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ABSTRACT In low-altitude target situation, the multi-path signals cause the amplitude-phase distortion of
direct signal from targets and degrade the performance of existing methods. Hence, in this paper, we propose
a phase enhancement method for low-angle estimation using supervised deep neural network (DNN) to
mitigate the phase distortion, thus to improve direction of arrival (DOA) estimation accuracy. The mapping
relationship between the original phase difference distribution of the received signal and desired phase
difference distribution is learned by DNN during training. The phase of test data is enhanced by trained
DNN, and the enhanced phase is used for DOA estimation. We explain the significance of enhancing phase
instead of amplitude by discussing the sensitivity of amplitude and phase on DOA estimation. Moreover,
we prove the effectiveness and superiority of the proposed method by simulation experiments. The results
demonstrate that the proposed technique has a better performance in terms of estimation error and goodness
of fit (GoF) than the physics-driven DOA estimation methods and state-of-the-art methods including feature

reversal and the support vector regression (SVR).

INDEX TERMS Phase enhancement, supervised deep neural network, DOA estimation.

I. INTRODUCTION

When radar tracks a low-angle target over a severe terrain
environment, the distribution feature of received signal is not
only determined by the direct signal, but also the multi-path
signals including specular reflection signal and the diffuse
reflection signals. Generally, the effect of multi-path signal
can be regarded as an amplitude and phase perturbation
on direct signal [1], [2]. Because that the characteristics of
the far-field plane wave of direct signal become blurred
in the multi-path environment, the performance of existing
far-field plane wave based super resolution methods such
as digital beam forming (DBF), multiple signal classifica-
tion (MUSIC) [3] and maximum likelihood (ML) [4] method
degrades. And it is sensitive to the size of unknown pertur-
bation. Hence, the feature of the far-field plane wave that
recovers the direct signal is the only way to improve the
performance of physics-drive methods.
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In order to improve the performance of DOA estimation,
neural network based methods [5]—[8] are introduced into the
field of array signal processing. In [5], the problem of DOA
estimation is modeled as classification task. The whole of
spatial domain is divided into several bins, each bin represents
a class. Obviously, on the one hand, the size of bin determines
the resolution; on the other hand, the problem of model
mismatch exists. Recently, two new neural networks [6]—[8]
are used for solving DOA estimation. In [6], a new method
called feature reversal is introduced. The method utilizes
an unsupervised auto-encoder network to learn the latent
distribution feature of corresponding DOA. The advantage of
feature reversal is that it has a small computation load and
high accuracy compared with MUSIC. In [7] and [8], a regres-
sion strategy is adopted and an end-to-end SVR network is
established to predict DOA. The SVR based methods also
show a higher accuracy than DBF and MUSIC. In spite of
the great achievements above, there is no paper discussing the
feature selection during training and fundamental origins of
error in DOA estimation. And we will discuss it in this paper.
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FIGURE 1. Signal model.

Different from unsupervised feature reversal in [6] and
supervised end-to-end learning SVR-based method in [7]
and [8], a supervised feature-to-feature learning-based
method is presented in this paper to reduce the influence
of phase error in term of DOA estimation, and improve the
DOA estimation accuracy. Compared with existing meth-
ods, this paper has the following innovations. First, different
from [6]—-[8], we only train phase feature to improve the DOA
estimation accuracy. That is, instead of training amplitude
feature and phase features together or training real part fea-
ture and imaginary part features together, we train phase
feature only in this paper. And we explain the importance
of phase feature on DOA estimation by analyzing the sen-
sitivity of amplitude feature and phase feature on DOA esti-
mation, principle of DBF method and data integration. Sec-
ond, an feature-to-feature learning based phase enhancement
framework is established to reduce the negative influence of
feature perturbation, and thus to improve estimation accuracy.

The paper is organized as follows. In section II, we review
the signal model and discuss the feature selection problem.
In section III, the structure of proposed method is introduced.
Simulation experiments demonstrate the predominance of
proposed method is better than existing DBF, MUSIC, ML,
feature reversal and SVR based methods in terms of estima-
tion accuracy and GoF in section IV. In section V, the per-
formance of proposed method is validated by real data.
Section VI gives the conclusion of this paper.

