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ABSTRACT The use of data-driven ensemble approaches for the prediction of the solar Photovoltaic (PV)
power production is promising due to their capability of handling the intermittent nature of the solar energy
source. In this work, a comprehensive ensemble approach composed by optimized and diversified Artificial
Neural Networks (ANNs) is proposed for improving the 24h-ahead solar PV power production predictions.
The ANNs are optimized in terms of number of hidden neurons and diversified in terms of the diverse
training datasets used to build theANNs, by resorting to trial-and-error procedure andBAGGING techniques,
respectively. In addition, the Bootstrap technique is embedded to the ensemble for quantifying the sources
of uncertainty that affect the ensemble models’ predictions in the form of Prediction Intervals (PIs). The
effectiveness of the proposed ensemble approach is demonstrated by a real case study regarding a grid-
connected solar PV system (231 kWac capacity) installed on the rooftop of the Faculty of Engineering
at the Applied Science Private University (ASU), Amman, Jordan. The results show that the proposed
approach outperforms three benchmark models, including smart persistence model and single optimized
ANN model currently adopted by the PV system’s owner for the prediction task, with a performance gain
reaches up to 11%, 12%, and 9%, for RMSE,MAE, andWMAE standard performance metrics, respectively.
Simultaneously, the proposed approach has shown superior in quantifying the uncertainty affecting the
power predictions, by establishing slightly wider PIs that achieve the highest confidence level reaches up
to 84% for a predefined confidence level of 80% compared to three other approaches of literature. These
enhancements would, indeed, allow balancing power supplies and demands across centralized grid networks
through economic dispatch decisions between the energy sources that contribute to the energy mix.

INDEX TERMS Artificial neural networks, ensemble, photovoltaic power, prediction, bootstrap, uncertainty
quantification.

I. INTRODUCTION
The contribution of Renewable Energy (RE) sources to the
energy production portfolio is boosting compared to other
available productions obtained by alternative conventional
energy sources, such as natural gas, oil, and coal [1]–[6]. The
global RE production capacity raised by 171 GW (growth
by 7.9% during 2018) reaching 2,351 GW worldwide, at the
end of 2018 [5], [7]. The solar power produced by Pho-
tovoltaic (PV) accounted for 20% (486 GW) of the total
global RE production at the end of 2018, with a capac-
ity increase of 94 GW (+24%) [8], [9]. Due to the signif-
icant cost reductions of solar energy productions, solar PV
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modules, and the competitive procurement of solar PV sys-
tems, this source of energy starts to have a potential rule in the
global energy production [10]. For example, the Levelised
Cost Of Electricity (LCOE) of solar PV has been decreased
(and it continues to show a decreasing trend) by 73% between
2010 and 2017, while the energy conversion efficiency has
been improved [11], [12].

The effective contribution of solar PV production to the
energy mix requires the availability of prediction (forecast-
ing) models capable of providing accurate power production
predictions [13]–[15]. For instance, for solar PV systems,
electricity traders are interested in finding means for hav-
ing accurate short-term prediction (e.g., one-day ahead) of
production from such systems [16]. In practice, having the
capability of accurately predicting the solar PV production
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for, e.g., one-day ahead, has, indeed, several economic ben-
efits, including reliable operation planning, scheduling of
generation, efficient electricity market operations, and proac-
tive power trading [15], [17]. However, production prediction
from such energy sources depends on intermittent (stochastic)
weather variables, such as solar radiation, wind speed, and
ambient temperature, which lead to large uncertainties in
solar power production predictions [18]–[22].

Generally, the prediction approaches can be categorized
into model-based and data-driven [23]–[26]. The former
approaches rely on physics-based models that use weather
variables for solar PV power production predictions. How-
ever, the adopted models entail making assumptions and sim-
plifications, which constitutes difficulties for their practical
deployment. On the contrary, data-driven approaches, which
are usually developed by resorting to the so-called machine
learning techniques, completely rely on the available pairs of
historical actual or forecasted weather data and the associated
power production, collected during the operation of the PV
plant, with no need to employ any explicit physics-based
models.

Several data-driven methods were proposed and applied to
solar PV power production prediction, e.g., Artificial Neural
Networks (ANNs) [27], Gradient Boosting Regression Trees
(GBRT) [28], Support Vector Machines (SVMs) [29], and
Extreme Learning Machines (ELMs) [25]. However, there
is no unique method capable of accurately predicting the
solar PV power production. In fact, the application of differ-
ent data-driven methods using the same weather/power data,
or the same method with different internal parameter settings
can lead to different predictions accuracies [30].

To overcome this challenge, ensemble approaches, which
aggregate the predictions provided by multiple prediction
models (hereafter called base models), are developed and
showed to be a better mean in boosting the predictions
accuracy, with respect to any sole model of the ensem-
ble, and at the same time quantifying their associated
uncertainty [31], [32]. For example, Omar et al. [33], devel-
oped ensembles of multilayer perceptron feedforward ANNs
models that receive the weather forecasts of the next day
as an input and produce more generalized one day-ahead
production predictions as an output of a solar facility;
Pierro et al. [34], developed an outperforming Multi-Model
Ensemble (MME) that averages the 24h-ahead solar PV
power production obtained by the best different data-driven
base models fed with different numerical weather prediction
input data.

Independently from the adopted prediction model and of
the scheme implemented to provide the final power pre-
dictions (i.e., individual model or ensemble of prediction
models), various sources of uncertainty might affect the pre-
dictions, leading to non-accurate, possibly misleading, infor-
mation for grid operation [35].

In this context, the objective of this work is to develop a
new comprehensive ensemble approach composed by several
ANNs base models for i) 24h-ahead predicting the solar PV

power production, as accurate as possible, and then, ii) quan-
tifying the associated uncertainty. The ANN base model is
optimized in terms of number of hidden neurons, H , to fur-
ther enhance the prediction accuracy. The motivation behind
the choice of ANNs is due to their simplicity, capability of
solving non-linear interpolation problems, and the easiness
of their implementations [36], [37].

The proposed approach requires: 1) generating multiple
diverse base prediction models, and 2) aggregating their pre-
dictions by a given strategy of aggregation.

With respect to 1), it is shown that the more diversified
base prediction models are, the better prediction accuracy
of the ensemble outcome can be obtained [38]–[40]. Sev-
eral methods were proposed in literature to achieve diver-
sity among the ensemble models, like adopting different
types of prediction models, adopting the same prediction
model type but with different parameter settings, or building/
training each prediction model with different training
datasets, by resorting to techniques such as Bootstrapping
AGGregatING (BAGGING) [40], [41], Boosting [42], and
Adaboost [43]. In this work, BAGGING technique (which is
based on training the multiple base models using different
training sets, whose training patterns are sampled randomly
with replacement from the original available training dataset)
is employed since it is shown capable of enhancing the pre-
diction performance and it is easy to implement [41], [44].

With respect to 2), once the base prediction models of
the ensemble are developed, an effective strategy for aggre-
gating their prediction outcomes is required. Aggregation
strategies can be generally categorized into statistics-based
and model performance-based [39], [45], [46]. The former
strategies assume that the base models contribute equally to
the final prediction outcome of the ensemble by simply com-
puting statistical values, e.g., average or median, of the base
models’ predictions. Contrarily, the latter strategies assign
different (dynamic) weights to each base model according
to its local prediction performance calculated by considering
very similar input patterns to the test input pattern under
study, such as the nearest neighbors patterns from a validation
dataset. In this work, statistics-based strategy is adopted by
calculating the median of the individual base models’ pre-
dictions because it is the simplest to develop and easiest to
understand [47], [48].

