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ABSTRACT Data clustering is a well-known data analysis technique for organizing unlabeled datapoints
into clusters on the basis of similarity measures. The real-world applications of data clustering include bioin-
formatics, vector quantization, data mining, geographical information systems, pattern recognition, image
processing, and wireless sensors. The data in a cluster are similar (minimizing the intra-cluster distance) and
differ from the data in other clusters (maximizing the inter-cluster distance). The cluster problem has been
proven to be NP-hard, but can be solved using meta-heuristic algorithms, such as ant colony optimization,
genetic algorithms, gravitational search algorithm (GSA), and particle swarm optimization (PSO). This paper
proposes a memetic clustering algorithm with efficient search and fast convergence, respectively, based
on PSO and GSA, called the memetic particle gravitation optimization (MPGO) algorithm. The two main
mechanisms of MPGO are hybrid operation and diversity enhancement. The former involves the exchange
of individuals from two subpopulations after a predefined number of function evaluations (FEs), whereas the
latter involves an enhancement operator, which is similar to the crossover process of differential evolution,
for enhancing the diversity of each system. Individuals from the PSO and GSA systems are selected for the
exchange of solutions by using the roulette-wheel approach. The performance of the proposed algorithmwas
evaluated on 52 benchmark test functions, six UCI machine learning benchmarks, and image segmentation
of six well-known images. A comparison with existing algorithms verified the superior performance of the
proposed algorithm in terms of a fitness value, an accuracy rate, and a peak signal-to-noise ratio.

INDEX TERMS Data clustering, gravitational search algorithm, image segmentation, memetic algorithm,
particle swarm optimization.

I. INTRODUCTION
Data clustering has been attracting increasing attention in the
field of data analysis. Typically, data clustering is used to
organize data into relevant clusters on the basis of similarity
criteria for identifying groupings that minimize intra-cluster
distances and maximize inter-cluster distances. Each cluster
comprises data that are similar and differ from data in other
clusters, and the clustering problem has been proven to be an
NP-hard problem [1], [2].

Clustering algorithms can be classified into two main
types: hierarchical and partitional [3]. Hierarchical clusters
can be presented as a dendrogram in which the input data
are organized in a tree structure according to the agglom-
erative mode or divisive mode in a greedy manner [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

A typical hierarchical algorithm comprises the following
steps: (1) assigning of each datapoint to a separate cluster
and (2) joining of the two most similar clusters until all the
datapoints can be contained in a single cluster. Hierarchi-
cal clusters are employed in microarray informatics [5], [6]
and signal processing [7], [8]. In contrast, partitional clus-
ters are assigned according to the similarity between the
data and each cluster centroid. The partitional approach
has been one of the most important and complex research
domains in data clustering since the proposal of the k-means
algorithm [9]. The k-means algorithm involves the follow-
ing steps: (1) determination of the initial K cluster centers
with randomization, (2) assignment of each datapoint to the
nearest cluster center, and (3) updating of the new cluster
center. The algorithm repeats steps 2 and 3 until all the cluster
centers stabilize. In recent years, the partitional approach has
attracted considerable research attention [10]–[13].
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Meta-heuristic algorithms have recently been extensively
developed to solve large-scale NP-hard combinatorial opti-
mization problems [14], [15]. Many of them are inspired by
natural, physical, and biomedical phenomena, including the
artificial bee colony (ABC) algorithm [16], bat algorithm
(BA) [17], butterfly optimization algorithm (BOA) [18],
crow search algorithm (CSA) [19], cuckoo search algorithm
(CA) [20], differential evolution (DE) [21], elephant algo-
rithm (EA) [22], farmland fertility algorithm (FFA) [23], fire-
fly algorithm (FA) [24], grasshopper optimization algorithm
(GOA) [25], gray wolf optimizer (GWO) [26], gravitational
search algorithm (GSA) [27], lion optimization algorithm
(LOA) [28], lightning search algorithm (LSA) [29], mon-
key algorithm (MA) [30], moth search (MS) [31], moth
swarm algorithm (MSA) [32], particle swarm optimiza-
tion (PSO) [33], sine cosine algorithm (SCA) [34], symbi-
otic organisms search (SOS) [35], shark smell optimization
(SSO) [36], and whale optimization algorithm (WOA) [37].

In addition, meta-heuristic algorithms have attracted con-
siderable research attention for use in partitional clustering
models. These include ant colony optimization (ACO) [38],
artificial bee colony algorithm (ABC) [39]–[41], bat algo-
rithm (BA) [42], black hole (BH) [43], differential evolu-
tion (DE) [44], [45], elephant algorithm (EA) [46], firefly
algorithm (FA) [47], [48], genetic algorithm (GA) [49], [50],
k-means based genetic algorithm (GKA) [51], [52], gravi-
tational search algorithm (GSA) [53], [54], gray wolf opti-
mizer (GWO) [55], lion optimization algorithm (LOA) [56],
monkey algorithm (MA) [57], moth swarm algorithm
(MSA) [58], particle swarm optimization (PSO) [59], [60],
simulated annealing (SA) [61], [62], symbiotic organism
search (SOS) [63], and whale optimization algorithm
(WOA) [64]. The clustering approach has been adopted in
various research fields, such as bioinformatics [65]–[67],
vector quantization [68]–[71], data mining [72]–[74], geo-
graphical information systems [75], [76], pattern recognition
[77]–[79], and sensor applications [80]–[82]. Image seg-
mentation is a well-known application of clustering in the
field of computer vision [83]–[87], and it is an important
research area in image processing. The objective of image
segmentation is to partition pixels into several regions accord-
ing their characteristics; all the pixels in a divided region
are similar to each other but differ from those in other
regions.

