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ABSTRACT Objective: the purpose of this paper was to investigate the effect of spectral computation
methods on the estimation of the four ultrasonic backscatter parameters, namely, the apparent integrated
backscatter (AIB), the zero frequency intercept of apparent backscatter (FIAB), the frequency slope of
apparent backscatter (FSAB), and the backscatter spectral centroid shift (SCS) from the backscattered signal
of interest (SOI), and their subsequent correlations with cancellous bone parameter [bone volume/total
volume (BV/TV)]. Methods: ultrasonic backscatter measurements were performed on 26 bovine cancel-
lous bone specimens using a 1.0-MHz focused transducer. Four spectral estimation algorithms, including
the classical periodogram, the autoregressive (AR) Burg algorithm, the AR covariance algorithm, and
the AR modified covariance algorithm, were used to calculate the ultrasonic parameters. Influence of the
signal’s delay time (T1) and its length (T2) on the strength of correlation between BV/TV and backscatter
parameters was also studied. Results: the results have demonstrated that the AR-based estimators provide
much more reliable and stronger correlations between the BV/TV and backscatter parameters than the
classical periodogram. Recommendations for choosing SOI were also suggested. Conclusion: these results
indicate that the AR-based method has a promising potential to enhance the performance of evaluation and
diagnosis of the cancellous bone using the ultrasonic backscatter method. Significance: the enhancement of
the correlation may provide a positive impact on the ultrasonic backscatter method to diagnose and monitor
the bone quantity.

INDEX TERMS Ultrasonic backscatter, osteoporosis, cancellous bone, autoregressive spectral estimation.

I. INTRODUCTION
Osteoporosis is a systemic and metabolic skeletal
disease [1]–[4]. The disease is characterized primarily by the
decrease of bone density and the deterioration of microstruc-
tural bone tissue [5], which increases the risk of bone fragility
and fracture [6]. It often does not show any symptoms until
a fracture occurs [7], causes loss of participation in society,
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and even disability. Previous studies have predicted osteo-
porotic fracture in the aged population (50 years and higher)
worldwide would be doubled from 158 million in 2010 to
316 million in 2040 [8]. By interpolation, approximately
199 million osteoporotic fracture will be expected in 2019.
Osteoporotic fractures frequently occur at the hip, spine, and
wrist [9], [10], resulting in chronic pain and even significant
disability. Less than half of the patient population who suffer
hip fracture can rehabilitate post-injury status [11], [12].
Williamson et al. reviewed the costs of fragility hip fractures
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globally and analyzed 670,173 patients from 27 countries
from 1990 to 2015. The costs of health and social care
amounted to $43,700 [13] per patient following hip fracture
in the first year. The substantial burden fell on patient, family,
and society.

Dual-energy X-ray absorptiometry (DXA) and the quanti-
tative computed tomography (QCT) are the major methods to
diagnose the bone quality and fracture [14]–[19]. Currently,
DXA is considered a clinical gold standard for estimating
mineral content in skeleton tissue and fracture risk [20].
However, the bone mineral density (BMD) has been
reported to explain only 60-70% correlation with the bone
strength [21], prediction fracture risk errors ranging
from 20% to 40% [22], and the remaining residuals are
believed to associate with other factors such as bone
microstructures and elasticity [23]. Thus, measuring BMD
alone to evaluate the fracture risk and assess bone statusmight
not be adequate as microarchitecture of cancellous bone also
plays an important role. Moreover, because of ionizing radia-
tion, the X-ray based methods may not be desirable for mon-
itoring the condition of bone microarchitecture for infants,
pregnant women, and the elderly. Quantitative ultrasound
(QUS) [24] has been applied as a noninvasive technique for
bone status evaluation with the advantages [25], [26] of non-
ionizing radiation, safety, low cost, and portability. The piezo
crystal generates the ultrasound wave propagating in bone,
the propagation properties are associated with bone proper-
ties, i.e., bone densities and microstructures. To address these
limitations of the X-ray densitometry, ultrasonic through-
transmission techniques have been used to transmit ultrasonic
pulses through the cancellous bone to measure the speed of
sound (SOS) and the normalized broadband ultrasonic atten-
uation (nBUA). The multivariate regression analysis of these
two parameters has shown them as good indicators for both
bone mineral density and mechanical properties [27], [28] in
clinical practice. Wear et al. [29] have proved the ultrasonic
parameters provide complementary information for predict-
ing mechanical properties of cancellous bones.