Once the solar PV production predictions are obtained,
this work focuses then on the quantification of the uncer-
tainty that affect the obtained predictions. Specifically, three
sources of uncertainties are analyzed in this work: 1) uncer-
tainty due to the model input, i.e., measurement errors of the
weather variables; 2) uncertainty due to the inherent variabil-
ity/stochasticity of the physical process; and 3) uncertainty
inherent in the model structure and parameter. In practice,
the quantification of the uncertainty entails constructing
lower and upper bounds, i.e., Prediction Intervals (PIs),
of power production values within which the true ‘‘a priori
unknown’’ solar PV power production is expected to fall
with a predefined confidence level α %, e.g., 90% [49], [50].
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Techniques like Bootstrap (BS) [51], Delta [52], Mean-
Variance Estimation (MVE) [53], and Lower Upper Bound
Estimation (LUBE) [54] were successfully applied for
uncertainty quantification in different industrial applica-
tions [45], [49], [55]. In this work, the PIs are obtained by
resorting to the BS technique, as it can be easily integrated to
the proposed ensemble approach, in addition to their simplic-
ity, negligible computational efforts required and easiness to
understand [49].

As we shall show, the significance of the proposed ensem-
ble approach lies in its capability of:

1) providing more accurate 24h-ahead solar PV power
production predictions;

2) providing interval solar PV power production predic-
tions for accommodating the overall uncertainty that
affect the solar PV power predictions.

In practice, the improvements in the prediction accu-
racy and the proper quantification of the corresponding
uncertainty, which highlights the discrepancy between the
actual/real and the predicted production, can be valuable
and informative for the decision maker to properly plan,
schedule and control the generation of the available energy
sources, ensure the reliability of electric power distribution,
for storage system sizing, and for an efficient energy market
operation [15], [56], [57].

The proposed approach is verified on a real case study
of a grid-connected solar PV system (231 kWac capac-
ity) installed on the rooftop of the Faculty of Engineer-
ing at the Applied Science Private University (ASU),
Amman, Jordan [58]. The effectiveness of the proposed
approach concerning: i) the prediction of the power pro-
duction task, is shown with respect to three well-known
performance metrics of literature [25], namely Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and
Weighted Mean Absolute Error (WMAE); and ii) the quan-
tification of the uncertainty associated with the power
predictions, is shown with respect to two well-known per-
formance metrics of literature [49], namely PI Coverage
Probability (PICP) and PI Width (PIW).
For comparison, smart persistence model and two other

benchmark models are used to verify the capability of the
proposed approach in providing accurate solar PV power pro-
duction predictions of the ASU solar PV system. In addition,
three approaches of literature, namely the Percentile [59],
Kernel Density Estimation (KDE) [60], and the Mean-
Variance Estimation (MVE) [49], [53] are used, alternatively,
to verify the capability of the proposed approach in quanti-
fying the uncertainty that affect the production predictions
obtained by the ensemble for the ASU solar PV system.

Therefore, the major contributions of the present work are:
• The development of a new comprehensive ensemble
approach for providing accurate 24h-ahead solar PV
power production predictions and quantifying their asso-
ciated uncertainty in the form of Prediction Inter-
vals (PIs) by resorting to the BS technique;

• The comparison and validation of the obtained results
with respect to different benchmark cases for the pre-
diction and the uncertainty quantification tasks.

The paper is organized as follows: Section II states the
problem. Section III describes the real case study of the ASU
solar PV system. Section IV illustrates the proposed ensemble
approach for solar PV power production prediction and PIs
estimation. In Section V, the results of the application of the
proposed approach to the real case study are presented and
comparedwith those obtained by other alternative approaches
of literature. Finally, some conclusions and future works are
given in Section VI.

II. PROBLEM STATEMENT
In this work, it is assumed that the weather data (W) and
the corresponding power production data (EP) of a solar PV
system for a period of Y years are available. The available
weather data include measurements of the ambient tempera-
ture (
−−→
Temp) at 1m altitude and the global solar radiation (

−→
Irr).

The objective of this work is the development of a new
comprehensive ensemble approach for the prediction of the
24h-ahead power production of the solar PV system, with
the quantification of the associated uncertainty. Specifically,
the proposed approach aims at benefiting from deterministic
parameters, e.g., the time stamp (in hours) from the beginning
of each year data, T (t, d), i.e., the chronological order of time
t , t ∈ [1, 24] at day d of a year, for which the power prediction
and the associated uncertainty are to be estimated, and the
historical weather values,

−→
W (t, d − i) = [

−−→
Temp(t, d − i),

−→
Irr(t, d − i)], collected at time t during the previous i days
of day d (i.e., hereafter called embedding dimension), for the
following two purposes:
• providing estimates of the solar PV power produc-
tion at day d (i.e., one day-ahead). In particular,
the approach receives in inputs the vector Ex(t, d) =
[T (t, d),

−→
W (t, d − i)], and provides in output the 24h-

ahead prediction of the solar PV power production,
y (t, d) = P̂(t, d), t ∈ [1, 24];

• quantifying the overall uncertainty affecting the solar PV
power predictions, P̂(t, d), in the form of a Prediction
Interval (PI), PIα = [P̂lower (t, d), P̂upper (t, d)], that is
an interval of lower and upper power production bounds,
P̂lower (t, d) and P̂upper (t, d), respectively, within which
the actual power production value, P(t, d), is expected
to be with a predefined probability α%, e.g., 80%.

III. CASE STUDY: SOLAR PV SYSTEM
The solar PV system under study is installed at the Applied
Science Private University (ASU) in Amman, Jordan at lat-
itude of 32.042044 and at longitude of 35.900232 on the
rooftop of Faculty of Engineering, as depicted in Fig. 1.
The PV system consists of 14 grid-connected solar inverters,
in which 13 inverters are 17 kWac (SMA - STP17000TL-10)
and one inverter is 10 kWac (SMA - STP10000TL-10).
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FIGURE 1. The 231 kWac PV system installed at the ASU, Amman, Jordan.

FIGURE 2. Weather station and PV system at ASU (retrieved and adapted
from Google Maps [61]).

All inverters are with two Maximum Power Point Track-
ers (MPPT), which allows for design flexibility and optimized
performance. For each of the 17 kWac inverters, 3 strings
of 20 modules are connected to the first MPPT and one string
of 19 modules is connected to the second MPPT. For the
10 kWac inverter, one string of 20 modules is connected
to each MPPT. All modules are of the same model (Yingli
Solar – YL245-29b) with peak power of 245W, and directly
installed over concrete rooftop with 11◦ tilt angle and 36◦

azimuth angle (from south to east) [58]. It is worth mention-
ing that the tilt angle was reduced to 11◦ for reducing the
required distance between PV rows to avoid mutual shading,
and this allowed installing more panels. Similarly, panels are
oriented with building axis to maximize roof coverage.

The weather (meteorological) data and the associated PV
power production are exported from data loggers and moni-
toring systems of a weather station and of the PV system. The
PV system is 171m apart from theweather station, as depicted
in Fig. 2 [58].