PSO is a well-known swarm-based intelligence algorithm
that has the advantage of rapid convergence. However, this
rapid convergence makes it susceptible to the critical issue
of premature convergence during the evolutionary procedure
when solving complex problems. In addition, the result of
PSO is strongly dependent on inertial weight and social and
cognitive coefficients. Consequently, the diversity of a pop-
ulation often decreases rapidly when approaching a global
or local optimum, and in such cases, there is no efficient
operator that can finetune the search space for PSO and
improve the quality of its solution. GSA, a newmeta-heuristic
method based on the Newtonian laws of gravity and motion,

has recently been proposed. Owing to the use of masses,
GSA has a relatively high computing efficiency. Furthermore,
previously published experimental studies have shown that
GSA adopts an efficient search strategy for solving complex
problems that enables it to achieve better performance than
PSO [27]. However, when the population is in a convergence
state, GSA exhibits poor performance and loses the ability to
explore better solutions [88].

This study was conducted with the primary objective
of developing a PSO and GSA hybrid that improves their
individual search abilities, retains their advantages, and over-
comes their disadvantages. To this end, this paper pro-
poses a memetic clustering algorithm with the advantages
of fast convergence based on PSO and efficient search
based on GSA called the memetic particle gravitation opti-
mization (MPGO) algorithm. The two main mechanisms of
MPGO are hybrid operation and diversity enhancement. The
former involves the exchange of individuals from two sub-
populations after a predefined number of iterations, whereas
the latter involves an enhancement operator, which is similar
to the crossover process of DE, for enhancing the diversity of
each system. Individuals from the PSO and GSA systems are
selected for the exchange of solutions via the roulette-wheel
approach [89].

The procedure employed by MPGO is as follows. First,
the solution of each system is initialized randomly. Second,
center particle swarm optimization (CPSO) [90] is adopted to
obtain the center particle and center agent. Third, the PSO and
GSA systems are executed simultaneously. Fourth, a global
update hybridizes the PSO and GSA systems to enhance
their exploitation and exploration abilities in order to obtain a
better solution. Fifth, the diversity of the systems is enhanced
using the crossover process of the DE algorithm [91]. Finally,
specific individuals from the PSO and GSA systems are
selected for exchange via roulette-wheel selection [89] after
a predefined number of function evaluations (FEs). The per-
formance of the proposed algorithm was compared with that
of existing meta-heuristic algorithms on 52 benchmark test
functions, six UCI machine learning benchmarks, and image
segmentation of six well-known images. The results verified
the superior performance of the proposed algorithm in terms
of fitness value, accuracy rate, and peak signal-to-noise ratio
(PSNR).

The remainder of this paper is organized as follows.
Section II reviews background and related studies. Section III
presents the problem definition of clustering. Section IV
describes the proposedMPGOalgorithm. SectionV evaluates
the performance of the proposed algorithm for data clustering
and image segmentation. Finally, Section VI states the con-
clusions and briefly explores future research directions.

II. BACKGROUND KNOWLEDGE AND RELATED WORK
This section reviews relevant background and related studies,
focusing on particle swarm optimization (PSO), gravitational
search algorithm (GSA), and Center PSO (CPSO).
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A. PARTICLE SWARM OPTIMIZATION
PSO is a stochastic swarm-based intelligence algorithm is
inspired by the collective behavior of schools of fish or flocks
of birds [33], [92]. It is inspired by the collective behavior of
schools of fish or flocks of birds. In the PSO, the positions and
velocities of N particles in d-dimensional space represent the
potential solutions based on a randomly initialized. In PSO,
the positions and velocities of N particles are represented in
d-dimensional space to offer randomly initialized potential
solutions. The solution for particle i in iteration t is given by
Eq. (1). The current solution for each particle is updated with
regard to the local and global optima, which are computed
using Eqs. (2), and (3) respectively. Given N particles for
which the positions are represented as potential solutions,
the solution particle i in iteration t can be defined as follows:

X ti = {x
t
i,1, x

t
i,j, . . . , x

t
i,d } i = 1, 2 . . . ,N . (1)

vt+1i,j = ωv
t
i,j + c1r1(p

t
i,j − x

t
i,j)+ c2r2(pgbest

t
j − x

t
i,j) (2)

x t+1i,j = x ti,j + v
t+1
i,j (3)

where x ti,j and v
t
i,j denote the position and velocity, respec-

tively, of particle i in dimension j, and ω is an inertial weight
that influences the convergence speed. The local optimum pti
and global optimum ptgbest represent the current best position
and best position in the swarm among all the particles at
time t , respectively. The small constants c1 and c2 represent
the cognitive parameter and social parameter, respectively,
and r1 and r2 are random variables in the interval [0, 1].