Recently, ultrasonic backscatter measurement has been
demonstrated to be a promising non-invasive technique for
evaluating the health status of cancellous bone [30]–[37].
Only one transducer is required for both transmitting and
receiving signals. Ultrasound travels into the cancellous
bones, interacts with the trabeculae and pores, and is
backscattered by the microstructures. Several useful ultra-
sonic backscatter parameters have been identified, such as
the integrated backscatter coefficient (IBC), the broadband
ultrasonic backscatter (BUB), and the backscatter spectral
centroid shift (SCS). Hoffmeister et al. have proposed prac-
tical ultrasonic backscatter parameters, namely, the apparent
integrated backscatter (AIB) [38], the zero frequency inter-
cept of apparent backscatter (FIAB) [39], the frequency slope
of apparent backscatter (FSAB) [40], the normalized mean of
the backscatter difference (nMBD) [41], and the normalized
backscatter amplitude ratio (nBAR) [42]. These parameters
have been investigated using backscatter data from

cancellous bones in vitro and in vivo, and the results have
suggested that the ultrasonic backscatter technique is an
effective approach [35], [41], [43]–[46]. However, the cor-
relations between bone parameters and ultrasonic parameters
(AIB, SCS, FIAB, and FSAB) at 1.0 MHz were found to be
weaker than those at 2.25 MHz, 5.0 MHz, and 7.5 MHz for
in vitro experiments [34], [38], [39]. The estimation of these
ultrasonic parameters requires the computation of the power
spectrum. While classical spectral estimation is most often
used due to its simplicity, it has a poor spectral resolution,
leakage, large variance, and instability [47]–[49], which
might be an explanation for weaker correlation at 1.0 MHz.
To the best of the authors’ knowledge, the effect of spec-
tral estimation on the computation of ultrasonic backscat-
ter parameters has not been thoroughly discussed. Further,
Liu et al. [50] have studied the influence of the starting
point or time delay (T1) and the time window (T2) consist-
ing of the backscatter signal on the ultrasonic backscatter
parameter estimation and cancellous bone evaluation. They
also suggested a procedure to select the signal of interest
(SOI) for the AIB, covering the central frequency from
0.5 MHz to 10.0 MHz. However, the selection of SOI for
other parameters, such as SCS, FIAB, and FSAB was not
fully studied.

The objectives of this in vitro study are to investigate the
effect of spectral computation algorithms on the estimation
of four ultrasonic backscatter parameters (AIB, SCS, FIAB,
and FSAB) and to compare the correlation performance
between these algorithm-based parameters and the bone vol-
ume/total volume fraction (BV/TV). The major innovation
of this work is using autoregressive (AR) spectral estima-
tors instead of periodogram to optimize the calculation of
ultrasonic backscatter parameters. The effect of the choice
of T1, T2 and AR p-order of the backscatter signals on the
correlation results are also studied.

II. MATERIALS AND METHODS
A. PREPARATION OF BONE SPECIMENS
Twenty-six fresh cancellous bone specimens were dissected
from the heads of bovine femurs, which were purchased
in a local slaughterhouse. Operating a computer numeri-
cal control band saw with a 0.5 mm thick blade, the cor-
tical bones were stripped along the anatomic orientations
of the trabeculae, then the cancellous bones were cut into
a cuboid shape. The blade speed was carefully monitored
to ensure that the cutting surface was not damaged due to
the temperature. A high-pressure oral irrigator was used to
remove the marrow out of the medullary cavity. Drying all
specimens, and then the dimensions of the specimens were
measured by a micrometer (resolution ± 0.01 mm), and
their weights were determined by a precision electronic scale
(resolution ± 0.01 g) as tabulated in Table 1.