The meteorological and PV power data are of 1-hour log-
ging intervals, collected during the period from May 16th,
2015 to December 31st, 2016 resulting in 14280 rows of
data. The ASU weather station is 36 meter high and equipped
with 10 measuring instruments measure the following

meteorological parameters (for more details on the ASU solar
PV system data, interested readers may refer to [58]):
• Wind speed (at different heights of 10m, 33m, 35m, and
36m) (m/s);

• Wind direction (at different heights of 10m, 33m, 35m,
and 36m);

• Soil surface and subsoil temperatures (◦C);
• Barometric pressure (hPa);
• Relative humidity (at different heights of 1m and
35m) (%);

• Precipitation amounts (mm);
• Ambient temperature (at different heights of 1m, 33m,
and 35m) (◦C). The Hygro-Thermo Transmitter with
RTD is used for measuring the ambient temperature
with high accuracy. The detailed characteristics of the
installed Transmitter are reported in Table 1;

• Global and diffuse solar irradiances (W/m2). Pyranome-
ters are used for measuring the global irradiance, with
a high accuracy, on a plane surface resulting from
radiant fluxes in the wavelength that span the interval
285 to 2800 nm. The detailed characteristics of the
installed Pyranometers are reported in Table 1.

TABLE 1. The detailed characteristics of the installed hygro-thermo
transmitter and pyranometers at the ASU weather station.

It is worth mentioning that due to the soiling issue in the
Jordanian dusty environment, which reduces the efficiency
of the PV system; a cleaning program with a frequency of
once a week that lasts for 2-3 days has been implemented.
Additionally, the system has been cleaned frequently in the
winter seasons by the rainfall. This high rate of cleaning
indicates the suitability of the collected data in predicting the
PV power, while excluding the dust effect.

Among the collected weather features, few features show
binary or constant values during the Y = 1.6 years period
and, thus, they are excluded from the analysis, e.g., precipi-
tation, wind directions, while the remaining weather param-
eters, e.g., ambient temperature, global solar radiations, are
kept in the analysis.

The effect of the remaining weather parameters on the
accuracy of the power predictions was investigated in [62]:
following a trial-and-errors procedure, different combina-
tions of weather inputs were investigated by developing an
optimized ANN as a prediction model. It was found that the
combination of the 1) current time stamp in hours, from the
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beginning of each year data, T (t, d), 2) ambient tempera-
ture at height 1m,

−−→
Temp(t, d − i), 3) global solar radiation,

−→
Irr(t, d − i), measured at time t , t ∈ [1, 24], in the previous
i = 5 days (embedding dimension), tends to provide an
accurate t-th hour-ahead power production prediction of ASU
PV system of day d .
For completeness, it is worth mentioning that body (or cell)

temperature was used as input to the prediction model
because it has a strong influence on the solar power pro-
duction predictions [63], [64]. In ASU weather station, this
parameter has not been measured. However, several model-
based approaches were developed to accurately estimate the
cell temperature and compare it with the real (measured)
one [65]. Such approaches aim at estimating the cell tem-
perature as a function of solar radiations, ambient tempera-
tures, and PV cell technology dependent nominal operating
variables, etc. [65]. For this reason, investigating the effect
of the cell temperature on the power predictions becomes
crucial if one is interesting to compare the predictability of
solar productions of different technologies. In fact, adopting
such approaches for estimating the cell temperature and, then,
use it for the prediction task, would result in a variable that
aggregates the influences of the ambient temperatures and
global solar radiations, dominated by the PV cell technology.
Thus, this parameter is not taken into account, as far as one
PV technology is investigated in this work.

Therefore, the input patterns of the prediction model at the
t-th time, t ∈ [1, 24], can be expressed as:

Exj (t, d)= [Tj(t, d),
−→
W j(t, d − 5),

−→
W j(t, d − 4),

×
−→
W j(t, d−3),

−→
W j(t, d−2),

−→
W j(t, d−1)], (1)

where
−→
W j(t, d − i) = [

−−−→
Tempj(t, d − i),

−→
Irr j(t, d − i)], and the

corresponding output of themodel will be yj (t, d) = P̂j(t, d),
where j = 1, . . . ,N , and N is the overall number of the
available data patterns.

For a proper utilization of the dataset for the prediction
task, the data are pre-processed as follows [25], [66]:
• incorrect (e.g., negative) solar radiation values and miss-
ing associated production values are recognized in early
and late daily hours; that can be justified by offset in the
solar radiation sensors and inverter failures, respectively.
Therefore, the radiation and the production values are
set to 0;

• few missing solar radiation, temperature and power pro-
duction values are recognized in somemiddle day hours;
that can be due to solar radiation and temperature sen-
sors failures and inverter failures or network disruptions,
respectively. Therefore, these values are excluded from
the analysis;

• the overall data are normalized to the range of [0,1]
to improve the training speed and to maintain the
correlation between the inputs and, thus, guarantee-
ing stable convergence of the ANN internal parameters
(i.e., weights and biases) [16], [67].

FIGURE 3. Few examples of the pre-processed hourly ambient
temperature (top left), global solar radiation (top right), and
corresponding solar PV power production (bottom).

For clarification purposes, Fig. 3 shows few examples of
the pre-processed hourly ambient temperature at height 1m
(top left) and the global solar radiation (top right) and the
corresponding solar PV power production (bottom).

The whole inputs/outputs patterns of both the time and
the weather features and PV power production, respectively,
collected during the Y = 1.6 year period are appended in the
dataset matrix X and partitioned into:
• Training datasets,Xtrain: it contains the considered input
parameters and the corresponding power production,
sampled randomly from May 2015 – August 2016 year
data with a fraction of 70%. This dataset (whose
generic training pattern vector is denoted as Extrainj ,
j = 1, . . . ,Ntrain) is formed by Ntrain = 7605 pat-
terns, which are used for building/training the proposed
ensemble prediction approach (Section IV.A);

• Validation dataset, Xvalid : it contains the consid-
ered input parameters and the corresponding power
production, sampled randomly from May 2015 –
August 2016 year data with the remaining fraction
of 30%. A cross validation procedure is employed, as we
shall see in the following Sections, for a fair data distri-
bution between the training and validation datasets. This
dataset (whose generic training pattern vector is denoted
as Exvalidj , j = 1, . . . ,Nvalid ) is formed by Nvalid = 3260
patterns, which are used for optimizing the architec-
tures of the ensemble base models and its configuration
(Section IV.B);

• Test dataset, Xtest : it contains the patterns from
September 2016 to December 2016, which have never
been used during the development of the ensemble pre-
diction model. This dataset (whose generic training pat-
tern vector is denoted as Extestj , j = 1, . . . ,Ntest ) is formed
by Ntest = 2928 patterns, which are used to evaluate
the performance of the developed ensemble prediction
approach to other benchmark models like that of the
optimum single ANN prediction model.
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FIGURE 4. Sketch of the proposed data-driven ensemble prediction approach for a solar PV system.

IV. THE PROPOSED APPROACH
In this work, a new comprehensive approach based on an
ensemble of M ANNs is developed in a MATLAB envi-
ronment for two objectives: 1) forecasting the 24h-ahead
(i.e., 1 day-ahead) power production of a solar PV system and,
2) quantifying the associated overall uncertainty affecting the
24h-ahead power predictions in the form of PIs.
The overall proposed approach entails three Phases and is

sketched in Fig. 4. In Phase I, the individual base predic-
tion models of the ensemble are developed and the diversity
among the base models is injected by BAGGING technique.

In Phase II, the base prediction models outcomes are
aggregated by a statistical-based aggregation strategy into
a final solar PV power production prediction (Objective 1)
(Section IV.B). In Phase III, the uncertainty associated with
the production prediction is quantified by Bootstrap (BS)
technique (Objective 2) (Section IV.C).

For a j-th test pattern, Extestj (t, d), j = 1, . . . ,Ntest , at time t
of day d , the proposed approach should 1) provide an estimate
of the solar PV power production, P̂ensembletestj (t, d), and 2)
bound the obtained prediction within a PI of lower and upper
bounds, P̂lowertestj (t, d) and P̂uppertestj (t, d), respectively.

