . We also
assume that ϑr,k , ϑ̃r,n, ϑAoA and ϑAoD are uniformly dis-
tributed between [0, 2π), while ϑd,k and ϑ̃d,n are uniformly
distributed between [−π/3, π/3].

FIGURE 2. Minimum secrecy rate versus the maximum transmit power of
the BS: M = L = 5, and κh = 1 with h ∈H: (a) K = N = 2; (b) K = N = 1.

Figure 2(a) and Fig. 2(b) show the minimum secrecy rate
under different values of the maximum transmit power P of
the BS for K = N = 2 and K = N = 1, respectively.
Note that ‘‘Algorithm 1: 82(1)’’ and ‘‘Algorithm 1: 82(2)’’
denote Algorithm 1 with the first method based on Taylor
series expansion and second method based on projection for
8 = 82, respectively, the details of which are given in
subsection IV-B.2. From the two figures, we can first observe
that the minimum secrecy rates of all methods increase as
the maximum transmit power increases. Besides, we know
the performance gap between the system with the IRS and
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the system without the IRS increases with the transmit
power, which validates the advantages of the introduced IRS.
Secondly, in the scenario of 8 = 81, we observe that
Algorithm 1 and Algorithm 2 have the similar performances
and that both of them outperform the other baselines. This
is because both of them can guarantee to converge to a local
(global) optimum. Thirdly, we observe that the performance
of the ZF based heuristic algorithm is worse than that of
‘‘Rand’’ baseline with K = 2 and better than that with
K = 1. This is acceptable due to the complexity of the
‘‘Rand’’ baseline is still higher than the ZF based heuristic
algorithm. It also shows that the heuristic algorithm is more
effective when K is small.

FIGURE 3. Minimum secrecy rate versus the number of reflecting
elements on the IRS: M = 5, K = N = 2, P = 10 dB and κh = 1 with h ∈H.

Figure 3 plots the minimum secrecy rate versus the num-
ber of reflecting elements (antennas) L of the IRS. From
this figure, we can observe that the minimum secrecy rates
of all methods assisted by the IRS increase as the num-
ber of reflecting elements on the IRS increases, while
the minimum secrecy rate of the system without the IRS
remains constant. This is reasonable since a larger num-
ber of reflecting elements of the IRS can achieve higher
array gain. This also validates the advantages of the intro-
duced IRS for the studied systems. In addition, the per-
formance gap between Algorithm 1 with 8 = 81 and
8 = 83 increases as Q decreases, especially for a large
L. This is because the system with a large L requires a
large Q to achieve more precise adjustment for the reflecting
coefficients on the IRS. This indicates that in order to better
achieve the array again brought by a larger L, we should use
a larger Q for the proposed scheme with 8 = 83.
Figure 4 shows the minimum secrecy rate versus the num-

ber of discrete reflecting coefficient valuesQ of the reflecting
coefficients on the IRS.We can observe that the performances
of the proposed algorithms with 8 = 81, 8 = 82 and 8 =
83 decrease successively due to the fact 83 ⊆ 82 ⊆ 81.
Furthermore, the performance of the proposed algorithmwith
8 = 83 increases as Q increases. This is because a larger Q
allows a much finer adjustment to the reflecting coefficients

FIGURE 4. Minimum secrecy rate versus the number of reflecting
coefficients of each reflecting elements of the IRS: M = L = 5, N = 2,
P = 10 dB and κh = 1 with h ∈H.

on the IRS. Thus, the minimum secrecy rate can be improved.
Finally, we observe that the proposed algorithmwith8 = 83
and Q = 8 or 16 can achieve a similar performance to the
proposed algorithm with 8 = 82.

FIGURE 5. Minimum secrecy rate versus the number of legitimate users:
M = 10, L = 5, N = 2, P = 10 dB and κh = 3 with h ∈H.