B. DATA ACQUISITION
The bone specimens were immersed in distilled water for
degasification, then scanned by a Micro-CT Sky-scan1076
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TABLE 1. Statistical properties of the specimens.

scanner (Skyscan, Antwerp, Belgium). The scanning param-
eters used were 75 kV and 130 µA, with rotating from
0 to 180 degrees at intervals of 0.8 degrees. The data were
reconstructed with an 18-µm spatial voxel size, and the
BV/TV was measured using the NRecon and CTan soft-
ware suites (Skyscan, Antwerp, Belgium). Using the Otsu
threshold method [51], the threshold for each specimen was
automatically designated in histogram analysis. After scan-
ning, the specimens were immersed in the distilled water and
degassed again prior to the ultrasonic measurements. Care
was taken to ensure specimens do not expose to the air.

The measurements of ultrasonic backscatter signals were
performed with the specimens immersed in water as
described in [52]. All degassed specimens were placed in a
distilled water tank at room temperature (19.0 ◦C), which
was maintained constant by a water heater. A 1.0-MHz
ultrasonic transducer with a diameter of 1.90 cm and a
focal distance of 2.54 cm (V314, Olympus-Panametrics Inc.,
MA, USA) was used for the study. The −6 dB frequency
band ranged from 0.67MHz to 1.40MHz. The transducer was
mounted on a three-axis motor controller (Ultrapac scanning,
PK268-03B, NJ, USA), placed at 2.54 cm from the surface
of the specimens, and connected to an ultrasonic backscatter
bone diagnostor (UBBD) [53], which was developed by our
Bone Ultrasound Electronic Engineering (BUEE) laboratory
in Fudan University. The UBBD had a 50 MHz sampling
frequency and 14-bit A/D resolution. The reference signal
was an echo from a polished steel plate, placed at the same
location of the specimens, ensuring the steel surface reflec-
tion had the same travel time as the surface backscatter from
the bone samples. The scanning region of interest (ROI) was
set at 5.0mm × 5.0mm with a scan increment of 0.5 mm.
A total of 100 records were obtained with each record being
acquired 128 times and averaged to enhance the signal-to-
noise ratio.

C. SPECTRAL ESTIMATION ALGORITHMS
Let x[n], 0 ≤ n ≤ N − 1, be a N-points discrete time
series. The periodogram provides the classical power spectral
density estimation, namely

P̂ (ω) =
1
N
|X (ω)|

2
. (1)

where X (ω) is the Fourier transform of x[n]. In the
AR spectral estimation method, the present value in the time
series can be described by the past values. Reference [54] of

the process,

x [n] = −
∑p

k=1
akx [n− k]+ ε [n] . (2)

where p is the AR order, ak are the AR coefficients, and
ε[n] is white noise with variance σ 2. The power spectral
density of the AR process is then given by

P̂AR (f ) =
σ 2∣∣∣1+∑P

k=1 ake
−(j2πkf )

∣∣∣2 . (3)

Different AR estimators have been proposed to deter-
mine the AR coefficients and variance. The Appendix pro-
vides mathematical details of the three AR estimators we
used in this study, which are AR Burg, AR covariance, and
AR modified covariance. All the spectral computations were
performed in Matlab (Mathworks, Natick, MA).

D. ULTRASONIC BACKSCATTER PARAMETERS
The AIB (dB) [38], [55] is given by

AIB =
1

f2 − f1

∫ f2

f 1
10 log10

[
PSOI (f )
PRef (f )

]
df (dB). (4)

where the integrand is the backscatter function and the SOI
starts at the end of T1 for a length of T2, gated with a rectan-
gular window function. The PSOI (f ) and PRef (f ) represent
the power spectral density of the signal and the power spectral
density of the reference signal, respectively. The limits of
integration, f1 and f2 correspond to the −6 dB frequency
band of the reference signal. The FIAB (dB) is determined
by extrapolating to zero-frequency the best fitted line to the
backscatter spectrum from f1 to f2. The FSAB (dB/MHz)
is the slope of the best fitted line. Finally, the backscatter
spectral centroid shift [43], [44], SCS (MHz) is

SCS =

∫ fmax
f min f · PSOI (f )df∫ fmax
f min PSOI (f )df

− f0(MHz). (5)

where fmin and fmax are the minimum and maximum values
of the transducer’s bandwidth, and f0 is the central frequency
of the transducer.

The computation was performed by an i5-6300HQ
2.9 GHz desktop computer with 16 GB RAM. We used
the time to compute the four periodogram-based ultra-
sonic backscatter parameters as a benchmark (i.e., 1384 sec
as 1.00 T) and normalized the other computation times by the
benchmark for comparison purpose.