A. INDIVIDUAL DATA-DRIVEN BASE PREDICTION MODELS
Over the last few decades, several data-driven methods were
proposed and successfully applied to solar PV power pro-
duction prediction. For example, Izgi et al. [27] applied
an ANN to a small scale solar power system (750W) to
determine the optimum time horizon for which more accu-
rate short/medium-term power predictions can be obtained;
Malvoni et al. [68], proposed a Least-Square Support Vector
Machine (LS-SVM) for accurate short-term solar power

predictions compared to those obtained by the Radial
Basis Function Neural Network (RBFNN) of literature;
Wolff et al. [69], employed the k-nn regression and Support
Vector Regression (SVR) for solar PV power predictions on
the basis of bothmeasured and forecasted weather conditions.

Although different data-driven methods are shown capable
in providing sufficiently accurate solar PV power production
predictions, the ANNs are adopted in this work to constitute
the proposed ensemble, due to their simplicity, being easy
to understand, and due to their capability of successfully
solving highly non-linear problems [36], [37], [57]. How-
ever, the proposed ensemble approach is general and can be
developed by considering any other data-driven methods as
base models, like the ELMs and SVMs. This could be an
object of a future research work.

ANN is a computational model, originally proposed
by [70], inspired by the biological neural networks. ANN
consists of several hidden neurons directionally connected
by weighted connections structured in a proper architecture
of input, hidden (with H hidden neurons) and output layers
(Fig. 5) [71], [72]. ANN aims at capturing the hidden com-
plex (a priori unknown) input/output relationship, i.e., current
time stamp and historical weather values and the correspond-
ing solar PV power production, respectively: given the train-
ing dataset, Xtrain, the ANN should be built/trained on the
basis of the available Ntrain training patterns, as follows:
• the input layer receives the j-th vector Extrainj (t, d − i) ,
j = 1, . . . ,Ntrain, of the current time stamp (in hours)
from the beginning of each year data, Ttrainj (t, d), and
the weather values measured at time t in the previous
i = 5days of day d,

−→
W trainj (t, d − i), from the training

dataset, Xtrain;
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FIGURE 5. ANN model architecture.

• the hidden layer processes the inputs and sends the
manipulated information to the output layer via a neuron
activation function, G. Specifically, the output of each
h-th hidden neuron, uh, h = 1, . . . ,H , is the result of
nonlinear transformation (typically sigmoidal),G, of the
inputs, Extrainj (t, d), given by:

uh = G
(
−→w h.Ex trainj (t, d)+ bh

)
, (2)

where −→w h and bh are the internal parameters of the ANN,
namely the weights vector that connects the input nodes to the
h-th hidden neuron (it accounts for the effects of the inputs
on the target (dependent) variable), and the bias of the h-th
hidden neuron, respectively;
• the output layer provides an estimate for the solar PV
power production via an output activation function, f .
Specifically, the ultimate output is the linear combina-
tions of the H hidden neurons outputs, given by:

ytrainj (t, d)= P̂trainj (t, d)=
∑H

h=1
fh=

∑H

h=1
βh.uh, (3)

where P̂trainj (t, d) is the predicted solar PV power production
at time t of day d and βh is the output weight that connects
the h-th hidden neuron to the output node.

Thanks to the error Back Propagation (BP) learning algo-
rithm, the internal parameters of the ANN (i.e., weights
and biases) are initially defined randomly, then updated
iteratively to minimize the error between the ANN
power production prediction, P̂trainj (t, d), and the actual
power production, Ptrainj (t, d), on the set of training
patterns [25], [73]. Examples on the error BP learning algo-
rithms are Levenberg–Marquardt (LM) and Bayesian Reg-
ularization (BR) [62], [73]. For more details on the ANN,
the interested reader may refer to [74].

Once the ANN is trained, it can be used online to forecast
the solar PV power production for any j-th test pattern, Extestj ,
j = 1, . . . ,Ntest .

1) GENERATION OF DIVERSE ANN BASE MODELS
Ensemble approaches for solar PV power production predic-
tion task use multiple ANN prediction models and aggregate

their prediction outcomes into a final power production pre-
diction. The development of an ensemble entails two steps:
1) building diverse ANN prediction models and 2) aggregat-
ing their prediction outcomes by a given strategy of aggrega-
tion.

The prediction accuracy provided by an ensemble of
multiple models can be improved by generating diversity
among its individual base prediction models [39], [40], [57].
The diversity can be typically established by: 1) adopting
different prediction techniques (e.g., SVMs, ANNs, k-nn,
etc.), 2) adopting the same prediction technique (e.g., ANN),
but with different parameter settings (e.g., different num-
bers of hidden neurons and layers), 3) training each predic-
tion model with different training datasets, by resorting to
techniques like boosting [42], Bootstrapping AGGregatING
(BAGGING) [40], [41], and Adaboost [43]. For more details
on such techniques, the interested reader can refer to [40].

In this work, BAGGING technique is employed to diver-
sify M base ANN models by training each model using
a different training datasets, randomly generated using
the BAGGING algorithm [41]. Basically, different training
datasets are obtained,Xm

train,m = 1, . . . ,M , by sampling ran-
domly from the original training dataset, Xtrain, with replace-
ment. Therefore, the M training datasets will have the same
size, as of the original training dataset, Ntrain.

B. STATIC MEDIAN STRATEGY FOR THE AGGREGATION
OF THE INDIVIDUAL ANNS OUTCOMES
Once the ANN prediction models of the ensemble are built,
the next step is to develop an effective strategy for aggregating
their prediction outcomes. Such strategies can be broadly cat-
egorized into statistics-based and model performance-based.
The idea underpinning the aggregation strategies is to con-
sider a weight wm for the solar PV power production predic-
tion, P̂m, obtained by each m-th ANN model,m = 1, . . . ,M ,
and to aggregate their predictions as a weighted average by:

P̂ =

∑M
m=1 w

m.P̂
m∑M

m=1 w
m

, m = 1, . . . ,M . (4)
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In statistics-based strategies, typical examples are the
Simple Average and the Simple Median aggregation
strategies [35]. The former assumes that the weights of all the
M predictions of theM ANNmodels are equal to wm = 1/

M ,
whereas the latter considers only the weight of the center
value of theM ANN predictions distribution, i.e., it considers
that the weights are all equal to 0 except for the median of the
M ANN predictions [35].

In contrary, model performance-based strategies, such as
Global Weighted Average and Local Weighted Average,
weight the ANN models based on their prediction accuracy
estimated on a validation dataset of input-output patterns. For
instance, Global Weighted Average assumes that the weights
of the ANN models of the ensemble are fixed (equal or not),
independently from the test input pattern, based on their per-
formances on a validation dataset, whereas Local Weighted
Average adaptively considers that the weight of each ANN
model (its contribution to the final aggregated prediction)
depends on its local performance evaluated considering a
fraction of the input-output patterns of the validation dataset
characterized by inputs very similar to that of the input test
pattern. In practice, the Local Weighted Average requires the
extraction of a fraction of the input patterns from a validation
dataset similar to each test input pattern, evaluates the M
models performances on that fraction, and assigns theweights
to the M models based on their prediction accuracy. This
constitutes computational limitations for their deployment in
practice, despite the outstanding prediction performance that
can be achieved.

In this work, Simple Median aggregation strategy is
employed due to its simplicity with no computational
limitations [47], [48].