Notations: Vectors are defined by boldface small letters,
while matrices are noted by boldface capital letters; super-
scripts (-)7 and (-)" represent conjugate, transpose and Her-
mitian operator, respectively. Additionally, j = +/—1 repre-
sents the imaginary unit, ||-|| denotes /> norm.

Il. SYSTEM OVERVIEW AND FEATURE SELECTION
We consider an uniform linear array (ULA) of M isotropic
elements with L snapshots. The inter-element spacing d
equals to half of wavelength. The received vector is

x(1) = (a(9) + Z%’a(&))s(l)-i-n(t), t=1,---,L ()

i=1
with

a®) =[1,e9%, 720 ... o IM=D¢ T @
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where 6 is the DOA of direct signal we need to estimate. 6;
denotes the DOA of reflected signal. y; is the decay factor. n
represents the number of unknown multi-path signals. ¢ =
msinf is the phase difference of adjacent elements. s(¢) is
complex echo signal. n(t) is the additive complex Gaussian
white noise with zero mean and variance o2. Analyzing
the term (a(9) + Y 1, yia(9;)) in expression (1), the term
YL, via(6;) actually causes the amplitude and phase per-
turbation on a(f). So, the signal model can be rewritten as
follows

x(t) = T © a®)s(t) + n(t) 3)
with
T=[t,n, -, 4

Owing to the existence of perturbation term I', the ampli-
tude and phase distribution of a(f) is distorted. This is the
reason why the existing super resolution methods such as
MUSIC, ML and DBF methods may be failed to work.
In order to mitigate the negative influence of I' on DOA
estimation, we propose a new phase enhancement method
using DNN. The purpose of recovering the performance
of physics-driven methods is achieved through recovering
the desired phase distribution by DNN. In order to explain
the importance of phase information rather than amplitude
on DOA estimation accuracy, the sensitivity of phase and
amplitude information on DOA estimation, principle of DBF
method and data integration principle of planar array are
analyzed here.

A. SENSITIVITY ANALYSIS

Considering single far-filed source, the array configuration is
M = 21,L = 2M,d = 0.5 m, signal-to-noise ratio (SNR)
is 0 dB, the percentage of the amplitude and phase error is
5% to 25% in 200 Monte-Carlo experiments. The relationship
between root-mean-square error (RMSE) and error size is
shown in Fig. 2.
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FIGURE 2. Relationship curve between RMSE and error size.

According to the statistical results shown in Fig. 2, we can
see that the phase error causes a larger estimation error for all
physics-driven methods compared with amplitude error. For
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MUSIC method, 15% amplitude error causes 0.06° RMSE
of angle, but 15% phase error causes 0.18° RMSE of angle.
Moreover, the estimation error increases sharply with the
increase of the phase error, and the amplitude error has
less influence on the estimation error. Hence, we can draw
the conclusion that all physics-driven methods on the DOA
estimation are more sensitive to phase feature instead of
amplitude feature. In other words, reducing the phase error
is an effective way to improve DOA estimation accuracy.
Training phase feature instead of amplitude feature can effec-
tively reduce learning complexity. In addition, we can observe
that different DOA has unique phase difference distribution
from Fig. 3. The signal source data s(¢) does not affect the
phase difference distribution of the received data. And the
phase difference distribution has linearity. Hence, during the
supervised feature-to-feature learning system, the label phase
distribution can be calculated by label DOA.

‘—9—2°+7°+11°—>—15“

Phase difference/rad
o

0 2 4 6 8 10 12 14 16 18 20
Array element serial number

FIGURE 3. Phase difference distribution when ¢ = 2°,7°, 11°, 15°.

B. ESTIMATION ANALYSIS

The estimation expression of DBF method is shown as fol-
lows

D>
I

1
argy max ZaH(Q)XXHa(G)
= arg, maxa” (9)Ra(6) Q)

According to formulations (5), we can observe that for
DBEF algorithm, the projection vector a(f) is determined by
the angle 6, and the 6 determines the phase of a(6). Hence,
the phase of X or R must be accurate so that the DOA
can be accurately estimated. Hence, the argument that phase
information is more important than amplitude is proved, and
we must get a more accurate phase through DNN approach.