E. STATISTICAL ANALYSIS
Pearson’s correlation coefficients R and the standard devia-
tion were calculated and analyzed for investigating the lin-
ear correlations between BV/TV and ultrasonic backscatter
parameters. One-way ANOVA test was also used to assess
the potential difference between algorithms. The result
was considered statistically significant for the p-values less
than 0.05 unless otherwise specified. All statistical computa-
tions were processed by IBM SPSS Statistics (IBM Corpora-
tion, Armonk, New York, USA).
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III. RESULTS
Kolmogorov Smirnov (K-S) normality test was used.
The results show that BV/TV and measured ultrasonic
backscatter parameters obey the normal distribution at
level 0.05.

Fig. 1-4. show the Pearson’s coefficients R-value between
BV/TV and the four ultrasonic parameters for the four spec-
tral estimators. The resolution of the figures is 0.5µs×0.5µs,
each pixel included 26 data pairs for calculating correlation R.
Following [50], we chose a backscatter signal when the abso-
lute value reached a 5% threshold of the maximum of the
signal envelope as the start point of T1. Then we selected the
ranges 0-10.0µs and 1.0-10.0µs for respective T1 and T2 for
the analysis.

When T1 is less than 1.5 µs, and T2 is within
3.0-10.0 µs (Fig. 1.), the AIB has the strong positive cor-
relation with BV/TV with the largest R-values being 0.89,
0.91, 0.90, and 0.92 for AIBp, AIBBurg, AIBcov, and AIBmcov
respectively (Table 2). As T1 extends beyond 2.0 µs for
AIBcov and 4.0µs for the other three methods, the correlation
becomes negative. A moderate negative correlation (R =
−0.35 to −0.64) can be obtained for T1 greater than 4.0 µs.
The correlation fluctuates for T2 < 3.0µs. Beyond 3.0 µs,
the correlation became steady.

Unlike AIB, SCS correlated with BV/TV negatively
(Fig. 2.). Strong negative correlations occur when T1 lies over
6.5 µs and T2 over 7.0 µs in Fig. 2(b) and (c). When T1 lies
over 7.0 µs and T2 over 7.0 µs, strong negative correlations
occur in Fig. 2(d).With the R-values being−0.84,−0.87, and
−0.81 for SCSBurg, SCScov, and SCSmcov, respectively. How-
ever, the only moderate negative correlation of −0.78 was
achieved between SCSp and BV/TV.
FIAB has positive correlations with BV/TV for T1 <

1.0µs and T2 > 3.0µs (Fig. 3.). The maximum achievable
R-values are 0.88, 0.89, and 0.88 for FIABBurg, FIABcov, and
FIABmcov respectively, while the moderate positive correla-
tion of 0.71 was obtained for FIABp.

FSAB presents a negative correlation with BV/TV for
T1 > 4.0µs and T2 > 4.0µs with the strongest correlation
being −0.84, −0.85, and −0.83 for FSABBurg, FSABcov,
and FSABmcov respectively (Fig. 4.). However, FSABp has
a moderate correlation of −0.67 with BV/TV.

One-way ANOVA test was also performed between peri-
odogram and other AR-methods to investigate the signifi-
cant difference between the algorithms. Table 2. provides
a summary of the correlation extrema with the 95% confi-
dence interval and the ANOVA test results with the power
test.

Selecting two ranges of SOI (T1 = 0 − 1.0µs,
T2 = 2.0 − 10.0µs for calculating AIB and FIAB, and
T1 = 6.0 − 10.0µs, T2 = 7.0 − 10.0µs for calculating
SCS and FSAB) and the p-order for 17 and 18, the average
of Pearson’s coefficients with the standard deviation were
reported in Table 3.

FIGURE 1. Effect of the spectral estimation on the correlation between
AIB and BV/TV for 1.0 MHz with AIB calculated by four different methods:
(a) Periodogram, (b) AR Burg, (c) AR covariance, and (d) AR modified
covariance.
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FIGURE 2. Effect of the spectral estimation on the correlation between
SCS and BV/TV for 1.0 MHz with SCS calculated by four different methods:
(a) Periodogram, (b) AR Burg, (c) AR covariance, and (d) AR modified
covariance.

