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ABSTRACT This paper proposes a generalized model to cover imperfect debugging and the uncertainty
of the operating environment and its effect on fault detection rate into software reliability evaluation based
on a non-homogeneous Poisson process (NHPP). Many NHPP software reliability growth models (SRGMs)
have been developed to estimate the software reliability measures over the past 40 years, but most of these
models assume that the operating environment is the same as the testing environment. However, in fact,
due to the unpredictability of the uncertain factors in the operating environments for the software, they may
considerably influence the software’s reliability in an unpredictable way. So when a software system works
in a field environment, its reliability is usually different from the original reliability prediction in the testing
phase of the software development process, also from all its similar applications in other fields. In this paper,
a general model is used to derive models that incorporate the uncertainty of operating environments, which
provides the flexibility in considering a different fault detection rate and random environmental factor and
so on. Several published models are shown to be covered by this general model and a new model is also
developed and examined. The numerical illustrative examples of the proposed model have been validated
on two sets of real software failure data in terms of six criteria. The comparison results demonstrate that the
new model can fit and predict significantly better than other existing models.

INDEX TERMS Generalized software reliability growth model, non-homogeneous Poisson process, uncer-
tainty, operating environment, imperfect debugging.

I. INTRODUCTION
Software reliability has become one of the most important
customer-oriented attributes of software quality [1]. It is of
great importance to have effective approaches to develop
reliable software along with quantitatively estimating the
software reliability [2].

During the past 40 years, many time-dependent NHPP
SRGMs have been developed to determine the reliability
of software systems [3]–[7]. Different models have been stud-
ied upon different assumptions. For instance, some models
assume perfect debugging [8], [9], others take into account
imperfect debugging [9]–[11], including fault removal
efficiency [12], error generation [13]–[15] and learning
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process [16], [17]. Also some other factors in real devel-
oping process are integrated to improve the estimation accu-
racy of SRGMs, such as testing coverage [18]–[20], testing
effort [21]–[25], time-delay fault correction [26]–[29] and
fault reduction factor [30]. Most models assume that the
operating environment is the same as the testing environment,
and the underlying assumption is that the software used in
the operating environment has the same failure-occurrence
behavior as that used in the software testing environment.
So models suitable for the software testing data are also fit for
the field data set. But this assumption may not always stand
especially for those software will be used in many different
field environments after they are released. The in-house test-
ing environment is often a controlled environment with much
less variation compared with the field environments, how-
ever, the field operation environments for the software differ
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considerably from one location to another or one application
to another. It has also been noticed that software reliability
in the field environment is often different from that in the
testing environment, so some certain proportional constant of
the environmental factor has been defined to characterize the
discrepancy between the testing and field environments from
the viewpoint of the severities of usage conditions and sev-
eral studies on field-oriented software reliability assessment
have been conducted [31]–[33]. However, the difficulty in
estimating the environmental factor remains an outstanding
problem which cannot be solved even in [31]–[33]. On the
other hand, the field environment includes much more uncer-
tain factors than the testing environment such as the pattern of
the execution load and the operational profile. It is impossible
to prepare test cases containing all possible external distur-
bances. Therefore, the considerations of the randomness of
the environmental factor can describe the actual operating
environment more faithfully [1]. The uncertainty of the oper-
ating environments will greatly influence the software failure
and reliability behavior in an unpredictable way.

Teng and Pham firstly proposed a software gain model
under the random operating environment with consideration
of the effect of the random field environmental factor on the
cost model [34]. They also proposed a model that discusses
the randomness of the environment and its effects on the fault
detection rate under the condition that the uncertainty of oper-
ating environmental effect follows the Gamma (or Beta) dis-
tribution and fault content function is a linear function of the
mean value function [35]. Then Pham presented a new defi-
nition of ‘‘systemability’’ which is defined as the probability
that the system will perform its intended function for a spec-
ified mission time subject to the uncertainty of the operating
environment [36]. After that, Pham developed a Vtub-shaped
software fault detection rate model considering the random-
ness of the operating environment where the fault-detection
rate follows a Vtub-shaped function under the condition that
the uncertainty also follows the Gamma distribution and fault
content remains a constant [37]. Chang et al. introduced the
testing coverage into software reliability model considering
the uncertainty of operating environment, also assumed that
the uncertainty follows the Gamma distribution and the total
fault number remains the same [38]. Yamada expanded the
meaning of systemability from Pham’s definition into the
system reliability characteristic considering the uncertainty
and the variability of the field operating environment [1].
Inoue et al. proposed a bivariate software reliability growth
model depending on testing-time and testing-effort with
consideration of the uncertainty of a testing-environmental
change by assuming that the testing-environmental coef-
ficient follows the Beta distribution, which describes the
situation that the testing-environment after change-point is
more severe than that before change-point [39]. Recently,
we have witnessed several works continuously developed by
Song et al. in this direction, i.e. they gave a three-parameter
fault-detection rate function and assumed that the environ-
mental factor had the exponential distribution [40], a Weibull