C. BOOTSTRAP (BS) TECHNIQUE FOR
UNCERTAINTY QUANTIFICATION
In this Section, the method proposed for the quantification
of the solar PV power production prediction in the form of
PIs is presented. A PI with a predefined confidence level,
α %, is an interval of lower and upper bounds of the pre-
dicted power production at time t , t ∈ [1, 24] of day d
[P̂lowertestj (t, d), P̂uppertestj (t, d)], such that the actual ‘‘unknown’’
value, Ptestj (t, d), of the j-th test pattern at time t of day d ,
falls within the interval with a probability equals to α%:

PIα =
[
P̂lowertestj (t, d) , P̂

upper
testj (t, d)

]
,

Prob
(
P̂lowertestj (t, d) ≤ Ptestj (t, d) ≤ P̂

upper
testj (t, d)

)
= α%.

(5)

To this aim, several methods were proposed and applied
with success for the estimation of PIs on wind power pro-
duction predictions. To the best of our knowledge, few
efforts were dedicated to the development of such meth-
ods for the quantification of the uncertainty associated
with the solar PV power production predictions, while the
focus was on the development of accurate prediction mod-
els instead. Examples on methods used for quantifying the

uncertainty in different industrial applications are Bootstrap
(BS) [51], Delta [52], [55], Lower Upper Bound Estimation
(LUBE) [54], and Mean-Variance Estimation (MVE) [53].
In this work, the BS technique is investigated due to the
fact that it can easily integrated to the proposed ensemble
approach (Section IV.B). It is shown effective for PI esti-
mation in various industrial application [49], including wind
energy predictions [35], [49].

In solar power predictions, the prediction error variance
σ 2
ε is decomposed into three error variances associated to the

three sources of uncertainty:
• source of uncertainty 1 is due to the errors in the
model input (i.e., measurement errors of the weather
variables) (σ 2

W );
• source of uncertainty 2 is due to the inherent variabil-
ity (stochasticity) of the physical process (i.e., similar
weather conditions might entail some differences in the
solar PV power production) (σ 2

PR);
• source of uncertainty 3 is due to the ANN model
error (i.e., due to different parameter settings of the
ANN and/or different training datasets used for building/
developing the ANN models) (σ 2

MO).
The prediction error variance, σ 2

ε , is, then, defined by:

var [ε] = σ 2
ε = σ

2
W + σ

2
PR + σ

2
MO. (6)

The flowchart of the BS technique for the estimation of
the unknown σ 2

ε , and the associated PIs, is sketched in Fig. 6.
There are two steps:
Step 1: Building the BS training dataset. Let us assume

that a dataset of weather data and their associated power
production, X = [W, EP], are available. This dataset is
portioned in two datasets: a training dataset Xtrain =

[Wtrain, EPtrain] for building the ANN ensemble models and
a validation dataset Xvalid = [Wvalid , EPvalid ] for providing
estimates of the power production, ÊPvalid , whose true pro-
duction EPvalid are already known. The BS training dataset

XBS
train = [Wvalid ,

(
EPvalid −

ÊPvalid
)2
− Eσ 2

MOvalid ] can then
be prepared with the weather-forecasting data of the val-
idation dataset, Wvalid , and the squared prediction errors,(
EPvalid −

ÊPvalid
)2
− Eσ 2

MOvalid , excluding the model error,
on the validation dataset. It is important to point out that this
term includes the source of uncertainty 1 and 2 [35].
Step 2: Constructing the BS PIs of the test pattern. With

the BS training dataset, a dedicated feedforward ANN is
developed for providing, at time t , an estimate of the variance,

σ
2testj
ε = σ

2testj
W + σ

2testj
PR + σ

2testj
MO , associated of a general

test pattern of weather data, EWtestj . To ensure a strictly pos-
itive variance estimate, an exponential activation function is
used [45], [49].

Finally, the PI of the test pattern at time t with a confidence
level of α% can be obtained by [53], [75]:[
P̂lowertestj (t, d), P̂uppertextj (t, d)

]
= P̂testj (t, d)±C

α
dof .σ

2testj
ε (t, d) ,

(7)
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FIGURE 6. Scheme of the BS technique for estimating PIs of solar PV power production predictions.

TABLE 2. The detailed characteristics of each ANN base model in the
proposed ensemble.

where P̂testj is the power production predicted by the ANN
ensemble for the test pattern at time t and Cαdof is the (1-α)/2
quantile of a Student t-distribution with degrees of free-
dom (dof) equal to the number of ensemble models H [35].

V. APPLICATION OF THE PROPOSED ENSEMBLE
APPROACH TO THE REAL CASE STUDY
The effectiveness of the proposed ensemble approach for
solar PV power production prediction and uncertainty quan-
tification is demonstrated by the real case study of Section III
in Section V.A and Section V.B, respectively. The obtained
results are compared to those obtained by smart persistence
model as a Baseline and two other benchmark models for the
prediction task (Section V.A) and three approaches used alter-
natively for the uncertainty quantification task (Section V.B).

A. ENSEMBLE POWER PRODUCTION PREDICTION
An ensemble of M ANN models is developed in which
the diversity among the models is generated by using the
BAGGING technique. Each ANN model is assumed to be
characterized by an architecture of input, hidden and output
layers. The ANN models are built in MATLAB environ-
ment by resorting to the LM error BP learning algorithm.
The detailed characteristics of each m-th ANN model of the
ensemble, m = 1, . . . ,M , are reported in Table 2.

The optimum number of hidden neurons, H , in the hid-
den layer and the optimum number of the ANN ensemble
models, M , are selected according to the ensemble predic-
tion accuracy obtained on the Nvalid input-output valida-
tion patterns by a trial-and-error procedure. To this aim,
eight possible numbers of the hidden neurons, H candidate

=

1, 6, 11, 16, 21, 26, 31, 36 and five possible numbers of
the ensemble models, M candidate

= 1, 10, 20, 40, 60, are
considered.

The Root Mean Square Error (RMSE) (in kW) is con-
sidered for the quantification of the ensemble prediction
accuracy for the different combinations of H candidate and
M candidate. The RMSE is the average production prediction
error, i.e., small RMSE values indicate more accurate predic-
tions. RMSE is defined by [16], [25], [57]:

RMSE =

√√√√∑N valid
j=1

(
P̂j − Pj

)2
Nvalid

. (8)

To robustly evaluate the ensemble prediction performance
in terms of the RMSE, a 5-fold cross-validation proce-
dure is carried out. In practice, we sample the training and
the validation patterns randomly 5 different times (5-fold)
from the data in the period May 2015-August 2016 with
a fraction of 70% and 30%, respectively. The final RMSE
value is then, computed by simply averaging the 5 RMSE
values. In fact, one can employ advanced meta-heuristic
optimization algorithms, such as Particle Swarm Optimiza-
tion (PSO) [76], [77], Cuckoo Search (CS) [78], Genetic
Algorithm (GA) [76], or a combination of these algorithms,
to define optimally the ANN base models internal parameters
(e.g., number of hidden neurons, activation functions, etc.)
and the number of ensemble models, while avoiding the
traditional iterative BP algorithm. As far as the objective
of this work is to show the powerful of the ensemble in
accurately predicting the solar power production and prop-
erly quantifying the associated uncertainty with convenient
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FIGURE 7. RMSE values for different combinations of number of hidden
neurons (H) and number of models of the ensemble (M).

computational efforts (as we shall see later); the utilization of
the basic trial-and-error procedure is sufficient.