FIGURE 3. Effect of the spectral estimation on the correlation between
FIAB and BV/TV for 1.0 MHz with FIAB calculated by four different
methods: (a) Periodogram, (b) AR Burg, (c) AR covariance, and
(d) AR modified covariance.
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FIGURE 4. Effect of the spectral estimation on the correlation between
FSAB and BV/TV for 1.0 MHz with FSAB calculated by four different
methods: (a) Periodogram, (b) AR Burg, (c) AR covariance, and
(d) AR modified covariance.

TABLE 2. Pearson’s correlation coefficients and the ANOVA multiple
comparisons.

TABLE 3. The average of Pearson’s coefficients with the standard
deviation for two different ranges of (T1, T2) values.

Finally, the normalized computation time for the AR Burg,
AR cov, and ARmcov algorithms were approximately 3.45T,
4.38T, and 5.59T, respectively.

IV. DISCUSSION
A. COMPARISON WITH PREVIOUS STUDIES AND THE
CHOICE OF SOI
The SOI selection directly influences the backscatter param-
eters for the measurement of cancellous bone. The delay
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time, T1 for the backscatter signal should be chosen care-
fully. A small T1 will include the primary specular echo
from the bone surface, which causes the evaluation of
the backscatter parameters ambiguous. A large T1 will
increase the dominance of the attenuation mechanism over
the backscatter. However, the choice of T1 does depend
on the central frequency used [50]. In our study, T1 can
be large as well for SCS and FSAB. While T1 represents
the excluded trabecular volume, T2 denotes the investigated
trabecular volume. Backscatter signal comes after the pri-
mary echo from the bone surface. A sufficient long T2 will
cover the backscatter and the multiple backscatters between
trabeculae.

The present study obtained a positive correlation
of 0.88 between AIBp and BV/TV, which is quite close to the
correlation 0.78 previously reported [34] using periodogram
for the same central frequency of 1.0 MHz. In our study,
the AR-based AIB had a slightly stronger association with
BV/TV (R = 0.90− 0.92) than the AIBp (R = 0.89).
The SCSp has a negative correlation with BV/TV,

consistent with the result from a previous study [44] using
periodogram at 10.0MHz. Similar to AIB, the AR-based SCS
have a much stronger association with BV/TV. In this study,
the SCS’s correlation values with BV/TV are more negative
(RBurg = −0.84, Rcov = −0.87, Rmcov = −0.81) than
the SCSp’s (R = −0.78). The power spectrum curve had
less variance making the spectrum centroid shift more precise
and stable when using AR spectral estimation algorithm. The
correlation coefficients of SCSmcov was slightly less than
SCSBurg and SCScov, which might be due to the fact that
the AR modified covariance method is more sensitive to
noise [47], [56]. Based on Fig. 2(b)-(d)., we suggest T1 =
7.0 − 10.0 µs and T2 = 7.0 − 10.0 µs for the SOI for
calculating SCS.

FIABp correlates positively with BV/TV (R = 0.71) while
FSABp correlates negatively with BV/TV (R = −0.67).
These results are consistent with a previous study [39] where
the authors obtained a moderate positive correlation between
bone apparent density with FIABp (R = 0.37, n = 22), and a
negative correlation with FSABp (R = −0.69, n = 22), using
periodogram at 1.0 MHz. However, the AR-FIAB have much
higher correlations with BV/TV (RBurg = 0.88, Rcov = 0.89,
Rmcov = 0.88, n = 26) than FIABp (R = 0.71, n = 26),
and theAR-FSABobtainedmore negative Pearson’s R coeffi-
cients with BV/TV (RBurg = −0.84, Rcov = −0.85, Rmcov =

−0.83, n = 26) than FSABp (R = −0.67, n = 26) in the
present study. Since AIB and FIAB have a strong positive
correlation with BV/TV as shown in Table 3, we recommend
choosing T1 = 0 − 3.0 µs and T2 = 3.0 − 10.0 µs for the
SOI to compute AIB and FIAB. For AIB, this is consistent
with the pioneering study by Liu et al. at [50]. For SCS and
FSAB, we recommend T1 and T2 be chosen with the ranges
5.5-10.0 µs for the SOI.
Finally, the one-way ANOVA test results have shown that

the AR-based methods are significantly different from the
periodogram at least for p < 0.05 (Table 2).