C. DATA INTEGRATION

Assume that the size of VHF radar with uniform planar array
is M x k, the radar usually is used to estimate azimuth and
elevation of targets. In order to improve the SNR in a certain
dimension, data column and row synthesis operator is taken
for azimuth estimation and elevation estimation. The data row
synthesis operator can be depicted as Fig. 4.
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Owing to the fact that the signal type we considered is
far-field plane wave, the array elements of each column keep
the same distribution of phase difference. Hence, the synthe-
sized data, denoted by y(t), can be expressed as

k
Y(6) = kT ©a@)s(t) + ) my(t) ~ kx(1) ©6)
p=1

n, is independent of each other, so it cannot to be inte-
grated. Hence, the synthesized amplitude y(¢) is k times
stronger than single column x(¢). We can conclude that the
phase of received data determines the amplitude of synthe-
sized data, that is, the SNR.

llIl. PROPOSED METHOD

The scheme of proposed method can be described as Fig. 5.
In the training stage, the original noisy sampled covari-
ance matrix and corresponding clean sampled covariance
matrix are used. The phase difference distribution fea-
ture are extracted and feed into the defined DNN and
training. A 4-layer DNN architecture is shown in Fig. 6.
As we observe, the architecture of DNN is determined once
the number of layers and the number of neurons of each layer
determined. Considering the mapping relationship between
input data and output data is unknown, optimizing the archi-
tecture of DNN is necessary. Here, W” and b’ (p € 1, 2, 3, 4)
denote the parameter of the DNN, that is, the weight and bias
of p™ layer.

Training Stage

Noisy/Clean Sampled Feature DNN
Covariance Matrix Extraction Training

Enhancement
Stage Y

Covariance
Matrix
Reconstruction

Noisy Sampled Feature DNN
Covariance Matrix Extraction Decoding

FIGURE 5. Framework of phase enhancement.

After DNN learning, the phase of noisy sampled covari-
ance matrix is enhanced during the enhancement stage. The
output of DNN, that is, the enhanced phase, is used for
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FIGURE 6. Example of 4-layer DNN architecture.

reconstructing a new sampled covariance matrix with original
amplitude and DOA estimation.

A. PREPROCESSING

Assuming that the labeled training dataset phase information
is denoted as {®1; <i>1 }, where @ and <i>1 represent the input
data and corresponding known output data, respectively. And
the size of ®; and <i>1 is O x N, where Q and N represent the
number of samples and the length of features, respectively.
In order to keep neurons active and preserve the distribution
of features, ®; should be normalized in each dimension
before inputting DNN. We adopt the Gaussian normalization,
which can be formulated as follows

— O —u
& =—— @)
(B
where | and o1 denote the means and standard deviations
of the @1, respectively. Hence, the supervised DNN is trained
by the normalized input dataset @, and corresponding known

output data ®; during the training process.

B. FORWARD PROPAGATION
Assuming that the p input is the x”, then the output A” can
be expressed as follows

B = f(WPxP + bP) ®)

where f(-) is an activation function. In order to prevent the
problem of gradient vanishing and keep the sparsity of neu-
ron, we adopt the Rectified Linear Unit (ReLU) function [9].
The function can be expressed as follows

f(z) = max(z,0) 9

where z is denoted as the argument of the function. In order
to make data distribution between the output of 3 hidden
layer and the unnormalized label data match, a linear mapping
layer is followed. The output vector ¢ can be formulated as
follows

¢) = Wey + b (10)
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C. BACK PROPAGATION

We adopt the mean square error (MSE) between the DNN
output and unnormalized label data as the objective function.
The parameters of the network are optimized to minimize the
MSE. The error Back Propagation (BP) [10] strategy is used
for fine-tuning by Adaptive Moment (AdaM) [11] estimation
method. The minimization problem is formulated as follows

(W, b) = min Loss|
W.b

1 R
Lossi = 111 = 1ll® (1D
In order to accelerate the convergence of the training stage,
the total training dataset is randomly divided into several
batches, and the batch size is D. The formula (11) can be
rewritten as

D
1
(W, b) = min - ; Loss; (12)

where Loss; represents the MSE of iy, batch of data.
The updating formulas for W and b can be expressed as
follows

WZW_avﬁcl—W

Sqw T €
Vb
db
with
N Vdw
Wa-p
Vdb
VG, =
- Sdw
W 1- B
Sdb
§G, = (14)
b = 1_g,

vaw = Brvaw + (1 — B)dW

vap = Pivap + (1 — B1)db

saw = Basaw + (1 — B2)dW

Sap = Pasap + (1 — B2)db (15)

where B and B, denote exponential decay rates for the
moment estimates, « is learning rate. And the Initial values
of vaw, vap, Sqw and s;p are both 0.