Fig. 7 shows the RMSE values obtained by the application
of the ensemble characterized by the different combinations
of H candidate and M candidate.
One can conclude the following:
• As long as number of models that compose the ensem-
ble,M , and number of hidden neurons, H , increase; the
prediction accuracy increases (i.e., RMSE decreases).
This enhancement ismore noticeablewhen the ensemble
comprises M ≥ 20 models and the models comprise
H ≥ 31;

• Further increments in number of models and of hidden
neurons of the ensemble models entail non-significant
improvements in the prediction accuracy. This combi-
nation can be avoided for reducing the computational
efforts and ensemble complexity;

• The optimal combination can be considered when the
ensemble comprises Mopt

= 20 with Hopt
= 31 hidden

neurons (star marker).
It is worth mentioning that the proposed ensemble

approach has been performed with a Matlab code that
has been in-house developed and that the computational
time needed to optimize the architectures of the ensem-
ble base models (i.e., H candidate) and its configuration
(i.e.,M candidate) with 5-fold cross validation on an Intel Core
i7 is 79.62 minutes. It is, indeed, expected that as long as
number of ensemble models increases (1, 10, 20, 40, 60),

the computational efforts required for building the ensemble
would increase too (∼37, 336, 666, 1243, 2495 seconds,
respectively). Thus, a trade-off between the computational
efforts, ensemble complexity, and the prediction accuracy is
necessary.

Once the ensemble configuration and its ANNs architec-
tures are defined, it is applied on the test dataset,Xtest , and its
prediction performance is evaluated on the Ntest input-output
test patterns by considering the following three performance
metrics [16], [30]:
• the RMSE (3);
• the Mean Absolute Error (MAE) (in kW), i.e., the aver-
age error of the solar PV power production prediction.
It is defined by (9):

MAE =

∑N test
j=1

∣∣∣(P̂j − Pj)∣∣∣
Ntest

, (9)

• the Weighted Mean Absolute Error (WMAE), i.e., the
average relative error of the solar PV power production
prediction. It is defined by (10):

WMAE =

∑N test
j=1

∣∣∣(P̂j − Pj)∣∣∣∑N test
j=1 Pj

, (10)

where P̂j and Pj are the predicted and the true solar PV
power production, respectively, of each j-th test patterns,
j = 1, . . . ,Ntest . Small RMSE,MAE andWMAE values entail
accurate power predictions.

Table 3 summarizes the three performance metrics
obtained by the proposed ensemble approach with respect to
those obtained by three benchmark models, along with the
time required for building and evaluating the models using
the training and test datasets, respectively:
• Benchmark 1 (Smart Persistence [79]): in which the pro-
duction at time t over the 24 hours prediction horizon,
1t = 24 (one day-ahead prediction) is assumed to be the
same as of the recent production measured in the previ-
ous day at the same time t , P̂t+1t = Pt , t ∈ [1, 24]. This
model is usually considered as a Baseline-forecasting
model and it is used to evaluate the effectiveness of any
other developed models for forecasting.

• Benchmark 2 (Average ofM = 20 ANNs): in which the
final performance metrics are the average values of the
three performance metrics obtained by the 20 ANNs of

TABLE 3. Performance of the proposed ensemble approach and the three benchmark models on the test dataset.
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FIGURE 8. Few examples of power production predictions obtained by the proposed ensemble approach together with those obtained by
the individual 20 ANNs models.

the ensemble. This is typically the current case of the
ASU PV system [62], [66];

• Benchmark 3 (Best ofM = 20ANNs): in which the final
performancemetrics are those obtained by the best ANN
model among the 20 available models of the ensemble.

In order to evaluate the performance gain obtained by the
application of the proposed ensemble approach, the perfor-
mance gain (pgMetric%) of the proposed ensemble approach
with respect to the Baselinesmart persistence model is calcu-
lated. The performance gain can be computed for the three
metrics by [57]:

pgMetric (%)=
(
METRICBaseline

−METRICEnsemble

METRICBaseline

)
∗100.

(11)

Notice that, positive performance gains of the three metrics
entail that the forecasting approach that in need to be verified
outperforms theBaseline smart persistence forecastingmodel
(as in the case of the proposed ensemble approach), and vice
versa (as in the case of the Benchmark 2).

Looking at Table 3, one can notice that the proposed
ensemble approach significantly improves the accuracy of
the power production predictions compared to the bench-
mark models including the Baseline smart persistence model.
In fact, one can notice that the performance of the individual
ANN models (Benchmark 2 – average of 20 ANN models)
is less than that of the smart persistence model that justified
the impact of the proposed ensemble approach. In practice,
the benefits of such improvements should be evaluated by
considering other factors, like the delivered versus sched-
uled power production, imbalance costs and penalties, and
ancillary service costs. For large scale PV systems, one can
also consider the market participation and potential emissions
implications [24], [80], [81].

In addition, one can notice that the proposed approach,
despite its nature as an ensemble of prediction models, neces-
sitates short training/test time (i.e., 32.06 and 0.38 seconds,
respectively) that would increase its potentiality in real time
applications. Indeed, the times necessary to establish the
Baselinemodel and the single (best) ANNmodel are negligi-
ble compare to the proposed approach: the former requires
no training due to its nature, whereas the latter is a single
model and would be obtained after a trial-and-error procedure
among several other ANNmodels. However, their accuracies
are worse than those obtained by the proposed approach
that makes it worthy to be proposed. Future works can be
devoted towards investigating other base prediction models,
such as Extreme Learning Machines (ELMs), that prove their
simplicity, fast computational and good generalization capa-
bility in similar applications, to further enhance the proposed
ensemble approach [25].

Fig. 8 shows few examples of the 24h-ahead power predic-
tions obtained by the proposed ensemble approach (squares)
along with those obtained by the 20 individual ANNs models
(light shade of color) for two clear (6 September, 2016 and
22 September, 2016) and cloudy (23 November, 2016 and
15 December, 2016) days. It can be seen that:

1) the power production predictions provided by the pro-
posed ensemble are reasonably close to the true power
production, in particular for the two clear days. The
predictions are less accurate in the two cloudy days
due to the extreme conditions experienced by the ASU
PV system. In fact, one might be wondering whether
considering the cloudy hours as an additional input to
the proposed approach can further enhance the pre-
dictability of the solar PV power. However, from the
point of view that the clouds have the largest impact
on surface level solar radiation and, thus, their effect
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is already embedded in the level of solar radiation
received by the solar radiation sensor.

2) the variability (uncertainty) of the individual models’
predictions is large at the middle of the day (due to
the large variability of the weather conditions expe-
rienced by the ASU PV system) with respect to that
shown at the early morning and late evening time hours
(due to the small variability of the weather conditions
experienced by the ASU PV system). This remark
will be explained further in Section V.B through the
quantification of the uncertainties that affect the power
production predictions.

In conclusions, one of the strengths of the proposed ensem-
ble approach lies in its capability of benefiting from the
strengths while overcoming the drawbacks of the diverse
20 ANNs models. Thus, their aggregation improves upon the
performance of each sole ANNmodel. It is worth mentioning
that the impact of the proposed approach can be greatly
significant if it is applied towards minute-ahead forecasting
for which time series modeling is much more relevant. This
can be an object of future research work.

B. POWER PRODUCTION PREDICTION UNCERTAINTY
In this Section, the PIs obtained by the developed ensemble
approach of Section V.A on the test data, Xtest , are pre-
sented and compared with those obtained by three other
approaches used, alternatively, to quantify the associated
uncertainty of the power predictions obtained by the ensem-
ble, P̂ensemble(t, d), at time t of day d . They are:
1) Percentile (quantile) technique [59]. It computes the

percentiles (quantiles) of the M predicted power pro-
duction obtained by the M models of the ensemble,
P̂m(t, d), m = 1, ..,M . In this work, the 10th and
90th percentiles for the lower, P̂lower (t, d), and upper,
P̂upper (t, d), bounds, of the PI, respectively, are calcu-
lated for a confidence level of α = 80%;

2) Non-parametric Kernel Density Estimation (KDE)
technique [60]. It estimates the Probability Density
Function (PDF) of the power predictions obtained
by the M models of the ensemble, P̂m(t, d), m =
1, ..,M . Basically, it sums the Gaussian kernel func-
tions assigned to each of the m-th power prediction to
obtain the final PDF, whose 10th and 90th percentiles
are the lower, P̂lower (t, d), and upper, P̂upper (t, d),
bounds, of the PI, respectively. More details about the
KDE can be found in [60].