Figure 5 plots the minimum secrecy rate versus the number
of legitimate receivers K . First, we observe that the minimum
secrecy rate decrease as K increases, due to the fact that
the beamforming gain and array gain need to be shared with
more legitimate users. Moreover, its similar to Fig. 2, we can
observe that the performance of ‘‘Algorithm 1’’ is better than
that of ‘‘ZF based Heuristic Algorithm’’ and other baseline
schemes. In addition, we also know that the low-complexity
heuristic algorithm is more effective than the other sub-
optimal baseline schemes when K is small, especially
for K = 1 or 2.

Figure 6 investigates the convergence performances of
the proposed algorithms. For convenience, we first define
0 as the normalized performance gap between the val-
ues of the objective function in the two successive itera-
tions of Algorithm 1 with 8 = 81, with 8 = 82(1),
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FIGURE 6. Convergence performance versus the number of iterations:
M = 5, L = 5, K = 1, N = 1, P = 5 dB and κh = 1 with h ∈H.

and Algorithm 2. We can first observe that the objective
functions in all methods increases with every iteration, which
validates the convergence analysis studied in Section IV.
Moreover, the convergence performance of Algorithm 1 with
8 = 82(1) is worse than that with 8 = 81. This is because
Algorithm 1 with 8 = 82(1) has the main drawback that
there is no beforehand choice for the relaxation factor to speed
up the convergence [32]. Besides, it is worth noting that the
number of iterations to achieve convergence in Algorithm 2 is
smaller than that in Algorithm 1. This is because in the each
iteration of Algorithm 2, we optimize the original problem
without approximation and provide the global optimal solu-
tion for each subproblem.

VII. CONCLUSIONS
In this paper, we have investigated the joint beamforming and
reflecting coefficient designs for a programmable downlink
MISO broadcast system with multiple eavesdroppers. In par-
ticular, considering the scenario that the channel responses
of the legitimate receivers are highly correlated with those
of the eavesdroppers, it is intractable to guarantee the secret
communications with the use of beamforming only at the
transceivers. Hence, we have explored the use of the IRS
to create a programmable wireless environment by provid-
ing additional communication links to increase the SNR at
the legitimate receivers while suppressing the SNR at the
eavesdropper. Specifically, we have formulated a minimum-
secrecy-rate maximization problem under various practical
constraints on the reflecting coefficients, which captures the
scenarios of both continuous and discrete reflecting coeffi-
cients of the reflecting elements. Since the formulated prob-
lem is a non-convex problem, we have proposed an efficient
algorithm to solve it in an iterative manner and theoretically
analyzed its convergence. In addition, we have developed two
suboptimal algorithms with closed-form solutions to further
reduce the complexity. Finally, the simulation results have
validated the advantages of the IRS and the effectiveness of
the proposed algorithms.

APPENDIX
A. PROOF OF THEOREM 1
We first prove the lower bound function of f Bk (W , v), and
then prove the upper bound function of f Ek,n (W , v) in this part,
which is similar to the proof in [32].

To obtain the lower bound function of f Bk (W , v), we first
prove the convexity of function f (x, y) = − ln

(
1− |x|2/y

)
.

Since − ln (1− z) is an increasing and convex function with
respect to z and z = |x|2/y is a convex function with respect
to (x, y) in the domain

{
(x, y)

∣∣0 ≤ y ≤ |x|2 }, f (x, y) is thus
a convex function. According to the first-order Taylor series
expansion of f (x, y) at (x̃, ỹ), we have

f (x, y) ≥ f (x̃, ỹ)+∇x̃ f (x, ỹ) (x−x̃)+∇ỹf (x̃, y) (y−ỹ)

= f (x̃, ỹ)+2
< {x̃ (x−x̃)}

ỹ−|x̃|2
−

|x̃|2

ỹ
(
ỹ−|x̃|2

) (y−ỹ) .
(54)

Then, setting b = y− |x|2 and b̃ = ỹ− |x̃|2, we have

ln(1+
|x|2

b
) ≥ ln(1+

|x̃|2

b̃
)+ 2
< {x̃x}

b̃

−
|x̃|2

b̃(b̃+ |x̃|2)
(b+ |x|2)−

|x̃|2

b̃
. (55)

Finally, letting x = vHHkwk , b = bk (W , v), x̃ =(
v(t)
)HHkw

(t)
k and b̃ = bk (W (t), v(t)), we can obtain (20).

