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ABSTRACT In this paper, a kind of active coefficient detection (ACD)-based maximum correntropy
criterion (MCC) algorithm is proposed to estimate a sparse multi-path channel under the non-Gaussian
environments. The proposed ACD-based MCC algorithms are realized by developing an active coefficient
detection mechanism, which can distinguish the active taps within the sparse channels and find out the
position and the number of active taps. Therefore, only the active taps coefficient is updated while the
trivial channel coefficients are set to be zeros. Various computer simulation experiments are carried out to
investigate the performance of the proposed ACD-based MCC algorithms under different impulsive noises.
The achieved simulation results prove that the proposed ACD-based MCC algorithms are effective and
outperform the previous adaptive filtering algorithms for the sparse channel estimation with regard to both
the convergence and the estimation error.

INDEX TERMS Sparse channel estimation, maximum correntropy criterion, active coefficient detection,
tap selection, impulsive noise environments.

I. INTRODUCTION
With the growth of wireless communication technologies,
broadband information transmission has become a hot topic
to meet the demand of users [1]. Thus, broadband com-
munication has attracted more attention for the researchers
domestic and overseas. In the wireless communication trans-
mission, the frequency-selective channel fading is inevitable,
and therefore, channel estimation has become an amazing
research topic to get high quality. Then, various effective
channel estimation methods are reported in [2]–[8], [10]–[12]
to enhance the accuracy of channel state information estima-
tion. In fact, for tracking the channel in the practical systems,
the adaptive learning techniques are proposed in the adaptive
filtering framework and deep learning directions [13]–[15].
Among these methods, [8]–[12] provided good performance
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in adaptive channel estimations (ACEs) and low com-
plexity. Moreover, least mean square (LMS) algorithm is
one of the most classical adaptive filter (AF) algorithms,
which has been used for ACE in single-input single-
output systems like orthogonal frequency-division multiplex-
ing (OFDM) [16], [17] and self-cancellation in full duplex
communication systems [18], [19]. After that, a series of
effective ACE methods have been proposed in the past
decades [2]–[6], [8]–[12].

On the other hand, the broadband communication channel
is always regarded as the sparse channel [8]–[12], in which
most of the channel response coefficients are zero or near
zero that indicate the channel taps are inactive. To utilize
the inherent sparse structure properties in such channels,
several ACE algorithms have been proposed and derived
within the AF framework [8]–[12] to estimate these channels.
For example, the proportionate NLMS (PNLMS) algorithm
takes advantage of the sparsity in the unknown channel by
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allocating different gains to the channel coefficients. Accord-
ing to the proportionate theory in [20], after that, numerous
PNLMS-based AF methods [21]–[24] have been reported
with an improved estimation performance.

Furthermore, in recent years, another kind of sparse ACE
methods [8], [10]–[12] have been put forward on the basis
of the zero-attracting (ZA) scheme which is enlightened by
the recent invention in compressive sensing (CS) [25]. Based
on this idea, the ZA-LMS and the reweighted ZA-LMS
(RZA-LMS) algorithms [26] have been put forward via inte-
grating a sparsity-aware penalty on channel coefficient vec-
tor. Then, many enhanced sparse ACE algorithms have
been further studied using various norm penalties [27], [28].
Although these sparse AF algorithms can improve chan-
nel estimation behavior, most of them are implemented
based on the Gaussian model. However, from channel mea-
surement results, we found that the non-Gaussian model
is more suitable than the Gaussian model to describe the
real communication environment since the existing impulse
noises and manual noises in the systems [30]. Furthermore,
the impulsive noise is common in the real world, and then,
the estimation performance might degrade when the signal
is transmitted from the transmitter to receiver because of the
noise contamination [29]–[31].

To resist the impulsive noises, the maximum corren-
tropy criterion (MCC) has been brought out to combat
against non-Gaussian noise in channel estimation applica-
tions, where the correntropy is a smooth nonlinear correla-
tion measure [32] which reveals the correlation between two
stochastic variables [33], [34]. The MCC-based algorithm
has the outstanding capability in the presence of impulsive
noise scenarios [35], [36] in comparison with the LMS-based
algorithms. Consequently, correntropy theory has made a
significant contribution to the application in robust regression
in AFs [37], spectral characterization [38], and so on. How-
ever, the MCC algorithm cannot utilize the sparse structure
characteristics of the sparse systems [39], [40]. Inspired by
the ZA-LMS and the RZA-LMS algorithms, the ZA-MCC
and RZA-MCC ACE algorithms have been presented in [30]
to improve the steady-state behavior and convergence of the
MCC algorithm for estimating multi-path channels.