B. GRAVITATIONAL SEARCH ALGORITHM
GSA is a population-based intelligence approach inspired by
the laws of gravity and mass interactions [27]. In the GSA
system, the mass aggregates are described as agents that
achieve mutual interaction through Newtonian gravity and
the laws of motion. First, each agent is randomly generated
with a solution (called the position and velocity) by GSA. The
algorithm computes the fitness values and updates the posi-
tion and velocity of each agent among the current population.
Then, the position of agent i in iteration t , which indicates a
potential solution for N agents, is defined by Eq. (4):

X ti = {x
t
i,1, x

t
i,2, x

t
i,j, . . . , x

t
i,d } i = 1, 2, 3 . . . ,N . (4)

where x ti,j is the potential solution or position of agent i in
dimension j, and d is the number of dimensions of the solution
space.

The fitness can be evaluated in several steps, as expressed
by Eqs. (5) to (10). First, the gravitation coefficient Gt in
iteration t is calculated as follows:

Gt = Go × exp(−β
t

tmax
) (5)

where β is the shrinking constant.
Next, the best and worst agents (denoted as best t and

worst t , respectively) are obtained using equations:

mti =
fit ti − worst

t

best t − worst t
(6)

M t
i =

mti∑N
c=1m

t
c

(7)

where fit ti represents the fitness value of agent i at time t . The
masses and overall average mass are computed using Eqs. (6)
and (7), respectively.

The total force acting on agent i from other agents is
weighted randomly and calculated using Eqs. (8) and (9),
respectively.

F ti,j =
∑

kb∈Kbest,kb6=j

randj ×
Mpit ∗Mact

Rti,kb + ε
(x tc,j − x

t
i,j) (8)

Mpi = Mac = Mii = Mi i = 1, 2, 3 . . . ,N . (9)

where ε is a constant to avoid the division by zero exception,
randj is a random variable in the interval[0, 1], and Rti,kb is
the Euclidean distance between agent i and kb.

Finally, the acceleration in this iteration ati,j is computed
using Eqs. (10) and (11):

ati,j =
F ti,j
M t
i

(10)

ati,j =
∑

c∈Kbest,c6=j

randj × Gt
Mct

Rti,c + eps
(x tc,j − x

t
i,j) (11)

The fittest agent Kbest is the agent with the greatest mass
among the top K agents. K is initialized to the number of
agents N and decreases over time. Further, K will be updated
in each iteration according to Eq. (12), as follows [93]:

K = b(γ + (1−
t

tmax
))(1− γ )Nc (12)

where γ imposes a controlled linear decrease on K . In the
next iteration, the solution space of each agent is updated
using Eqs. (13) and (14):

vt+1i,j = randj × vti,j + a
t
i,j (13)

x t+1i,j = x ti,j + v
t+1
i,j (14)

C. CENTRALIZED APPROACH
CPSO is an improved PSO approach involving a population
of N particles, with their positions representing potential
solutions [90]. After the positions of NâĹ′1 particles have
been updated, a central individual ci is added to the popu-
lation, as defined by Eq. (15):

x t+1ci,j =

∑N−1
i=1 x ti,j
N − 1

for j = 1, 2 . . . , d . (15)

where x t+1ci,j is the position of the center particle in dimension j
in iteration t + 1.

III. PROBLEM DEFINITION
Clustering is an unsupervised learning process in which
data are classified into groups, where each cluster comprises
similar data that differ from the data in other clusters. For
a set of n patterns (datapoints ) and k clusters, let τ =
{τ1, τ2, τ3, ..., τn}, where τi,j denotes the j-th dimension of
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the i-th pattern. Each pattern exists in d-dimensional space.
The partitional clustering algorithm creates a partition of
C = {C1,C2,C3, ...,Ck} clusters such that similar patterns
are partitioned into the same cluster. The partition process is
defined by Eq. (16) [1], [94]:

Ci 6= φ ∀i ∈ {1, 2, 3, ..., k}. (16a)

Ci ∩ Cj = φ ∀i 6= j, i, j ∈ {1, 2, 3, ..., k}. (16b)

∪
k
i=1Ci = τ (16c)

A. OBJECTIVE FUNCTION
The Euclidean distance between two patterns i and j can be
calculated using Eq. (17):

d(τi, τj) =

√√√√√ d∑
f=1

(τi,f − τj,f )2 (17)