FIGURE 5. (a) The backscatter signal, (b) Normalized power spectrum
(NPS) of the backscatter signal.

B. THE EFFECT OF SOI AND SPECTRAL ESTIMATION
TO PARAMETERS
Here we present a backscatter signal and its power spectra
show in Fig. 5(a). and Fig. 5(b). as an example. The backscat-
ter signal has a 10.0µs for T1 and 10.0µs for T2 respectively.
Previous studies have reported that the four backscat-

ter parameters under investigation correlated with the bone
parameters, both for in vitro and in vivo experiments [36],
[43], [50]. These parameters require the spectral estima-
tion for extracting features from the backscatter signals. For
example, AIB, FIAB, and FSAB were derived from the
apparent backscatter transfer function (ABTF). The ABTF is
described by the ratio of the power spectral density in (6) [40],
which is a product of the backscatter coefficient ([B (f )]),
the frequency-dependent attenuation ([A (f )]), the reflection
losses and transmission coefficient ([R]), and the diffraction
effects ([D (f )]:

PSOI (f )
PRef (f )

= [B (f )] � [A (f )]−1 � [R] � [D (f )] . (6)

The attenuation in a scattered media is considered the result
of both the scattering and the absorption [57]. The term
[A (f )] in (6) might explain a physical reason that correlation
changed when increasing the delay time T1. AIB and FIAB
are the comprehensive results of ultrasonic backscattering
and attenuation effect. When the length of T1 selected short,
the backscatter was comparatively strong than attenuation,
causing positive correlation with BV/TV at short T1 and
negative correlations with increasing T1. SCS and FSAB
are mainly due to the frequency-dependent attenuation of
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ultrasound in cancellous bone [58]. When T1 is increasing,
the backscatter signal at higher frequencies attenuated more
than the signals at lower frequencies became pronounced.
Thus, correlations between SCS, FSAB and BV/TV were
fluctuant when T1 was short, the negative correlations were
observed at longer T1 (5.5µs < T1 < 10 µs).
The spectral estimation algorithm was usually chosen

based on the investigator’s preference. However, the peri-
odogram is not a consistent estimator of the power spec-
trum [59]–[61]. It is biased toward the true spectrum and
exhibits fluctuations. With a rectangular window, the bias can
be estimated by

Bias
[
P̂(ω)

]
=
P(ω)
N

∣∣∣∣∣
[
sin (ωN2 )

sin (ω2 )

]
e
−jω(N−1)

2

∣∣∣∣∣
2

− P(ω). (7)

Given a finite length T2 with sample points N, the estimated
spectrum P̂(ω) is biased to the true spectrum P(ω). When
T2 increases toward infinity, the periodogram is asymptot-
ically unbiased. However, when T2 increases, the variance
does not tend to zero in the covariance [62] expression as:

lim
N→∞

Var
[
P̂ (ω)

]
= lim
N→∞

P2(ω)

{
1+

[
sin (ωN )
N � sin (ω)

]2}
6=0.

(8)

Moreover, the strong attenuation of ultrasound in the can-
cellous bone will yield SOI with a poor signal-to-noise ratio
(i.e., the range between 54.35 µs to 68.70 µs) as shown
in Fig. 5(a). The signal after 68.70 µs should be excluded
because it is the multiple reflections between the surface of
cancellous bone and the transducer. Thus, we choose the
ranges 0-10.0 µs and 1.0-10.0 µs for respective T1 and
T2 for analysis in this study. The periodogram only used the
finite length T2 to estimate spectrum is one of a cause of
backscatter parameters fluctuations. The periodogram power
spectra generate large variances and fluctuations, as shown
in Fig. 5(b). The AR-based power spectrum minimizes the
prediction error and estimates the spectrum more stable and
look very similar with small variance. Since the computa-
tion of the ultrasonic parameters requires the power spectral
density estimation, the AR-algorithms have overcome these
shortcomings of the classical spectral method. It might be a
reason that the AR-based ultrasound parameters have higher
correlation with BV/TV.