In this paper, the active coefficient detection based max-
imum correntropy criterion (ACD-based MCC) algorithms
which consist of ACD-MCC algorithm and ACD-normalized
MCC (ACD-NMCC) algorithm are proposed and discussed
to develop a sparse ACE for estimating sparse channels
under the impulsive noises. The proposed ACD-based MCC
algorithms are realized and implemented by utilizing an
ACD criterion which improves the ability to predict the
non-zero coefficients in the unknown channels. In partic-
ular, the active coefficients detection (ACD) criterion can
effectively find out and update the active taps, and hence,
the ACD-based algorithms can get an accelerated con-
vergence rate and mitigate the impulsive noise interfer-
ences. Numerical experiments indicate that the proposed
ACD-based MCC algorithms can obtain faster convergence

and better steady-state performance for different input signals
and various impulsive environments.

The rest of this paper consists of the following sections.
In section II, the correntropy theory and MCC are briefly
reviewed. In section III, the ACD scheme and ACD-based
MCC algorithms are carefully derived and analyzed. The
simulation results are presented and discussed in section IV,
and a conclusion is drawn in section V.

II. REVIEW OF THE MCC ALGORITHM
A. CORRENTROPY
Correntropy is to effectively describe the similarity between
two arbitrary randomvariablesX and Y with same dimension,
which is defined as [41], [42]

V (X ,Y ) = E[κ(X ,Y )] =
∫
κ(x, y)dFXY (x, y), (1)

where E is an expectation operator, κ(., .) is a shift-invariant
Mercer kernel whose kernel width is determined by parame-
ter σ , and FXY (x, y) denotes the joint distribution function of
the random variables X and Y . In fact, the joint probability
density function is unknown, and only a finite number of
samples {(xi, yi)}Ni=1 are available. Thus, we can obtain the
sample estimator [40]

V̂N (X ,Y ) =
1
N

N∑
i=1

κ(xi, yi). (2)

Here, the most widely used kernel, normalized Gaussian
kernel Gσ with variance of σ [42], [43], is used and given by

κ(x, y) = Gσ (x − y) =
1

√
2πσ

exp(−
(x − y)2

2σ 2 ). (3)

Thus, the correntropy is obtained [45]

V̂ (X ,Y ) =
1

√
2πσ

E[exp

(
−(X − Y )2

2σ 2

)
]

=
1

√
2πσ

∞∑
n=0

(−1)n

2nn!
E

[
(X − Y )2n

σ 2n

]
. (4)

B. MCC ALGORITHM
To get the derivation of the MCC algorithm, the transcenden-
tal knowledge of the AF illustrated in [44], [45] is considered
in this paper. X(n) represents the input signal vector at the
sample instant n, W is the channel impulse response (CIR)
of the unknown channel, v(n) is the measurement noises
existing in the unknown channel. The gotten signal r(n) can
be described as

r(n) = XT (n)W+ v(n), (5)

where X(n) = [x(n), x(n− 1), . . . , x(n−M + 1)]T andW =
[w0,w1, . . . ,wM−1]T . M is the dimension of the unknown
system. On the basis of the ACE, the output signal y(n) of the
estimator is

y(n) = XT (n)Ŵ(n− 1), (6)
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where Ŵ(n) is an estimated channel coefficient vector given
by Ŵ(n) = [ω̂0(n), ω̂1(n), . . . , ω̂M−1(n)]T . Thus, the estima-
tion error is

e(n) = r(n)− y(n) = r(n)− XT (n)Ŵ(n). (7)

The correntropy is used to construct a cost function for the
MCC algorithm [46], [47] to solve the following equation

Jn =
1

√
2πσ

.
1
N

n∑
i=n−N+1

exp

(
−(r(i)− y(i))2

2σ 2

)

=
1

√
2πσ

.
1
N

n∑
i=n−N+1

exp
(
−e2(i)
2σ 2

)
(8)

Then, iterative gradient ascent approach is considered for
getting the updating equation of filter coefficients [48]. Thus,
we have