The DNN training and enhancement procedure can be
summarized as follows

1) Initialize the network parameters W and b*

2) Normalize the training dataset in each dimension by (7),
and obtain the parameters g, and 0.

3) Divide @ into several batches randomly. And perform
a forward propagation.

4) According to the error of the output layer, apply BP strat-
egy and AdaM method to fine-tune the network parameters
Wk and b*.

5) Repeat 2) to 4) until the error of objective function
converges by learning and adjusting the network architecture.

VOLUME 7, 2019



H. Xiang et al.: Novel Phase Enhancement Method for Low-Angle Estimation

IEEE Access

6) Fix the architecture and parameters of DNN during
the enhancement stage, input the phase of noisy covariance
matrix and get the corresponding enhanced phase.

7) Reconstruct sampled covariance matrix and accomplish
DOA estimation with DBF, MUSIC and ML.

IV. SIMULATION

In this section, we conduct numerical experiments to validate
the performance of the proposed method, and compare it with
existing methods. All the experiments were performed on a
computer with Intel i7-7820 CPU 2.90 GHz. The data pro-
cessing was completed on MATLAB 2017a. In order to pre-
vent the problem of over-fitting, a strategy of “dropout” [12]°
is used at each nonlinear layer, the dropout ratio is 0.8. First
of all, the process of determining the architecture of DNN is
discussed. Here, we introduce the GoF. Its expression can be
written as follows

> i — y;)z
Ym0 =9
where y; and y; are label data and given data, y represents
the means of label data. We can see that when y; is close
to y}, the value of R? is approximately 1. Hence, for a given
training dataset, we can obtain an optimal network architec-
ture by calculating the GoF of neural networks with different
architecture. The closer the value of GoF is to 1, the better
performance of network is.

RP=1- R*<1 (16)

A. NETWORK ARCHITECTURE ANALYSIS

We evaluate nine network architectures, where the number of
network layers is 1, 2, and 3, and the number of neurons is
600, 800 and 1000. The simulation conditions are as follows

e 6 is uniformly sampled from 1.5° to 2.5° during the
training. And 6 is randomly (different from training
dataset) sampled from 1.5° to 2.5° in test dataset. Com-
puter simulation generates 20000 batches of data for
training and 2000 batches of data for test.
o The amplitude of 7; ~ U(—0.2, 0.2), the phase of 7; ~
U(-20°, 20°).
e The SNRis-5dB,M =24,L =48, » = 1m,d = 0.5x.
The average training loss of different network architecture
is shown in Fig. 7. In Fig. 7, the x-axis and y-axis represent
the number of step and train loss. As shown in the nine
curves, the optimal number of layers of the network structure
is 3 and each layer contains 1000 neurons. In order to shows
the performance of different network architecture, the GoF of
test dataset is calculated. And the result is shown in table 1.

We can observe that when the architecture of DNN is
3 layers and contains 1000 neurons of each layer, the GoF
is maximum. So, the architecture of DNN is determined.

B. RMISE VERSUS SNR

In this subsection, we compare the statistical performance
of proposed method with classic physics-driven DBF,
MUSIC, ML methods and latest data-driven feature reversal,
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FIGURE 7. Convergence analysis of different network architecture.

TABLE 1. Network architecture analysis.

R2 neurons
600 800 1000
layers
1 0.9204 0.9198 0.9215
2 0.9481 0.9487 0.9474
3 0.9462 0.9581 0.9641

"—8— Feature reversal
—+—SVR
—6—MUSIC
—v—ML

DBF
--@-- Trained MUSIC
-+ Trained ML
Trained DBF

Fressiis;

FIGURE 8. Relationship curve between RMSE and SNR.

SVR-based methods in GoF and RMSE under different SNR.
The only difference between the simulation conditions of this
subsection IV-B and I'V-A is that the range of SNR in [V-B is
—5dB to 5 dB.

Fig. 8 depicts the relationship curve between RMSE and
SNR. We can observe that the proposed method shows more
superior estimation accuracy over MUSIC, ML, DBF, feature
reversal and SVR based methods. After enhancing the phase
feature, the performance of existing physics-driven methods
such as MUSIC, DBF and ML are significantly improved.
This means that applying DNN to enhance phase feature of
received data can improve DOA estimation accuracy effec-
tively, which is consistent with our theoretical analysis in
section II.