fault detection rate [41], an S-shaped fault detection rate [42],
a fault detection rate function affected by the probability of
fault removal on a failure [43], a Weibull failure detection
rate function with consideration of testing time with syntax
error [44] and an inflection S-shaped fault detection rate [45].
Meanwhile, the last four models all assumed the Gamma
distribution environmental factor and a constant expected
number of faults existing in the software before testing. Con-
sidering the features of isomorphism, Li and Pham developed
a model with the total fault number function is a linear
function of testing time, along with testing coverage [46].

This paper further proposes a generalized model
framework accounting for the uncertainty of operating envi-
ronments, whose formulation provides the flexibility in mod-
eling the random environmental effects. Under the unified
framework, many existing models can be considered as spe-
cial cases and a new model with Weibull probability density
function (pdf) is derived.

The rest of the paper is organized as follows. In Section II,
we give an explicit solution to a general class of NHPP
SRGMs used to derive the proposed model, and several
existing SRGMs are also explained to be special cases of
the general model. In Section III, we present the parame-
ter estimation method and criteria for model comparison.
In Section IV and V, we compare the performance of this
proposed model with several existing NHPP SRGMs based
on two sets of software failure data from descriptive and
predictive power in terms of six criteria, respectively. Finally,
we draw the conclusions in Section VI.

II. SOFTWARE RELIABILITY MODELING
A. A GENERAL NHPP MODEL WITHOUT THE
UNCERTAINTY OF OPERATING ENVIRONMENTS
A general class of NHPP SRGMs was proposed by [47] to
summarize the existing NHPP models as follows:

dm(t)
dt
= h(t) (a(t)− m(t)) (1)

where m(t) means the expected value function of faults
detected up to time t , a(t) is the total number of faults in the
software at time t , and h(t) represents the fault detection rate
function dependent on time.

The general solution of (1) is

m(t) = e−H (t)

m0 +

t∫
t0

a(τ )h(τ )eH (τ )dτ

 (2)

where

H (t) =
∫ t

t0
h(u)du (3)

and m(t0) = m0 is the marginal condition of (2) with t0
representing the starting time of the testing process.

Substituting different a(t) and h(t) into (2), we can
get different mean value functions, which represent dif-
ferent assumptions and yield more or less complicated
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TABLE 1. Summary of the software reliability models and their mean value functions.

analytic models. Many existing NHPP SRGMs can be taken
as a special case of (2).

A constant a(t) means perfect debugging and the total fault
number remains the same, and an increasing a(t) means an
increasing fault content and implies imperfect debugging.

A constant h(t) means that failure intensity is propor-
tional to the number of remaining faults, and an increasing
h(t) means an increasing fault detection rate due to testing
learning or an S-shaped h(t) attributed to fluctuations dur-
ing the testing process [16], [17], or a combination of both
mentioned above.

B. A GENERALIZED NHPP MODEL WITH THE
UNCERTAINTY OF OPERATING ENVIRONMENTS
Based on the following basic assumptions, an NHPP SRGM
considering the uncertainty of operating environments is pro-
posed:

(1) Software faults’ occurrence and removal follow an
NHPP.

(2) The software failure rate at any time is proportional to
the number of faults remaining in the software at that time.

(3) When a software failure is detected, the fault causing
the failure will be removed immediately.
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TABLE 2. Failure data of DS-1.

(4) The environment affects the fault detection rate, h(t),
by a random variable η.

The assumption (4) is suggested by Teng and Pham [34],
and they have suggested a model that captures the uncertainty
of field environments by multiplying the fault detection rate
with a factor η, where η is a random variable. Then the model
can be given as follows:

dm(t)
dt
= ηh(t) (a(t)− m(t)) (4)

Assume η’s pdf is g(η) and η is a time-independent variable
and unit-free.