To find the optimal grouping, in this study, we combine
the inter-cluster distance, intra-cluster distance, and mean
squared error (MSE) as a multi-objective problem that must
be minimized. The three parts of the fitness function are
expressed as follows in Eq. (18) [95], [96]:

f (C,Z ) = ω1dmax(Z ,C)+ ω2(zmax − dmin(C))+ ω3MSE

(18)

where Z represents all the patterns; dmax(Z ,C) is the max-
imum average Euclidean distance within each cluster; zmax
is the maximum pattern value among all the patterns; dmin(C)
is the minimum Euclidean distance between any two clusters;
ω1, ω2, and ω3 are constants; and MSE represents the com-
pactness of the clusters. MSE is defined as the mean squared
error of the distance of the patterns from the centroid of the
cluster to which they belong as follows in Eq (19):

MSE =

∑k
j=1

∑
τp∈Cj (τp − mj)

2

N
(19)

where τp represents the p − th pattern and mj is the j − th
centroid of cluster Cj. In this study, ω1, ω2, and ω3 were set
as 0.3, 0.3, and 0.4, respectively.

IV. PROPOSED ALGORITHM
Partitional clustering is an NP-hard problem that involves
dividing n patterns into k clusters on the basis of a predefined
similarity measure. Thus, a meta-heuristic algorithm is suit-
able for solving this type of problem. The proposed MPGO
algorithm combines PSO and GSA with a hybrid operator
and enhancement operator to determine the best partition for
dividing each pattern with a suitable clustering center.

A. SOLUTION REPRESENTATION
To use a meta-heuristic algorithm for solving the clustering
problem, all the individuals need to be encoded into the
appropriate solution as cluster centers. As both PSO and
GSA are population-based algorithms that were originally
proposed to solve continuous problems, we can easily encode

FIGURE 1. Example of solution encoding with two clusters and three
dimensions.

the cluster center of each particle and agent. First, each parti-
cle or agent, including the position and velocity, is generated
randomly. Each solution for the individual consists of a vector
whose size is equal to the number of dimensionsmultiplied by
k, the number of cluster centroids. Figure 1 shows an example
for two cluster centroids, where each cluster center has three
dimensions of data. In this example, we assume three particles
and three agents in each system. From the encoding form of
Particle 1, we can easily determine that the solution should
be encoded as (1.2, 2.3, 4.5) and (6.5, 2.6, 1.8), respectively.
From the encoding form of Agent 1, the solution should be
encoded as (5.1, 0.3, 2.7) and (1.5, 4.7, 2.3), respectively.

B. INDIVIDUAL VELOCITY
Each individual (particle or agent) searches for and updates
each solution according to Eqs. (2) and (13). In this study,
the oscillations in the PSO and GSA systems are controlled
by a time-varying maximum velocity Vmax . The velocity
thresholds [97] are expressed as follows in Eqs. (20) and (21):

Vmax = (1− (
t

tmax
)h)× Vmax0 (20)

Vmax0 = α × (xmax − xmin) (21)

where the exponent h is a constant; α is used to control the
maximum bounds of the search space, and xmin and xmax
are the position thresholds set as 0.0 and 4.0, respectively,
in this study. For example, if Vmax is calculated as 6.0 and the
velocity of Particle 1 is calculated as (1.0, 2.0, 3.0, 4.0, 5.0,
7.0), then according to the Vmax value, the new velocity of
Particle 1 will be (1.0, 2.0, 3.0, 4.0, 5.0, 6.0).

C. GLOBAL UPDATE
This section presents the hybridization method, i.e., the
global update, of PSO and GSA. Each particle and agent in
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FIGURE 2. Example of the of global update process.

FIGURE 3. Example of the diversity enhancement operator.

the global update process, given by Eqs. (22) and (23), are
integrated into the MPGO individual by combining the PSO
velocity and GSA acceleration with social coefficients c3 and
c4:

vt+1i,j (MPGO) = c3randi(v
t+1
i,j )pso + c4(1− randi)(v

t+1
i,j )GSA

(22)

x t+1i,j (MPGO) = x ti,j(MPGO)+ (vt+1i,j )(MPGO) (23)

where c3 and c4 denote the cognitive parameter and social
parameter, respectively, and randi is a random number in the
range [0,1].

Figure 2 shows an example of the global update process.
In this example, we assume that the velocities of Particle 1 and
Agent 1 are (1.0, 2.0, 3.0, 4.0, 5.0, 6.0) and (6.0, 5.0, 4.0, 3.0,
2.0, 1.0), respectively. According to Eq. (22), in step (a) we
can obtain the new velocity of individual 1 of MPGO as (3.5,
3.5, 3.5, 3.5, 3.5, 3.5). In addition, we assume the original
position of individual 1 of MPGO as (1.2, -2.0, 2.5, 4.2, -0.5,
1.1). According to Eq. (23), in step (b), we can obtain the
new position of individual 1 of MPGO as (4.7, 1.5, 6.0, 6.1,
3.0, 4.6).