C. SELECTING P-ORDER FOR AR MODEL
Selecting a proper order p is essential in an AR model
for the power spectral density estimation. An inappropri-
ate order will result in inaccuracy and statistical instability.
Selecting a too-low order might over-smooth the spectrum.
Conversely, a too-large order might create spurious spectral
peaks. It was suggested that the p-order should be between
N/3 and N/2 where N is the number of data points [63].
In this study, the shortest T2 was set at 1.0 µs with a 50 MHz
sampling frequency; the N value was at least 50. To study
the effect of AR order p on the power spectral estimation,

FIGURE 6. Normalized power spectrum (NPS) of the reference signal:
(a) Periodogram and three AR algorithms with order p = 18 estimated,
(b) Periodogram and AR Burg algorithm with the different p-order
estimated.

we examined the power spectrum of the reference signal
using AR estimation with orders from 17 to 25. The spec-
trum has insufficient frequency resolution to reflect the true
spectrum when p ≤ 16. However, when p ≥ 19, it resulted in
spurious peaks and serious estimation as shown in Fig. 6(b).

Similar results can also be observed for AR cov and
ARmcov. To seek for an appropriate p-order within the inter-
val of [N/3, N/2], a large p-order may render a more accurate
estimation of the power spectrum; however, spurious peaks
and computation cost will also increase. Therefore, the choice
of order p should take a balance between the computation cost
and the accuracy of the spectral estimation. Finally, we chose
p-order of 17 and 18 for estimators.

D. LIMITATIONS
This study involves the measurements performed on the
bovine cancellous bones in vitro, which required the in-
filled marrow to be removed. Before CT-scanning, remov-
ing the cortical bone by cutting and the marrow by high-
pressure water cleaning might damage some trabeculae and
thus change the microstructures. This should be considered
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when the microstructure-related parameters are analyzed.
AR-based parameters may not be directly used in vivo mea-
surement, both the soft tissue and the curved cortical bone
may become sources of error. Thus, the selection of ROI,
SOI and AR p-order should be carefully studied in vivo.
Although BV/TV is one of the critical parameters to assess
cancellous bones, previous studies have also reported the
bone microstructures parameters, such as trabecular thick-
ness, trabecular spacing, and porosity, have significant corre-
lations with the ultrasonic backscatter parameters [64]–[67].
The correlations of these bone parameters with ultrasonic
backscatter parameters were not addressed in this study and
will be carried out in our future work.

V. CONCLUSIONS
The correlations between ultrasonic backscatter parameters
and BV/TV were studied using four spectral estimators.
The main findings of the present study are the following.
(1) The ultrasonic backscatter parameters demonstrate sig-
nificantly strong correlations with BV/TV. (2) The spectral
estimation algorithms affected the estimated values of ultra-
sonic backscatter parameters and the subsequent correlation
strength with BV/TV for cancellous bone evaluation. (3)
The periodogram is not a good spectral estimator. Select-
ing the appropriate AR p-order and SOI, the AR-optimized
parameters exhibit stronger correlations with BV/TV than
using the periodogrammethod. These results indicate that the
AR-based method has a promising potential to enhance the
performance of evaluation and diagnosis of cancellous bone
using ultrasonic backscatter method.

APPENDIX
A. AR BURG ESTIMATOR
AR Burg estimator is based on the minimization of the for-
ward and backward prediction error [68] and estimation of
the AR coefficients, a1, a2, ak,. . . , ap, and is defined by

êfp[n] = x[n]+
∑p

k=1
âp,kx[n− k],

n = p+ 1, . . . ,N

êbp[n] = x[n− p]+
∑p

k=1
â∗p,kx[n− k],

n = p+ 1, . . . ,N

(A.1)

where the superscript ‘‘ f ’’ and ‘‘ b ’’ denote the forward and
backward prediction, respectively. The AR coefficients are
related to the reflection coefficient K̂p by

âp−1,k =

{
âp−1,k + K̂pâ∗p−1,p−k , k = 1, . . . , p− 1,

K̂p, k = p.
(A.2)

where the symbol ‘‘ ∗ ’’ denotes the complex conjugate [69].
Then the reflection coefficients K̂p are defined by

K̂p =
−
∑N

p+1 ê
f
p−1 [n] ê

∗b
p−1 [n− 1]

1
2

∑N
p+1

[∣∣∣êfp−1 [n]∣∣∣2 + ∣∣∣êbp−1 [n− 1]
∣∣∣2] . (A.3)