From (4), we can get the generalized solution given in term
of η as follows:

mη(t) = e−ηH (t)

m0 +

t∫
t0

ηa(τ )h(τ )eηH (τ )dτ

 (5)

From (5), we can obtain the mean value function as fol-
lows:

m(t) = E(mη(t)) =
∫
+∞

0
mx(t)g(x)dx

=

+∞∫
0

e−xH (t)(m0 +

t∫
t0

xa(τ )h(τ )exH (τ )dτ )g(x)dx (6)

Solving (6) using the initial condition that at t0 = 0,
m(t0) = m(0) = 0, and the closed-form solutionm(t) is given
as follows:

m(t) =

+∞∫
0

e−xH (t)(

t∫
0

xa(τ )h(τ )exH (τ )dτ )g(x)dx

= a(t)− a(0)F∗(H (t))−
+∞∑
n=0

(−1)n

n!
F (n)∗(H (t))

×

a(t)Hn(t)− n

t∫
0

a(τ )h(τ )Hn−1(τ )dτ

 (7)

where

H (t) =
∫ t

0
h(u)du (8)

F∗(H (t)) means the Laplace transform of the pdf g(x) and
F (n)∗(H (t)) represents the nth order differential of the Laplace
transform of g(x) (The detailed demonstration of (7) can be
seen in Appendix A).

Substituting different type of pdf g(η), the total fault num-
ber function a(t) and the fault detection rate function h(t),
we can get different mean value functions correspondingly.
It should be noted that any nonnegative distribution could
be used to model the random environmental factor η. Here
most published models assume that the environmental factor
η follows the Gamma distribution because of its great flexi-
bility, which can include all conditions between operational
environment and testing environment where the usage con-
dition is more favorable to fault detection than the testing
environment, i.e. (η > 1), or equivalent to the testing envi-
ronment, i.e. (η = 1), or less favorable to fault detection
than the testing environment, i.e. (0 < η < 1). But note that
here g(η), a(t), h(t) are all arbitrary functions without any
restricted limitations, that is, not limited to the condition that
η has the Gamma distribution and fault content function is a
linear function of mean value function.

When a(t) = a + qm(t), (7) can be simplified as the
following equation:

m(t) =
a

1− q

(
1− F∗((1− q)H (t))

)
(9)

where a = a(0), refers to the total number of faults that exist
in the software before testing; a(t) refers to the total number
of faults in the software at time t , which is proportional to the
mean value function of m(t).

Now we are going to discuss some existing models from
the general viewpoint according to (7) and (9), then we will
develop a new model along the similar line.
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TABLE 3. Comparison of SRGMs’ descriptive power for DS-1.

Model-1: Let a(t) = a, h(t) = b ln(a)tb−1at
b
, g(x) =

βαxα−1e−βx

0(α) (for α, β > 0; x ≥ 0),

g(x) =
βαxα−1e−βx

0(α)
(for α, β > 0; x ≥ 0)

where the fault content a(t) remains the same as the testing
progresses, which implies perfect debugging, the fault detec-
tion rate is Vtub-shaped, and η is assumed to have the Gamma
pdf, then substitute all above values into (9), we can get

m(t) = a
[
1−

(
β

β + atb − 1

)α]
(10)

which is the same as the model given by Pham [37].
Model-2: Let a(t) = a, h(t) = c′(t)

1−c(t) , c(t) = 1 − e−(at)
b
,

and η follows the Gamma distribution, then substitute all

above values into (9), we can get

m(t) = a
[
1−

(
β

β + (at)b

)α]
(11)

which is the same as the model given by [38].
Model-3: Let a(t) = a + qm(t), h(t) = b

1+ce−bt , and η is
also assumed to have the Gamma pdf, then according to (9),
we can get

m(t) =
a

1− q

1−
 β

β+(1− q)ln
(
c+ebt
c+1

)
α (12)

which is the same as the model given by [35] when p = 1
(where p represents the fault removal efficiency (0 < p ≤ 1))
and T = 0 (where T represents the time to stop testing and
release the software for field operations).
Model-4: Let a(t) = a, h(t) = b

1+ce−bt , and η is also
assumed to followGamma distribution, then according to (9),
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TABLE 4. Failure data of DS-2.