D. DIVERSITY ENHANCEMENT OPERATOR
Owing to its the fast convergence, the PSO algorithm may
suffer from the critical issue of premature convergence during
the evolutionary procedure when solving complex problems.
Furthermore, when the population is in a convergence state,

GSA exhibits poor performance and loses the ability to
explore better solutions. Therefore, in this paper, we propose
a diversity enhancement operator, which is similar to the
crossover process of the DE algorithm [91], to enhance the
diversity of each system. The main idea of the diversity
enhancement operator is to replace the current solution by
the previous one. For example, if the original particle (agent)
is x ti and the new trial particle (agent) is x t+1i , the diver-
sity enhancement operator will arrange the new trial parti-
cle (agent) in each dimension as follows in Eq. (24):

x t+1i,j =

{
x ti,j : if f (x ti,j) < f (x t+1i,j )

x t+1i,j : otherwise
(24)

An example of the enhancement operator is shown in
Figure 3. The figure shows two scenarios. In iteration t ,
assuming that the fitness value of individual i is 38.24, after
the evolution in iteration t + 1, the fitness value is changed
to 50.75. As the original individual is better than the trial
one, the new trial solution will be replaced by the original
one. On the other hand, assuming that the fitness value of
individual i is 50.75, the new trial solution in the next iteration
t + 1 is 38.24. According to the rule, the new trail solution is
retained because it is better.

E. HYBRID OPERATOR
The diversity enhancement operator can improve the individ-
ual diversification of the PSO and GSA systems, but it cannot
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FIGURE 4. Example of the hybrid operator.

improve the overall diversity because the PSO and GSA
systems easily fall into local optima when they are running
independently. The main idea of the hybrid operator is to
trigger the diversity of all the individuals of PSO and GSA.
If we can exchange some individuals between the systems in
a suitable period, the quality of the solution may be improved
considerably. Thus, the hybrid operator is triggered after a
specified number of function evaluations (FEs). At this point,
certain individuals are selected and exchanged between the
two systems via roulette-wheel selection [89], with probabil-
ities that depend on their fitness values.

The roulette-wheel approach is expressed as follows in
Eq. (25):

pni =
fiti∑N
i=1 fiti

(25)

where pni represents the probability that each individual will
be selected, and fiti is the fitness value of particle/agent i.
An example of the hybrid operator is shown in Figure 4.

In the PSO system, the random number is 0.45, which is
located in region P2. In the GSA system, the random num-
ber is 0.83, which is located in region A5. Thus, in the
hybrid operator, particle P2 and agent A5 will be selected for
exchange between the two systems.

F. SUMMARY OF MPGO ALGORITHM
Figure 5 shows the procedure of the proposed MPGO algo-
rithm. In the initial step, each particle (agent) is generated
randomly. Second, CPSO is implemented to determine the
center particle and agent. Third, the MPGO algorithm simul-
taneously executes the PSO algorithm and GSA along with
the diversity enhancement operator. Fourth, a global update
is performed by combining the PSO and GSA individuals
to generate the new MPGO individual. Finally, the hybrid
operator is triggered when a predefined maximum number
of FEs is reached, and some individuals of the PSO and GSA
systems will be exchanged via the roulette-wheel approach.

V. EXPERIMENTAL RESULTS
A. ENVIRONMENT SETTING
All the simulations were performed on a computer with
an Intel Xeon E3-1225 (3.30 GHz) CPU and 16 GB main

memory, running Windows 7 as the OS. All the programs
were implemented in Python.

B. BENCHMARK FUNCTIONS
To evaluate the performance of the MPGO algorithm,
we employed 30 simply test functions in our experi-
ments. All the 30 simply benchmarks are summarized
in Table 1 [98]–[100]. Here, the constant d denotes the num-
ber of dimensions of the function.

C. PARAMETER SETTINGS
The basic parameter settings of each algorithm are listed
in Table 2. The parameters of the PSO and GSA systems are
listed in the second and third rows, respectively, and the fourth
row lists the parameters used in the global update (hybridiza-
tion of the PSO and GSA systems). All the experimental
results were collected from 20 independent runs.

According to the convergence curve for the selected test
function f2 shown in Figure 6, it is difficult for the function
to find the optimal solution. Thus, in accordance with [101],
we replaced the maximum number of iterations with maxi-
mum number of FEs for each experiment on the test function
benchmarks. The performance of MPGO was compared
with that of PSO [102], GSA [27], lightning search algo-
rithm (LSA) [29], moth search (MS) [31], butterfly opti-
mization algorithm (BOA) [18], symbiotic organisms search
(SOS) [35], and moth swarm algorithm (MSA) [32]. The
maximum number of (FEs) for all the benchmark test func-
tions was 50000. The results indicated that for the PSO, BOA,
LSA, and MS, the curve tends to fall gradually (convergence
occurs after 25000 FEs), and for MPGO, the convergence
speed remains in the descending state. On the basis of these
experimental results the number of FEs was consequently set
to 25000.

D. COMPARISON OF MPGO WITH SIMPLY TEST
FUNCTIONS
1) COMPARISON RESULTS
In this section, the performance of MPGO is compared with
that of PSO [102], GSA [27], lightning search algorithm
(LSA) [29], moth search algorithm (MS) [31], butterfly opti-
mization algorithm (BOA) [18], symbiotic organisms search
(SOS) [35], and moth swarm algorithm (MSA) [32] for a
maximum of 25000 function evaluations (FEs) on all the
30 simply benchmark test functions.