Ŵ(n+ 1) = Ŵ(n)+ ε∇J (n), (9)

where ε is the step size. Considering (8) and (9), we get

Ŵ(n+ 1) = Ŵ(n)+
ε

√
2πσ 3

1
N

×

n∑
i=n−N+1

[
exp

(
−e2(i)
2σ 2

)
e(i)x(i)

]
. (10)

Based on (10), the vector form of the MCC’s iterative
equation is given by [49],

Ŵ(n+ 1)=Ŵ(n)+
ε

√
2πσ 3

exp
(
−e2(n)
2σ 2

)
e(n)X(n). (11)

Simplifying (11), the adaptive process of the tap weight
vector can be expressed as [50]

Ŵ(n+ 1) = Ŵ(n)+ µ exp
(
−e2(n)
2σ 2

)
e(n)X(n), (12)

where µ =
ε

√
2πσ 3

is the renewed step-size for basic
MCC algorithm. Similarity, inspired by the normalized
LMS (NLMS) algorithm, the NMCC algorithm has been
reported to enhance the stability of the MCC algorithm,
whose updating equation is [51]

Ŵ(n+ 1) = Ŵ(n)+ µ
exp

(
−e2(n)
2σ 2

)
||X(n)||2 + δ

e(n)X(n), (13)

where δ is a regularization factor which is to guarantee that
the denominator of (13) is not being zero. From the NMCC,
it is noted that there is an extra exponential term in the
MCC-based algorithms for the sake of comparison with the
LMS algorithm to resist the impulse noise.

III. THE PROPOSED ACD-BASED MCC ALGORITHMS
The ACD scheme is devised to seek the positions and number
of the active taps, which can accelerate the speed of MCC
algorithm. To address the ACD-based MCC algorithms, a fil-
ter coefficient detection criterion is illustrated by considering
the least-square (LS) method if the signal and the unknown
channel satisfies the following restrictions.

Restriction 1: Both the input signal and the interference signal
are zero mean, bounded and generalized stationary processes,
and they are uncorrelated to each other over time.
Restriction 2: The autocorrelation matrix of the input signal
is positive definite and can denote as

Rxx = σ
2
x I,

where σ 2
x is the power of input signal and I is aM×M identity

matrix.
Restriction 3: The unknown system has only k active taps
within its length. The objective is to get the estimation of W
by solving the following cost function

ζN (Ŵ(n)) 1=
N∑
n=1

(r(n)− y(n))2

=

N∑
n=1

(
r(n)− XT (n)Ŵ(n)

)2
. (14)

To further explain the ACD scheme based on the filter coeffi-
cient detection criterion, the optimal wiener solution is used
to seek the solution, which is

ŴLS (N ) = R−1(N )P(N ), (15)

where P(N ) is the cross-correlation vector between the filter
input and desired signal, and R(N ) is the input signal auto-
correlation matrix [52]. Thereby, we have

P(N ) =
1
N

N∑
n=1

r(n)X(n), (16)

R(N ) =
1
N

N∑
n=1

X(n)XT (n). (17)

Assuming that there are k nonzero CIR elements in W, their
positions cj constitute a specific array ck , where j represents
the j-th active tap.

ck = {c1, c2, . . . , ck},

where 0 ≤ cj < M , j = 1, 2, . . . , k . At iteration N ,
the estimated active tap coefficients is given by

Ŵ(N , ck ) 1= [ω̂c1 (N ), ω̂c2 (N ), . . . , ω̂ck (N )]T . (18)

From (18), to further obtain the channel coefficient activity,
a M × k matrix H(ck ) is presented, which is composed of
H(cj, j) = 1, j = 1, 2, . . . , k . Then, the LS’s cost function in
(14) is rewritten as

ζN (Ŵ(N , ck )) = N
[
H(ck )Ŵ(N , ck )− ŴLS(N )

]T
×R(N )

[
H(ck )Ŵ(N , ck )− ŴLS(N )

]
+ζN

(
ŴLS(N )

)
, (19)

where ζN
(
ŴLS(N )

)
corresponds to the minimum of the LS’s

cost function in (14) when the optimal winner solution is
applied to the LS method. And, ζN

(
ŴLS(N )

)
is independent
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of the filter coefficient Ŵ. As a result, equation (19) is
modified to be a new cost function with Ŵ as the variable,
which is given by

CN (Ŵ(N , ck )) = N
[
H(ck )Ŵ(N , ck )− ŴLS(N )