we can get

m(t) = a

1−
 β

β+ln
(
c+ebt
c+1

)
α (13)

which is the same as the model given by [45].
Model-5: Let a(t) = a, h(t) = b

1+ce−kt , and η is assumed
to follow the exponential distribution with parameter β, i.e.
g(x) = βe−βx (for β > 0; x ≥ 0), then according to (9),
we can get

m(t) = a

1−
 β

β − b
k ln

(
(1+c)e−kt

1+ce−kt

)
 (14)

which is the same as the model given by [40].
Model-6:Nowwewill derive a newmodel from the general

class of models denoted as (7).
Assume that the fault content a(t) remains the same as the

testing progresses, which means

a(t) = N (15)

whereN denotes the initial fault number presented in the soft-
ware system before testing starts. That means each time when
a failure occurs, the faults causing the failure are removed
instantaneously and no new faults are introduced (i.e. perfect
debugging).

Let h(t) = c
1+ae−bt , where fault detection rate h(t) is a non-

decreasing function with an inflection S-shaped curve with
3 parameters, When t tends to infinite, h(t) tends to get its

maximum value, then

H (t) =

t∫
0

c
1+ ae−bu

du =
c
b
ln
(
a+ ebt

1+ a

)
(16)

Let η take the Weibull pdf with 2 parameters, i.e. g(x) =
k
λ
( x
λ
)k−1e−(

x
λ
)k (for k, λ > 0; x ≥ 0).

Substituting all above values into (7), we can obtain the
mean value function for the proposed model as follows:

m(t)=N

(
1−
+∞∑
n=0

(−1)n

n!
0

(
n+k
k

)
λn
(
c
b
ln
(
a+ebt

1+a

))n)
(17)

(The detailed demonstration of (17) can be seen in
Appendix B).

The software reliability function based on the NHPP is
shown as follows:

R(x/t) = e−[m(t+x)−m(t)] (18)

where R(x/t) refers to the software reliability function by
time t for a mission time x and m(t) is given by (17).

Table I gives a summary of the proposed model and
15 existing ones. In the next sections, we examine the descrip-
tive and predictive properties of the proposed model by com-
paring it with these existing models.

III. PARAMETER ESTIMATION AND CRITERIA FOR
MODEL COMPARISONS
A. PARAMETER ESTIMATION METHOD
Theoretically, once the analytical expression for m(t) is
derived, the parameters in m(t) can be estimated by using the

84258 VOLUME 7, 2019



Q. Li, H. Pham: Generalized SRGM With Consideration of the Uncertainty of Operating Environments

TABLE 5. Comparison of SRGMs’ descriptive power for DS-2.

maximum likelihood estimation (MLE) method or the least
square estimation (LSE) method. MLE is one of the most
useful techniques for deriving estimators because comparing
to other estimation methods the maximum likelihood esti-
mates are consistent and asymptotically normally distributed
as the sample size increases [52]. However, sometimes the
estimations may not be obtained by MLE especially under
some conditions where m(t) is too complex, and we need
to turn to LSE. So here we use LSE method to estimate the
models’ parameters.

Let all the failure data are expressed in the form of pairs
(ti, yi) (i = 1, 2, . . . , n; 0 < t1 < t2 < · · · < tn), where yi is
the cumulative number of faults detected in time (0, ti]. The
sum of the squared distance is given as follows:

Q =
n∑
i=1

(yi − m(ti))2 (19)

By taking derivatives of (19) with respect to each
parameter in (17), and setting the results equal to zero,
we can obtain seven equations for the proposed model
as follows:

∂Q
∂N
=
∂Q
∂a
=
∂Q
∂b
=
∂Q
∂c
=
∂Q
∂k
=
∂Q
∂λ
= 0 (20)

After solving the above equations simultaneously, we can
obtain the least square estimates of all parameters for the
proposed model.

As noted, solutions of (20) are extremely difficult and
require either graphical or numerical methods. Under the help
of developed MATLAB programs based on LSE method,
the calculation of parameters is not a critical problem though
adding additional parameters to make the software reliability
model more complex and the work of parameter estimation
more difficult.
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TABLE 6. Comparison of G-O, Vtub model, Teng & Pham model and the proposed model using DS-1.

FIGURE 1. Fault detection rate function h(t) for DS-1.