In order to demonstrate that the phase error occurred on
each antenna has been mitigated through DNN training,
a comparison about phase difference distribution of original
received data and enhanced data is shown in Fig. 9. As we
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FIGURE 9. Phase difference comparison.

330 30

300 + Train dataset 60
+  Test dataset

100km 150km

50km

270 90

WMM

240 120

210 150
180

FIGURE 10. Flight path of target in train dataset and test dataset.

can observe, the phase distortion has been mitigated through
DNN training. The DOA estimation error of the enhanced
data is only 0.03°, which is completely acceptable. Hence,
enhancing phase to improve the DOA estimation accuracy is
viable.

V. VALIDATION WITH REAL DATA

The proposed phase enhancement method is also validated
with real data sampled from a 21-element VHF array radar.
The radar’s 3 dB beamwidth is about 5°. The original data
are processed by pulse compression, moving target indica-
tion (MTI) and constant false alarm rate (CFAR) to detect
targets and form flight paths for detected targets. In order
to ensure the training dataset and test dataset are mutually
exclusive, one flight path is used to collect data to train the
DNN, and a different flight path is used to collect data to test.
The path of target in the train dataset and the test dataset were
depicted in Fig. 10. The real elevation information in training
dataset can be computed by collecting ADS-B launched by
targets.

Fig. 11 shows the error of DOA estimation. Owing to
existence of irregular reflected signal from ground, the phase
distribution is severely distorted. We can see that the results of
elevation that error of classic MUSIC, DBF and ML methods
fluctuates around the real value. Through enhancing phase
feature with our proposed method, the DBF, MUSIC and ML
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FIGURE 11. Phase difference comparison.

TABLE 2. Statistical result.

Approach RMSE(°) GoF
DBF 0.43 0.95
MUSIC 0.44 0.95
ML 0.45 0.94
Feature reversal 1.19 0.87
SVR 1.05 0.88
Trained DBF 0.25 0.97
Trained MUSIC 0.26 0.97
Trained ML 0.25 0.97

methods have smaller error. Also, ours outperforms feature
reversal and SVR based methods in performance.

In table 2, we calculate the results of DOA estimation in
terms of RMSE and GoF. We can see that through DNN
training, the angular error of DBF, MUSIC and ML meth-
ods is reduced to about 0.25°, and the GoF is increased to
97%. Moreover, after DNN training, the performance of DBF,
MUSIC and ML algorithms are approximately equal. Since
MUSIC involves eigenvalue decomposition, ML has matrix
inversion operation. MUSIC method and ML method have
much larger computational complexity than DBF method.
Therefore, after phase enhancement, super-resolution algo-
rithms such as MUSIC and ML are no longer needed, and
the DBF method can perform super-resolution estimation.
Considering the training process is off-line, phase enhance-
ment process is pure real operation and DBF method can
achieve super-resolution DOA estimation, the computation
complexity of proposed method is lower.

As we know, the lower the elevation angle of the target,
the more complex the ground reflection signals, the more
severe the phase distortion of the direct signal. When the
target elevation angle is the smallest (about 3.86°), the phase
distribution before and after DNN enhancement is shown
in Fig. 12. And the corresponding spatial spectrum of DBF
and MUSIC method is shown in Fig. 13.  We can clearly
see that the unknown phase distortion has been mitigated
through phase enhancement with DNN. The spectral peak at
desired angle is shaper than before. Therefore, the proposed
method is more robust than existing methods. The validity
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FIGURE 12. Phase difference comparison when 6 is 3.86°.
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FIGURE 13. Spatial Spectrum comparison when ¢ is 3.86°.

and feasibility of the proposed method has been verified by
real data.

VI. CONCLUSION

In this paper, a novel phase enhancement method for
low-angle estimation using supervised DNN is proposed.
We analyze the effect of unknown multi-path signals. The
unknown multi-path signals severely distort the phase feature
distribution of desired signal. Through phase enhancement
with DNN, the distortion is effectively mitigated, and the
DOA estimation accuracy is improved. Experimental results
and real data results show the validity and feasibility of
proposed method.
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