3) Mean Variance Estimation (MVE) technique [53].
It assumes that the prediction error obtained by the
ensemble, i.e., ε = P − P̂ensemble, for an input test
pattern, is an uncertain variable distributed according
to a Gaussian distribution function whose variance σ 2

ε

has to be estimated, by using a dedicated ANN properly
developed with a procedure similar to that followed for
the BS technique [53]. The dependence of this vari-
ance on the input test patterns is the key assumption
of the MVE. In this work, an ANN with three layers

and 100 hidden neurons is built for establishing the
80% PIs of the power production predictions obtained
by the ensemble. Briefly, MVE aims at preparing a

training dataset XMVE
train = [Wvalid ,

(
EPvalid −

ÊPvalid
)2
],

that comprises the inputs weather data of the valida-
tion dataset, Wvalid , and the squared prediction errors,(
EPvalid − ÊPvalid

)2
, obtained on the validation dataset.

Once the training dataset is constructed, the dedicated
ANN is built for providing, at time t , an estimate of

the variance, σ
2testj
ε (3), associated of a general test

pattern of weather-forecasting data,
−→
W testj . The 80%

PIs can be, then, estimated by resorting to (4). To ensure
a strictly positive variance estimate, an exponential
activation function is used. More details on the MVE
can be found in [49], [53].

To this aim, dedicated feedforward ANNs characterized by
an architecture of three layers (input, hidden and output) and
7 hidden neurons are developed for the estimations of the
prediction error variance in the MVE and the BS techniques.
The estimated PIs are evaluated with respect to two well-

known performance indicators [49], [82]. The objective of a
PIwith confidence α% is to have coverage of at least α%with
width as small as possible [83]: 1) the PI Coverage Probabil-
ity (PICP), i.e., the fraction of true production that falls within
the computed PIs and 2) the PIWidth (PIW) (in kW).

TABLE 4. PIs Performances obtained by the proposed approach and the
three alternative approaches on the test dataset, for α = 80% target
confidence level.

Table 4 reports the PIs average performances over the 50-
fold cross validations obtained by the proposed approach
and the three other alternative approaches in terms of PICP
and PIW.

One can easily recognize that the PIs obtained by the
percentile technique are the narrowest (PIW) but have very
low coverage value (PICP = 0.64), which is less than the
target coverage level of 0.8. On the other hand, the other
approaches provide larger (and to some extent similar) PIs
widths, therefore, acceptable (and to some extent similar)
coverage values (with respect to the target coverage level
of 0.8). Specifically, the PIs provided by the BS technique are
thewidest, leading to large coverage probability. For instance,
with respect to the MVE technique, the larger PI widths
obtained by the BS technique can be justified by the fact that it
considers the uncertainty inherent in the model structure and
parameter, whereas the MVE technique does not, and thus,
narrower PIs are expected to be obtained by the MVE than
the BS, leading to lower coverage levels [49], [84].
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FIGURE 9. Overall average coverage (left) and PI width (right) of the Percentile (top), KDE (middle top), MVE (middle bottom), and the
proposed approach (bottom).

FIGURE 10. Comparison of the PIs obtained by the proposed approach (dark shade of color) and the MVE (light shade of color).

To further compare these approaches, in depth analysis is
performed in which the hourly PIs performances (i.e., from
00:00 to 23:00, EST) are computed and compared as shown
in Fig. 9. Fig. 9 (left) shows the overall average values of the
PICP, whereas Fig. 9 (right) shows the corresponding aver-
age values of the PIW, with the standard deviations computed
for both metrics over the 50-fold cross validations, obtained
by the percentile (top), KDE (middle top), MVE (middle
bottom) and the proposed approach (bottom). One can notice
the following:
• the PIs obtained by the Percentile technique are the
narrowest among the other techniques (Fig. 9 (right top))

but does not have acceptable coverage values, less than
the target coverage level of 0.8 (Fig. 9 (left top));

• the PIs obtained by the aforementioned techniques are
narrow for early morning and late evening day hours
(Fig. 9 (right)) with acceptable coverage levels (higher
than 0.8) (Fig. 9 (left)). The PIs in the middle hours of
the day are expanded to accommodate the high variabil-
ity (stochasticity) of the weather conditions;

• the PIs obtained by the KDE are slightly narrower than
those obtained by the MVE and BS techniques, but they
fail to satisfy the target coverage level for most of the
middle time hours;
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• the PIs provided by the BS technique are wider than
those obtained by the MVE technique, which leads to a
large coverage probability, satisfying the target coverage
level at all-time instances, e.g., MVE fails to achieve the
0.8 coverage level at 13:00, whereas the BS does;

• In addition, the variability represented by the standard
deviations of the coverage probability using the BS tech-
nique (Fig. 9 (left bottom)) is smaller than those obtained
by the MVE technique (Fig. 9 (left middle bottom)).

For clarification purposes, Fig. 10 shows few examples
of the PIs obtained by the proposed approach (i.e., BS)
(dark shade of color) along with those obtained by, for
instance theMVE approach (light shade of color). In addition.
Fig. 10 shows the true and the predicted solar PV power
production obtained by the ensemble approach of Section IV
(circles and squares, respectively).

It can be seen that the PIs provided by the BS approach are
expanded to accommodate the variability in the weather con-
ditions and, thus, satisfying the target coverage level of 0.8 at
most of the time instances of the four different examples
(days) with respect to those obtained by the MVE approach
of literature.

In conclusion, the BS technique is superior to the other
alternative approaches in achieving the target coverage level
of 0.8 at all-time instances of the day with marginally wider
PIs widths than the best alternative techniques, the KDE and
the MVE.

VI. CONCLUSIONS AND FUTURE WORKS
In this work, an ensemble of optimized and diversified Arti-
ficial Neural Networks (ANNs) for 24h-ahead predicting the
solar PV power production and, at the same time, quantifying
the associated uncertainty that affect the power production
predictions is proposed.

The main contributions in this work are: i) the devel-
opment of a new comprehensive ensemble approach for
providing accurate 24h-ahead solar PV power production
predictions and quantifying their associated uncertainty in the
form of Prediction Intervals (PIs) by resorting to the Boot-
strap (BS) technique; ii) the comparison and the validation of
the obtained results with respect to smart persistence model
and two other cases of a single optimized ANNmodel for the
prediction task, and of the Percentile, Kernel Density Esti-
mation (KDE), and the Mean-Variance Estimation (MVE)
techniques of literature for the uncertainty quantification
task.

The ANNs base models of the proposed ensemble are
optimized in terms of number of hidden neurons in the hidden
layer by a trial-and-error procedure and diversified by resort-
ing to BAGGING technique.

Standard performance metrics are considered to evaluate
the effectiveness of the proposed approach with respect to
the benchmark approaches, they are: i) the performance gains
of the Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and Weighted Mean Absolute Error (WMAE)
for the quantification of the predication accuracy gain, and

ii) the PI Coverage Probability (PICP) and PI Width (PIW)
for the quantification of the goodness of the obtained PIs.