B. COMPARISON CRITERIA
Firstly, we use five commonly used goodness-of-fit criteria
to examine the descriptive power for all models. The first
criterion is the mean value of squared error (Mean Square-
Error, MSE), which is defined as follows [2], [37], [38], [53]:

MSE =
1

n− N

n∑
i=1

(yi − m̂(ti))2 (21)

FIGURE 2. Probability density function g(η) for DS-1.

where n is the number of observations, yi is the total number
of faults detected up to time ti in terms of the testing data, m̂(ti)
is the estimated value of cumulative fault number up to time ti
according to the fittedmean value function, i = 1, 2, . . . , n.N
represents the number of parameters used in the model.

When comparing the performance of models with differ-
ent numbers of parameters, it is always considered unfair
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FIGURE 3. The fitting results of comparison SRGMs compared with actual data for DS-1.

to simply compare the performance of models with more
parameters with others with fewer parameters without giving
any penalty to those models with more parameters.

It should be noted that MSE considers the penalty term
with respect to the degrees of freedom when there are many
parameters and assigns a larger penalty to a model with
more parameters. Thus, smaller value ofMSE indicates better
goodness-of-fit.

The second criterion which is used to examine the fitting
power of SRGMs is correlation index of the regression curve
equation (R2), which is expressed as follows:

R2 = 1−

n∑
i=1

(
yi − m̂(ti)

)2
n∑
i=1
(yi − ȳ)2

(22)

where ȳ = 1
n

n∑
i=1

yi. Therefore, the larger R2, the better is the

model’s performance.
The third criterion which is used to evaluate the fitting

performance of SRGMs is adjusted R2 (Adjusted R2), which
can be expressed as follows:

AdjustedR2 = 1−
(1− R)(n− 1)
n− P− 1

(23)

where R denotes the value of R2 and P represents the num-
ber of predictors in the fitted model. Therefore, the larger
Adjusted R2, the better is the model’s goodness-of-fit.
The fourth criterion which is used to evaluate the per-

formance of SRGMs is the predictive power (PP), which
measures the distance of the estimation given by the model

from the actual data against the actual data and defined as
follows:

PP =
n∑
i=1

(
m̂(ti)− yi

yi

)2

(24)

Therefore, the less the value of PP, the better the model fits.
The fifth criterion is AIC, which measures the ability of

a model to maximize the likelihood function that is directly
related to the degrees of freedom during fitting and defined
as follows:

AIC = −2 logL + 2N (25)

where L is the maximum value of likelihood function, N
represents the number of parameters used in the model.

The AIC criterion also takes the degrees of freedom into
consideration by assigning a model with more parameters
a larger penalty. So the AIC criterion is regarded as a fair
criterion when comparing models with more parameters or
few parameters. Thus, the lower value of AIC indicates better
goodness-of-fit.

Then we use MSE criterion to examine the prediction per-
formance of SRGMs. But here MSE criterion for prediction
has the following definition:

MSEprediction =
1

n− m+ 1− N

n∑
i=m

(yi − m̂(ti))2 (26)

Assume that by the end of testing time tn, totally yn faults
have been detected. Firstly we use the data points up to time
tm−1(tm−1 < tn) to estimate the parameters of m(t), then
substituting the estimated parameters into the mean value
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FIGURE 4. A three-dimension plot (X,Y,Z) represents (MSE, PP, AIC) values
for DS-1.

FIGURE 5. A three-dimension plot (X,Y,Z) represents (PP, R2, Adjusted R2)
values for DS-1.

function yields the prediction value of the cumulative fault
number m̂(ti) (i = m + 1,m + 2, . . . , n). N also refers to
the number of parameters used in the model. Thus, the lower
value ofMSEprediction indicates better predictive power.

IV. NUMERICAL EXAMPLES OF COMPARISON OF
MODELS’ FITTING POWER
To validate the robustness of the proposed model, we evaluate
the fitting power of the proposed model and several exist-
ing NHPP models on two different data sets, one is from

FIGURE 6. Fault detection rate function h(t) for DS-2.

FIGURE 7. Probability density function g(η) for DS-2.

historical fault data set, the other is from real-world reliability
data set collected from real operation.