The prediction errors satisfy the following recursive-in-order
expressions{

êfp[n] = êfp−1[n]+ K̂pê
b
p−1[n− 1]

êbp[n] = êbp−1[n− 1]+ K̂∗p ê
f
p−1[n]

(A.4)

The total least squares error is defined as

êmin= ê
f
p−1 [n]+K̂pê

b
p−1 [n− 1]+êbp−1 [n− 1]

+K̂∗p ê
f
p−1 [n] . (A.5)

Based on the estimates of the AR coefficients, the power
spectral density estimation is [70] as

P̂Burg (f ) =
êmin∣∣∣1+∑P

k=1 âp,ke
−(j2πkf )

∣∣∣2 . (A.6)

B. AR COVARIANCE ESTIMATOR
The AR Covariance estimator minimizes the forward predic-
tion error as:

ê =
1

N − p

∑N−1

n=p

∣∣∣x [n]+∑p

k=1
akx [n− k]

∣∣∣2 . (A.7)

The solution of the equations can be written:
ĉ(1, 0)
ĉ(2, 0)
...

ĉ(p, 0)

+

ĉ(1, 1) ĉ(1, 2) · · · ĉ(1, p)

ĉ(2, 1) ĉ(2, 2)
... ĉ(2, p)

...
...

. . .
...

ĉ(p, 1) ĉ(p, 2) · · · ĉ(p, p)



â(1)
â(2)
...

â(p)



=


0
0
...

0

 (A.8)

where

ĉ (j, k) =
1

N − p

∑N−1

n=p
x∗ [n− j]x [n− k] ,

j, k = 0, 1, . . . , p (A.9)

The AR coefficients can be calculated by
â(1)
â(2)
...

â(p)

 = −

ĉ(1, 1) ĉ(1, 2) · · · ĉ(1, p)

ĉ(2, 1) ĉ(2, 2)
... ĉ(2, p)

...
...

. . .
...

ĉ(p, 1) ĉ(p, 2) · · · ĉ(p, p)


−1

×


ĉ(1, 0)
ĉ(2, 0)
...

ĉ(p, 0)

 (A.10)

With the white noise variance σ̂ 2 estimated by

σ̂ 2
= êmin = c (0, 0)+

∑P

k=1
âkc (0, k). (A.11)

Then, the power spectral estimation is [71]

P̂cov (f ) =
êmin∣∣∣1+∑P

k=1 âke
−(j2πkf )

∣∣∣2 . (A.12)
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C. AR MODIFIED COVARIANCE ESTIMATOR
The AR modified covariance estimator minimizes the for-
ward and backward prediction errors. For an AR(p) process
the optimal forward predictor and the optimal backward pre-
dictor are described by{

x̂ f [n] = −
∑p

k=1 akx [n− k] ,
x̂b [n] = −

∑p
k=1 a

∗
kx [n+ k] .

(A.13)

The estimated forward and backward prediction error powers
can be written{

êf = 1
N−p

∑N−1
n=p

∣∣x [n]+∑p
k=1 akx [n− k]

∣∣2 ,
êb = 1

N−p

∑N−1−p
n=0

∣∣x [n]+∑p
k=1 a

∗
kx [n+ k]

∣∣2. (A.14)
The AR Modified covariance minimizes the average of the
estimated forward and backward prediction error powers as

êmin =

(
êf + êb

)
2

. (A.15)

The AR coefficients can be computed by (A10) with the
definition of ĉ (j,k) replaced by

ĉ (j, k) =
1

2 (N − p)

[∑N−1

n=p
x∗ [n− j]x [n− k]

+

∑N−1−p

n=0
x [n+ j] x∗ [n+ k]

]
,

j, k = 1, 2, . . . , p. (A.16)

With the white noise variance σ̂ 2 estimated by

σ̂ 2

= êmin =
1

2 (N − p)

{∑N−1

n=p

(
x [n]+

∑P

k=1
âk

)
x∗ [n]

+

∑N−1−p

n=0

(
x∗ [n]+

∑P

k=1
âkx∗ [n+ k]

)
x [n]

}
.

(A.17)

Then, the power spectral density estimation is [72]

P̂mcov (f ) =
êmin∣∣∣1+∑P

k=1 âke
−(j2πkf )

∣∣∣2 . (A.18)
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