The proposed approach is verified with respect to a real
case study regarding a grid-connected solar PV system
(231 kWac capacity) installed on the rooftop of the Fac-
ulty of Engineering at the Applied Science Private Univer-
sity (ASU), Amman, Jordan. Results show the superiority
of the proposed approach in providing accurate 24-h power
production predictions with a reduction in terms of RMSE,
MAE, and WMAE up to 11%, 12%, and 9%, respectively,
while robustly quantifying different sources of uncertainty
that affect the production predictions. Finally, we believe that
the proposed approach can be considered as a comprehensive
approach from which the solar energy plants can be benefit in
enhancing the solar power productions predictions and, at the
same time, accommodate the uncertainty that can influence
the predictions.

Future works will be devoted towards i) the implementa-
tion of advanced data-driven techniques as base models of the
ensemble, such as Extreme Learning Machines (ELMs) and
Echo State Networks (ESNs), ii) the development of advance
ensemble aggregation strategies, such as the Local Fusion
strategy, and iii) to further optimize the base models (in terms
of their internal parameters) by using advanced optimization
techniques like Particle Swarm Optimization (PSO), Cuckoo
Search (CS) optimization, and Genetic Algorithms (GAs),
to further enhance the prediction accuracy.

NOMENCLATURE
A. ABBREVIATIONS
RE Renewable Energy
PV Photovoltaics
LCOE Levelised Cost Of Electricity
ANNs Artificial Neural Networks
BP Back Propagation
LM Levenberg–Marquardt
BR Bayesian regularization
GBRT Gradient Boosting Regression Trees
RBFNN Radial Basis Function Neural Network
SVMs Support Vector Machines
LS-SVM Least-Square Support Vector Machine
SVR Support Vector Regression
ELMs Extreme Learning Machines
MME Multi-Model Ensemble
k-nn k-nearest neighbors
PIs Prediction Intervals
BAGGING Bootstrapping AGGregatING
BS Bootstrap
MVE Mean Variance Estimation
KDE Kernel Density Estimation
LUBE Lower Upper Bound Estimation
ASU Applied Science Private University
MPPT Maximum Power Point Trackers
PSO Particle Swarm Optimization
CS Cuckoo Search optimization
GA Genetic Algorithm
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B. NOTATIONS
W Overall weather data
EP Overall power production data
Y Number of available years data
−−→
Temp Overall ambient temperatures vector
−→
Irr Overall global solar radiations vector
t Time instant, t ∈[1,24]
d Index of a day
i Embedding dimension
−→
W (t, d − i) Overall weather conditions vector

collected at time t from previous i
days of day d

Ex(t, d) Overall input vector to the prediction
model collected at time t of day d

y(t, d) Production prediction obtained at
time t of day d

P(t, d) True production at time t of day d
P̂(t, d) Production prediction obtained at

time t of day d
P̂lower (t, d) Lower production prediction

obtained at time t of day d
P̂upper (t, d) Upper production prediction

obtained at time t of day d
α Target confidence level
PIα Prediction Interval of confidence α
N Number of available input-output

patterns
Ntrain Number of training input-output

patterns
Nvalid Number of validation input-output

patterns
Ntest Number of test input-output patterns
j j-th input-output pattern, j = 1, . . . ,N
Tj(t, d) Time stamp of a generic j-th pattern

collected at time t of day d
−−→
Tempj(t, d − i) Ambient temperature vector of a

generic j-th pattern collected at time
t from previous i days of day d

−→
Irr j(t, d − i) Global solar radiations vector of a

generic j-th pattern collected at time
t from previous i days of day d

−→
W j(t, d − i) Weather conditions vector of a

generic j-th pattern collected at
time t from previous i days of day d

Exj(t, d) Input vector to the prediction model
of a generic j-th pattern collected at
time t of day d

Pj(t, d) True production of a generic j-th
pattern at time t of day d

P̂j(t, d) Production prediction of a generic
j-th pattern at time t of day d

X Input-output overall dataset
Xtrain Input-output training dataset
Xvalid Input-output validation dataset

Xtest Input-output test dataset
Extestj Generic test pattern vector,

j = 1, . . . ,Ntest
Exvalidj Generic validation pattern vector,

j = 1, . . . ,Nvalid
Extrainj Generic training pattern vector,

j = 1, . . . ,Ntrain
M Number of prediction models

of the ensemble
m Index of prediction model,

m = 1, . . . ,M
M candidate Possible number of models in the

ensemble
Mopt Optimum number of models in the

ensemble
Ttestj (t, d) Time stamp (in hours) of the j-th

test pattern
−→
Irr testj (t, d − i) Global solar radiations vector of the

j-th test pattern collected at time t
from previous i days of day d

−−→
Temptestj (t, d − i) Ambient temperature vector of the

j-th test pattern collected at time t
from previous i days

−→
W testj (t, d − i) Weather conditions vector of the

j-th test pattern collected at time t
from previous i days of day d

Extestj (t, d) Input vector to the prediction model
of the j-th test pattern collected at
time t of day d

P̂
mj
test (t, d) m-th production prediction of the j -th

test pattern obtained at time t of
day d , j = 1, . . . ,Ntest

P̂ensembletestj (t, d) Ensemble production prediction of the
j-th test pattern obtained at time t of
day d , j = 1, . . . ,Ntest

P̂lowertestj (t, d) Lower production prediction of the
j-th test pattern obtained at time t of
day d , j = 1, . . . ,Ntest

P̂uppertestj (t, d) Upper production prediction of the
j-th test pattern obtained at time t of
day d , j = 1, . . . ,Ntext

Xm
train m-th training dataset used for training

m-th ANN
H Number of hidden neurons
h Index of hidden neuron, h = 1, . . . ,H
H candidate Possible number of hidden neurons
Hopt Optimum number of hidden neurons
−→
W trainj (t, d − i) Weather conditions vector of the

j-th training pattern collected at time t
from previous i days of day d

Extrainj (t, d) Input vector to the prediction model
of the j-th training pattern collected at
time t of day d
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G Neuron activation function
uh Output of each h-th hidden neuron,

h = 1, . . . ,H
−→w h, bh Internal parameters of the ANN
fh Output activation function

from the h-th neuron
βh Output weight that connects the h-th

hidden neuron to the output node
ytrainj (t, d) Production Prediction of a j-th

training pattern at time t of day d
Ptrainj (t, d) True production of a j-th

training pattern at time t of day d
P̂trainj (t, d) Production Prediction of a j-th

training pattern at time t of day d
wm Weight of the m-th prediction model,

m = 1, . . . ,M
σ 2
W Source of uncertainty due to

ANN model input
σ 2
PR Source of uncertainty due to

physical process variability
σ 2
MO Source of uncertainty due to

ANN model error
σ 2
ε Overall sources of uncertainty,

σ 2
ε = σ

2
W + σ

2
PR + σ

2
MO

XBS
train Bootstrap training dataset

XMVE
train MVE training dataset

RMSE Root Mean Square Error (in kW)
MAE Mean Absolute Error (in kW)
WMAE Weighted Mean Absolute Error
pgMETRIC Prediction performance gain

calculated for a performance METRIC
METRICBaseline Prediction performance METRIC

obtained by a baseline prediction
approach

METRICEnsemble Prediction performance METRIC
obtained by the proposed
ensemble prediction approach

1t Prediction horizon
P̂t+1t Prediction obtained at time t

over the prediction horizon using
the Smart Persistence model

Pt True production at time t
PICP PI Coverage Probability
PIW PI Width (in kW)
Cαdof (1-α)/2 quantile of a Student

t-distribution with number of
degrees of freedom

PDF Probability Density Function
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