A. DATA FROM WEBERP SYSTEM
The first historical fault data set is from a web-based inte-
grated accounting ERP system (WebERP) from August 2003
to July 2008 (Data Set 1, DS-1) [54]. This data set is one
widely used data set in lots of papers, such as [55], [56]. The
details are recorded in Table II and the time unit is month.
There are totally 146 faults observed within 60 months.
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FIGURE 8. The fitting results of comparison SRGMs compared with actual data for DS-2.

For the fitting power comparison, all data points are used to fit
the models and estimate the models’ parameters. Column III
in Table III lists the parameters estimated by LSE method,
and MSE values, R2 values, Adjusted R2 values, PP values
and AIC values based on the parameters estimated by LSE
are shown from Column IV to Column VIII in Table III,
respectively.

From Table III, it can be seen that in the context of LSE
method the proposed model gives the following value:
• AIC = 319.9958, which is the smallest value among all
models’ values. Others’ AIC values are all bigger than it,
e.g. Yamada imperfect 1 model’s AIC is 342.0316 and
1.07 times larger than the value of the proposed model,
even Chang et al’s model’s AIC value is 7.1769e+03 and
22.43 times larger than the value of the proposed model.

• MSE = 27.8704, which is the smallest value com-
pared to all models’ MSE values and also significantly
smaller than the values of other models. Others’ can be
2.08 times (Yamada imperfect 1 model’s 58.0526), even
8.28 times (HD/G-O model’s 230.8772) larger than the
value of the proposed model.

• R2 = 0.9789, which is the largest value among all
models’.

• Adjusted R2 = 0.9769, which is the largest value among
all models’.

• PP = 1.6281, which is the lowest value among all
models’.

This is encouraging that it indicates that though the pro-
posedmodel is more complicatedwith 6 parameters, but it has
all the best values in terms of the five criteria in the context
of LSE method. The excellent performance to describe the

debugging process of the proposed model can compensate its
complexity.
The fault-detection rate function h(t) and the pdf g(η)

for DS-1 of the proposed model are graphically illustrated
in Fig.1 and Fig.2. The fitting comparison of all models for
DS-1 is shown in Fig.3. The coordinates X , Y and Z in
Fig.4 represent the MSE, PP and AIC values of all models for
DS-1, respectively. The coordinates X , Y and Z in Fig.5 rep-
resent the PP, R2 and Adjusted R2 values of all models for
DS-1, respectively.

B. DATA FROM A MILITARY DIGITAL CONTROL SYSTEM
To validate the effectiveness of the proposed model in the
actual usage, we use one real-world reliability data set (Data
Set 2, DS-2) reported by [57]. This data set was collected
from a military control system by system testing and testing
on board. Table IV presents the details of the failure data
and the time unit is day. There are totally 367 faults detected
within 73 days. For the descriptive power comparison, all data
points are used to fit the models and estimate the parameters.
Here the model parameters are estimated by LSE method and
shown in the third column of Table V. The MSE values, R2

values, Adjusted R2 values, PP values and AIC values are
listed from Column IV to Column VIII in Table V, respec-
tively. From Table V, it can be seen that for the proposed
model:

• MSE = 33.7612 is the smallest value, which is signifi-
cantly smaller than othermodels’ values from 39.3768 to
729.7059, which means other models’ values are from
1.17 to 22.61 times bigger than the value of the proposed
model.
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FIGURE 9. A three-dimension plot (X,Y,Z) represents (MSE, PP, AIC) values
for DS-2.

FIGURE 10. A three-dimension plot (X,Y,Z) represents (PP, R2, Adjusted
R2) values for DS-2.

• Similarly, R2 = 0.9974 is the largest value.
• Adjusted R2 = 0.9972 is the largest value.
• PP = 1.5925 is the smallest value.
• AIC = 340.3372, which is the smallest value among all
models’ values.

Thus the proposedmodel has the best fitting results with all
best criteria values and is the best model among all models.

The fault-detection rate function h(t) and the pdf g(η) for
DS-2 of the proposed model is graphically illustrated in Fig.6
and Fig.7, respectively. The fitting comparison of all models
for DS-2 is shown in Fig.8. The coordinates X , Y and Z
in Fig.9 illustrate the values ofMSE, PP and AIC respectively
and the coordinates X , Y and Z in Fig.10 represent the PP,
R2 and Adjusted R2 values of all models for DS-2. From all
figures, we can also observe that the new model shows the
best fitting power on the real data set than all other models.