Table 3 lists the average best fitness value for each simula-
tion. The mean values in bold font represent the algorithms
that achieve superior performance. The proposed MPGO,
MS and MSA showed the best overall performance. Accord-
ing to the results, MPGO is superior to PSO, GSA, LSA,
BOA, and SOS onmost of the functions, whereas it is inferior
to LSA on functions f13 and f30, and inferior to BOA on
function f28. MPGO is superior to MS, it performs worse
than MS on function f9, but outperforms MS on functions
f18, f26, and f30. In addition, MPGO is better than MSA,
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TABLE 1. Test functions.
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FIGURE 5. Proposed MPGO algorithm.

FIGURE 6. Comparison of convergence curves of MPGO with different meta-heuristic algorithms for function f2
(Rosenbrock).

TABLE 2. Parameter settings for the proposed algorithm.

it performs worse than MSA on functions f13, f26 and f30, but
outperforms MSA on functions f3, f8, f18, and f23. Table 3
shows that the superior performance of MPGO is statistically
significant with PSO, GSA, LSA, MS, BOA, SOS and MSA
for the overall performance evaluation. On the other hand,
the performance of MPGO is degraded on functions f9, f13,
and f30.
Table 4 reports the results of two-sidedWilcoxon rank-sum

tests [103] of MPGO, PSO, GSA, LSA, MS, BOA, SOS, and
MSA at a significance level of α = 0.05 on the basis of

the performance results presented in Table 3. The Wilcoxon
rank-sum test was conducted between MPGO and each com-
pared algorithm on every test function. The sign + indicates
that MPGO is significantly better than the compared algo-
rithm, the sign - indicates that MPGO is significantly worse
than the compared algorithm, and the sign ' indicates that
there is no significant difference between their performances.
The results show that MPGO also dominates PSO, GSA,
LSA, BOA and SOS. In addition, MPGO achieves slightly
better results than the MS and MSA algorithm. In sum-
mary, Table 4 indicates that the superior performance of
MPGO is statistically significant with PSO, GSA, LSA, MS,
BOA, SOS, andMSA for the overall performance evaluation.
On the other hand, the performance of MPGO is degraded on
functions f28, and f30.

E. SCALABILITY OF MPGO WITH TEST FUNCTIONS ON
MEDIAN DIMENSIONS
1) COMPARISON RESULT
In this section, the performances of MPGO is compared with
the that of PSO [102], GSA [27], lightning search algorithm
(LSA) [29], moth search algorithm (MS) [31], butterfly opti-
mization algorithm (BOA) [18], symbiotic organisms search
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TABLE 3. Comparison of MPGO versus various meta-heuristic algorithms.

TABLE 4. Two-tailed Wilcoxon rank-sum test of MPGO versus compared algorithms with 10 dimensions.

(SOS) [35], and moth swarm algorithm (MSA) [32] ffor scal-
ability to 30 and 50 dimensions for a maximum of 25000 FEs
on benchmark functions f1 to f15.
For scalability of the median size to 30 and 50 dimensions,

Table 5 lists the average best fitness value for each simulation.
The proposed MPGO, MS, and MSA showed the best overall
performance. According to the results, MPGO is superior to
PSO, GSA, LSA, BOA, and SOS on most of the functions,
whereas it is inferior to LSA on function f13. MPGO is
superior to MS, it performs worse thanMS on function f9, but
outperforms on functions f13, and f15. In addition, it performs
worse than MSA on functions f13, and f15, it outperforms
MSA on functions f2 and f8. In summary, Table 5 indicates
that the superior performance of MPGO is statistically sig-

nificant with PSO, GSA, LSA, MS, BOA, SOS, andMSA for
the overall performance evaluation, but is weak on functions
f9, f13, and f15.
Table 6 reports the results of two-sidedWilcoxon rank-sum

tests [103] of MPGO, PSO, GSA, LSA, MS, BOA, SOS,
and MSA at α = 0.05 significance level on the basis of
the performance results presented in Table 5. The Wilcoxon
rank-sum test was performed between MPGO and each
compared algorithm on every test function. The results show
that MPGO also dominates PSO, GSA, LSA, BOA, SOS,
and MSA algorithm. In addition, MPGO achieves slightly
better results than MS. In summary, Table 6 indicates that
the superior performance of MPGO is statistically significant
with PSO, GSA, LSA, MS, BOA, SOS, and MSA for the
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TABLE 5. Comparison of MPGO versus various meta-heuristic algorithms with larger dimensions (30, 50).

TABLE 6. Two-tailed Wilcoxon rank-sum test of MPGO versus compared algorithms with 30 and 50 dimensions.

overall performance evaluation, and thatMPGO can be scaled
to higher dimensions (30 and 50).