To obtain the lower bound function of f Bk (W , v), since
function ln(1 + z) is concave function with respect to z,
we have

ln (1+ z) ≤ ln (1+ z̄)+ (z− z̄)/(1+ z̄). (56)

Then, we have

f Ek,n(W , θ ) ≤ f Ek,n(W
(t)
, v

(t)
)+(1+

∣∣∣(v(t))HGnw(t)
k

∣∣∣2
qk,n(W

(t)
,v(t) )

)−1

× (
∣∣vHGnwk ∣∣2
qk,n(W ,v)

−

∣∣∣(v(t))HGnw(t)
k

∣∣∣2
qk,n(W

(t)
,v(t) )

). (57)

Then, since it is straightforward to know qk,n(W , v) ≥

qk,n(W , v;W
(t)
, v

(t)
), we have

∣∣vHGnwk ∣∣2
qk,n(W ,v)

≤

∣∣vHGnwk ∣∣2
qk,n(W ,v;W t ,vt ) .

Finally, we have (21).

B. PROOF OF THEOREM 2
As aforementioned, the sequence of (W (t), v(t)) will con-
verges to (W∗, v∗) as t →∞. Next, we write the Lagrangian
function of (P2−t) as

L(W , v, η, χ) = Rlb(W (t), v(t);W (t), v(t))

+

∑L+1

l=1
ηl(1−vl)+χ (P−

∑K

k=1
‖wk‖

2),

(58)

where η = [η1, ., ηL+1]∈C1×(L+1) and χ are the dual vari-
ables. Then, when t → ∞, the corresponding KKT condi-
tions are given as follows:

∇vnRlb(W∗, v∗;W∗, v∗)− η∗l = 0, ∀l, (59)
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∇wkRlb(W∗, v∗;W∗, v∗)− 2χ∗w∗k = 0, ∀k, (60)

η∗l (1− v
∗
l ) = 0, ∀l, (61)

χ∗(P−
∑K

k=1

∥∥w∗k∥∥2) = 0. (62)

According to (23), and notice thatW∗ and v∗ are the optimal
solutions of the convex optimization problems of (P3−A) and
(P3 − B), respectively, we know the above KKT conditions
are all satisfied. Hence, the converged solution (W∗, v∗) is a
KKT point.

C. PROOF OF THEOREM 3
Firstly, (40) can be rewritten as follows:

max
V�0

ln(1+h̄
H
1Vh̄1)−Tr((diag(χ)+y(ḡ1ḡ

H
1 ))V ). (63)

Let us define

Ṽ=(diag(χ)+y(ḡ1ḡ
H
1 ))

0.5V (diag(χ)+y(ḡ1ḡ
H
1 ))

0.5, (64)

then, (63) can be rewritten as

maxṼ�0 ln(1+ε2cH Ṽc)−Tr(Ṽ ), (65)

where

c = 1/ε(diag(χ )+y(ḡ1ḡ
H
1 ))
−0.5h̄1, (66)

ε =

∥∥∥(diag(χ )+y(ḡ1ḡH1 ))−0.5h̄1∥∥∥. (67)

It is straightforward to know that the rank of the optimal Ṽ
must be one [46], which can be represented as Ṽ = wṽṽH

where ‖ṽ‖2 = 1. Then, from (65), the optimal ṽ∗ is c, and w
can be obtained by solve the following problem:

maxw≥0 ln(1+ε2w)− w. (68)

Obviously, the optimal w∗ is
(
1− 1

ε2

)+
. Thus, we have

proved this theorem.
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