V. NUMERICAL EXAMPLES OF COMPARISON OF
MODELS’ PREDICTING POWER
In order to validate the performance of the proposed model’s
predictive power and due to space limited, we only take DS-1
for example. We predict the cumulative of faults from Month
51 to Month 60 for each model, and compare the results of
the proposed model with G-O model, Vtub model and Teng
& Pham model. The proposed model presents the smallest
values of MSE(171.1531), AIC(280.1920) and PP(0.0517)
in Table VI, which are far less than other models’ values.
Thus, we conclude clearly that the proposed model provides
the best prediction power.

VI. CONCLUSIONS
In this paper, we propose a generalized software reliabil-
ity model considering the uncertainty of field environments
based on NHPP. Based on the general framework, sev-
eral existing models are analyzed to be special cases of
the generalized model and a new model is proposed with
a three-parameter S-shaped fault-detection rate and a ran-
dom environmental factor following the Weibull distribu-
tion. Comparisons of this model with several existing NHPP
SRGMs have also been presented based on two real failure
data sets. Six criteria have been used to compare the models
in the context of LSE method. The results conclude that the
proposed model can give a significantly improved goodness-
of-fit and predictive power. Therefore, the results from the
presented model are encouraging.

The limitations for the proposed model are analyzed as
follows:
1. In our numerical experiments, quantity and type of the

fault data sets seem to be limited. To be well-known, more
data sets with more kinds may give much more effective
validation for the model’s ability. So we hope to apply
this proposed model into more available failure data sets
to evaluate the effectiveness of performance in a future
research paper.

2. To simplify the model’s mathematical calculation,
the presented model assumes the environmental factor
to be a one-dimensional random variant. But in prac-
tice, the environmental factor may be more compli-
cated because it is affected by so many uncertain factors
involved in the field environments. Thus it may take some
kinds of complicated function forms, e.g., multidimen-
sional random variant. Thus, more forms of the environ-
mental factor should be studied in the future research.
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APPENDIX
A. PROOF OF THE PROPOSED GENERALIZED MODEL
THAT CONSIDERS THE UNCERTAINTY OF OPERATING
ENVIRONMENTS WITH (7)
Given t0 = 0, m(t0) = m(0) = 0, then (6) can be simplified
as follows:

m(t) =

+∞∫
0

e−xH (t)(

t∫
0

xa(τ )h(τ )exH (τ )dτ )g(x)dx (A.1)

Therefore, according to (A.1) we can derive

m(t) =

+∞∫
0

e−xH (t)

 t∫
0

xa(τ )h(τ )exH (τ )dτ

 g(x)dx

=

+∞∫
0

e−xH (t)

 t∫
0

a(τ )dexH (τ )

 g(x)dx

=

+∞∫
0

e−xH (t)

a(τ )exH (τ )
|
t
0 −

t∫
0

exH (τ )da(τ )

 g(x)dx

= a(t)

+∞∫
0

f (x)dx − a(0)

+∞∫
0

e−xH (t)g(x)dx

−

+∞∫
0

e−xH (t)

 t∫
0

exH (τ )a′(τ )dτ

 g(x)dx

= a(t)− a(0)F (∗)(H (t))

−

t∫
0

a′(τ )

 +∞∫
0

e−xH (t)exH (τ )g(x)dx

 dτ (A.2)

where F (∗)(H (t)) is the Laplace transform of the probability
density function g(x).

Then exH (τ ) is in accordance with the Taylor formula
expansion. Thus,

exH (τ )
= 1+

(xH (τ ))1

1!
+ · · · +

(xH (τ ))n

n!
=

+∞∑
n=0

xnHn(τ )
n!

(A.3)

By substituting (A.3) into (A.2), we can obtain the follow-
ing equation:

m(t) = a(t)− a(0)F (∗)(H (t))

−

t∫
0

a′(τ )

 +∞∫
0

(
+∞∑
n=0

xnHn(τ )
n!

)
e−xH (t)g(x)dx

 dτ

= a(t)− a(0)F (∗)(H (t))

−

t∫
0

a′(τ )
+∞∑
n=0

Hn(τ )
n!

 +∞∫
0

xne−xH (t)g(x)dx

 dτ

= a(t)− a(0)F (∗)(H (t))

−

t∫
0

a′(τ )
+∞∑
n=0

Hn(τ )
n!