F. SCALABILITY OF MPGO WITH TEST FUNCTIONS ON
LARGE DIMENSIONS
1) COMPARISON RESULTS
In this section, the performances of MPGO is compared with
the that of PSO [102], GSA [27], lightning search algorithm
(LSA) [29], moth search algorithm (MS) [31], butterfly opti-
mization algorithm (BOA) [18], symbiotic organisms search

(SOS) [35], and moth swarm algorithm (MSA) [32] ffor
scalability to 100 and 200 dimensions for a maximum
of 25000 FEs on benchmark f1 to f15.
For the scalability of median size of 100 and 200 dimen-

sions, Table 7 lists the average best fitness value for each
simulation. The proposed MPGO, MS, and MSA showed the
best overall performance. According to the results, MPGO
is superior to PSO, GSA, LSA, BOA, and SOS on most
of the functions, whereas it is inferior to LSA on func-
tion f13. MPGO performs slightly better thanMS. In addition,
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TABLE 7. Comparison of MPGO versus various meta-heuristic algorithms with larger dimensions (100, 200).

although it performs worse than MSA on functions f3, f13
and f15, it is better than MSA on functions f1, f2, f5, f7, f8,
f10, f11, f12 and f14. In summary, Table 7 indicates that the
superior performance of MPGO is statistically significant
with PSO, GSA, LSA, MS, BOA, SOS, and MSA for the
overall performance evaluation, whereas it is degraded on
functions degraded on functions f3, f9, f13, and f15.
Table 8 reports the results of two-sidedWilcoxon rank-sum

tests [103] of MPGO, PSO, GSA, LSA, MS, BOA, SOS,
and MSA at α = 0.05 significance level based on the
performance results presented in Table 7. The results show
that MPGO also dominates PSO, GSA, LSA, BOA, SOS, and
MSA. In addition, MPGO achieves marginally better results
than MS. In summary, Table 8 indicates that the superior
performance of MPGO is statistically significant with PSO,
GSA, LSA, MS, BOA, SOS, and MSA for the overall per-
formance evaluation, and that MPGO can be scaled to higher
dimensions (100 and 200).

G. COMPARISON OF MPGO ON CEC BENCHMARK
In this section, the performances of MPGO is compared
with the that of PSO [102], GSA [27], lightning search algo-
rithm (LSA) [29], moth search algorithm (MS) [31], butterfly

optimization algorithm (BOA) [18], symbiotic organisms
search (SOS) [35], and moth swarm algorithm (MSA) [32]
for scalability to 10 and 100 dimensions for the 22 more
complex CEC 2014/2017 [100], [104] testing benchmarks
shown in Table 9. The maximum number of FEs for the
CEC 2014/2017 benchmark functions with 10, 30, 50, and
100 decision dimensions were set to (10000 × number of
dimensions); that is 100000, 300000, 500000, and 1000.000,
respectively.

For scalability of the size to 10 and 30 dimensions, Table 10
lists the average best fitness value for each simulation. The
proposed MPGO, and GSA showed the best overall perfor-
mance. According to the results, MPGO is superior to PSO,
LSA, MS, BOA, SOS and MSA on most of the functions.
In addition, although MPGO performs worse than GSA on
functions f32, f36, f40, f41, f43, f45, f47 and f48, it outperforms
GSA on functions f35, f46, f50, and f52. In summary, Table 10
indicates that the superior performance of MPGO is statisti-
cally significant with PSO, GSA, LSA, MS, BOA, SOS, and
MSA for the overall performance evaluation. whereas it is
degraded on functions f32, f36, f45, and f52.

For the scalability of size 50 and 100 dimensions, Table 11
lists the average best fitness value for each simulation. The
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TABLE 8. Two-tailed Wilcoxon rank-sum test of MPGO versus compared algorithms with 100 and 200 dimensions.

TABLE 9. CEC2014/2017 Complex Test functions.

FIGURE 7. Six well-known images used for image segmentation.

proposed MPGO, GSA and MSA showed the best overall
performance. According to the results, MPGO is superior to
PSO, LSA, MS, BOA, and SOS on most of the functions.
In addition, although MPGO performs worse than MSA on

functions f44 and f45, it is better than MSA on functions f31,
f38, f39, f42, f46, and f51. In summary, Table 11 indicates that
the superior performance of MPGO is statistically significant
with PSO, GSA, LSA, MS, BOA, SOS, and MSA for the
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TABLE 10. Comparison of MPGO versus different meta-heuristic algorithms with larger dimensions (10, 30).

overall performance evaluation. On the other hand, the per-
formance of MPGO is degraded on functions f31, f32, f33,
and f48.

Table 12 and Table 13 reports the results of the two-sided
Wilcoxon rank-sum tests [103] of MPGO, PSO, GSA, LSA,
MS, BOA, SOS, and MSA at the α = 0.05 significance
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TABLE 11. Comparison of MPGO versus different meta-heuristic algorithms with larger dimensions (50, 100).

level on the basis of the performance results presented
in Tables 10 and 11. The results show that MPGO also
dominates PSO, GSA, LSA, BOA, SOS, andMSA algorithm.
In addition, MPGO achieves slightly better results than the
MS. In summary, Tables 12 and 13 indicate that the superior
performance of MPGO is statistically significant with PSO,

GSA, LSA, MS, BOA, SOS, and MSA for the overall perfor-
mance evaluation.