(−1)nF (n)(∗)(H (t))dτ (A.4)

where F (n)(∗)(H (t)) is the nth order differential of the Laplace
transform of g(x).

Thus, according to (A.4), we can derive

m(t) = a(t)− a(0)F (∗)(H (t))

−

t∫
0

a′(τ )
+∞∑
n=0

Hn(τ )
n!

(−1)nF (n)(∗)(H (t))dτ

= a(t)− a(0)F (∗)(H (t))

−

+∞∑
n=0

(−1)n

n!
F (n)(∗)(H (t))

t∫
0

a′(τ )Hn(τ )dτ

= a(t)− a(0)F (∗)(H (t))

−

+∞∑
n=0

(−1)n

n!
F (n)(∗)(H (t))

t∫
0

Hn(τ )da(τ )

= a(t)− a(0)F (∗)(H (t))

−

+∞∑
n=0

(−1)n

n!
F (n)(∗)(H (t))[Hn(τ )a(τ )|t0

−

t∫
0

a(τ )nHn−1(τ )h(τ )dτ ]

= a(t)− a(0)F (∗)(H (t))

−

+∞∑
n=0

(−1)n

n!
F (n)(∗)(H (t))[a(t)Hn(t)

− n

t∫
0

a(τ )h(τ )Hn−1(τ )dτ ] (A.5)

This is just (7).

B. PROOF OF THE PROPOSED MODEL WITH (17)

Given a(t) = N , h(t) = c
1+ae−bt , g(x) =

k
λ

( x
λ

)k−1 e−( xλ )k
(k, λ > 0; x ≥ 0), so

H (t) =

t∫
0

c
1+ ae−bu

du =
c
b
ln
(
a+ ebt

1+ a

)
(B.1)

Substituting all above assumptions into (7), we can have

m(t) = N − NF (∗)(H (t))

−N
+∞∑
n=0

(−1)n

n!
F (n)(∗)(H (t))

×

Hn(t)− n

t∫
0

h(τ )Hn−1(τ )dτ


VOLUME 7, 2019 84265



Q. Li, H. Pham: Generalized SRGM With Consideration of the Uncertainty of Operating Environments

= N − NF (∗)(H (t))

−N
+∞∑
n=0

(−1)n

n!
F (n)(∗)(H (t))

Hn(t)−

t∫
0

dHn(τ )


= N

(
1− F (∗) (H (t))

)
(B.2)

where F (∗)(H (t)) is the Laplace transform of the Weibull pdf.
According to the definition of Laplace transform,

F (∗)(P) =
+∞∫
0
g(x)e−Pxdx, so for the Weibull distribution,

we have

F (∗)(P) =

+∞∫
0

k
λ

( x
λ

)k−1
e−(

x
λ )

k
e−Pxdx (B.3)

Then e−Px is in accordance with the Taylor formula expan-
sion. Thus,

e−Px = 1− Px + · · · + (−1)n
(Px)n

n!
=

+∞∑
n=0

(−1)nPnxn

n!

(B.4)

By substituting (B.4) into (B.3), we can obtain

F (∗)(P) =

+∞∫
0

k
λ

( x
λ

)k−1
e−(

x
λ )

k

(
+∞∑
n=0

(−1)nPnxn

n!

)
dx

=

+∞∑
n=0

(−1)n (Pnλnk)
n!

+∞∫
0

( x
λ

)k−1+n
e−(

x
λ )

k
d
( x
λ

)
(B.5)

According to the following formula
+∞∫
0
y
mn−2

2 e−ρy
n
dy =

1

|n|ρ
m
2
0
(m
2

)
, let mn−22 = k − 1+ n, ρyn =

( x
λ

)k , from (B.5),

we can obtain

F (∗)(P) =
+∞∑
n=0

(−1)n (Pnλnk)
n!

·
0
( k+n

k

)
|k|

=

+∞∑
n=0

(−1)nλn

n!
0

(
k + n
k

)
Pn. (B.6)

Substituting (B.6) and (B.1) into (B.2), we can have

m(t) = N
(
1− F (∗) (H (t))

)
= N

(
1−
+∞∑
n=0

(−1)nλn

n!
0

(
k+n
k

)(
c
b
ln
(
a+ ebt

1+ a

))n)
(B.7)

This is just (17).
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