H. COMPARISON OF MPGO WITH DIFFERENT VARIANTS
The performance of MPGO in terms of application to
data clustering was also evaluated. We employed six UCI
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TABLE 12. Two-tailed Wilcoxon rank-sum test of MPGO versus compared algorithms with 10 and 30 dimensions on CEC benchmark.

TABLE 13. Two-tailed Wilcoxon rank-sum test of MPGO versus compared algorithms with 50 and 100 dimensions on CEC benchmark.

TABLE 14. UCI instances.

TABLE 15. Parameter settings for six variants of the MPGO.

benchmarks (http://archive.ics.uci.edu/ml/datasets.html),
with pattern numbers ranging from 150 to 1728, as listed
in Table 14. Several variants of the MPGO algorithm were
compared in the simulations. The number of FEs and indi-
viduals exchanged among the composite algorithms of each
variant are listed in Table 15. MPGO exchanged two individ-
uals between PSO and GSA every 250 FEs and 10 individuals
in a maximum of 25000 FEs in the 20 runs.

In this experiment, the datasets Iris, Wine, and Breast can-
cer were selected to verify each MPGO variant. In summary,
the performances of all the variants were approximately equal

TABLE 16. Comparison of different variants of MPGO.

for 25000 FEs. The average accuracy rates are summarized
in Table 16; the results indicate that MPGO2 exhibited the
highest average accuracy on the Wine and Breast cancer
benchmarks, whereasMPGO1 exhibited the highest accuracy
on theWine benchmark. Thus, MPGO2was used for compar-
ison with the other algorithms in the remaining experiments.

I. EXPERIMENTAL RESULTS OF DATA CLUSTERING
The performance of MPGO was compared with that
of the k-means algorithm, PSO, GSA, black hole (BH)
algorithm [43], and WOA [64] on six UCI datasets (Iris,
Wine, Breast cancer, Car evaluation, Statlog, and Yeast). The
performance measure is defined by Eq. (26):

1Accuracy =
Qalgo − Qmpgo

Qmpgo
× 100% (26)

where, 1Accuracy denotes the improvement in the accuracy
rate, Qmpgo denotes the accuracy of the MPGO algorithm,
and Qalgo denotes the accuracy of k-means algorithm [9],
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TABLE 17. Comparison of accuracy values obtained with k-means, PSO, GSA, BH, and WOA.

TABLE 18. Comparison of PSNR values obtained with MPGO, k-means, PSO, GSA, BH and WOA.

PSO algorithm [59], GSA [105], BH algorithm [43], and
WOA [64].

The experimental results are summarized in Table 17. The
1Accuracy values of the MPGO algorithm are better than
those of the k-means ( from 44.3% to 80.8%), PSO (from
1.9% to 53.0%), GSA (from 1.7% to 37.0%), BH (from
0.3% to 26.7%), and WOA (from 0.3% to 23.8%). Further-
more, MPGO is more effective than all the algorithms on
the Statlog and Yeast benchmarks (from 14.1% to 80.8%,
respectively).

J. APPLICATION TO IMAGE SEGMENTATION
In the image segmentation process, an image is divided into a
set of regions. Each pixel is classified and assigned to a region
on the basis of similarity. Thus, meta-heuristic algorithms
can be easily applied to the image segmentation problem
via partitional models [95], [106]. The performance of the
proposed MPGO algorithm was verified by segmenting six
well-known 8-bit gray images having a resolution 256× 256,
as shown in Figure 7. The metric used to compare the results
was the PSNR value, which is defined by Eq. 27:

PSNR = 10 ∗ log10

(
2552

MSE

)
(27)

The experimental results are listed in Table 18. According
to the results, the average PSNR value ofMPGO is better than
that of k-means, PSO, GSA, BH, and WOA by 0.64, 0.43,
0.42, 0.10, and 0.09, respectively.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
This paper proposed theMPGO algorithm for solving cluster-
ing problems. MPGO combines PSO and GSA to produce a
hybrid optimization algorithm with an efficient search strat-
egy (based on GSA) and fast convergence (based on PSO).
The performance of MPGO was evaluated on 52 benchmark
test functions, six UCI machine learning benchmarks, and
image segmentation of six well-known images. Comparisons

conducted with five existing algorithms verified the superior
performance of the proposed algorithm in terms of fitness
value, accuracy rate, and PSNR. In future research, we will
investigate the following four aspects. (1) Use of MPGO for
image enhancement in computed tomography (CT); (2) pat-
tern reduction or dimension reduction to improve computing
performance; (3) updating of MPGO individuals via the Lévy
flight strategy to enhance diversity; and (3) implementation of
MPGO on a Raspberry Pi to enable automatic object tracking
and text recognition
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