]T
×R(N )

[
H(ck )Ŵ(N , ck )− ŴLS (N )

]
,

(20)

Next, only k active taps in the optimal LS’s solution is con-
sidered to get their effects on (20), which is given by [53]

ŴLS (N , ck )

= [HT (ck )R(N )H(ck )]−1HT (ck )R(N )ŴLS (N )

= [HT (ck )R(N )H(ck )]−1HT (ck )P(N ), (21)

and then, (21) is substituted to (20) to get

CN (ŴLS (N , ck )) = NPT (N )[R(N )−1 −H(ck )

×[HT (ck )R(N )H(ck )]
−1

HT (ck )]P(N )

(22)

Obviously, the cost function in (22) is only related to the
cross-correlation vector P(N ), autocorrelation matrix R(N )
and the position of the active tap ck . The position of k active
taps can be gotten by the set ck via minimizing the right hand
side (RHS) of (22). However, it is extremely complicated to
get the optimal solution in the comparison of M !

k!(M−k)! results.
Using the Lemma 1 in [53], when N is large enough and

the input signal is white Gaussian noise, the cost function in
(22) can be modified to be

1
N
||CN (ŴLS(N , ck )− C̄N (ck ))||2→ 0,

when N →∞ (23)

In a word, CN (ŴLS(N , ck ) can be approximated by CN
(
ck
)

when N approaches infinity, which are given by

C̄N (ck ) = NPT (N )[R̄(N )−1 −H(ck )

×[HT (ck )R̄(N )H(ck )]
−1

H(ck )
T
]P(N ), (24)

where R̄ is an M × M diagonal matrix whose elements

are given by R̄pp(N ) =
1
N

N∑
n=p

x(n− p− 1)2, where

p = 1, 2, 3, . . . ,M , p represents arbitrary channel taps in Ŵ.
Till now, we can see that each channel coefficient has inde-
pendent effect on the cost function CN

(
ck
)
. That is to say the

positions of k active taps are determined by the k maximum
values, which is obtained by

Z (N , p) 1=

[
N∑

n=p+1
r(n)x(n− p)

]2
N∑

n=p+1
x2(n− p)

, (25)

where p is the arbitrary tap in Ŵ. Using equation (25), we can
get the most active k taps rather than distinguishing the active

taps and inactive taps. Consequently, a threshold is used to
detect the active taps. To achieve this goal, a threshold is
constructed to detect the active taps, and the cost function
should satisfy the property that it can be minimized by Ŵ that
contains only active taps as N approaches infinity. However,
the LS’s cost function doesn’t satisfy this requirement. Then,
a new cost function is obtained by adding an extra penalty
B(N), which is given by

log ζ (Ŵ)+ k
B(N )
N

, (26)

In (26), we have B(N ) → ∞,
B(N )
N → 0 when N →∞.

Herein, B(N ) is obtained by the Akaike’s B-Information
Criterion [57], and hence, equation (26) changes to be

ζ ′N = ζ (Ŵ)+ Qk logN

= ζ (Ŵ)

[
1+

QNk log(N )/ζ (Ŵ)
N

]
(27)

where Q > 0 is a constant. By choosing a proper Q, the con-
vergence speedwill be greatly improved. To seek the solution,
following the procedure from (14) to (25), a single-tap LS
cost function is employed and defined as

ζ̄N (p)
1
=

N∑
n=1

r2(n)− Z (N , p). (28)

Utilizing the Lemma 1 in [53], (28) is approximated to be

1
N

k∑
j=1

ζ̄N (cj)→
1
N
ζN (Ŵ(N , ck ))+

k − 1
N

N∑
n=1

r2(n)

as N→∞ (29)

From (27), we can get

1
N
ζ ′N (N , c

k ) 1=
1
N
ζN (Ŵ(N , ck ))+ Qk

logN
N

. (30)

Combining (29) and (30), we obtain

1
N
ζ ′N (c

k ) 1=
1
N

k∑
j=1

ζ̄ ′N (cj)−
k − 1
N

N∑
n=1

r2(n), (31)

where

ζ̄ ′N (cj)
1
= ζ̄N (cj)+ Q logN .

Then,

1
N
ζ̄ ′N (c

k ) =
1
N

N∑
n=1

r2(n)−
k∑
j=1

[
Z (N , cj)

N
− Q

logN
N

],

(32)

Thereby, the position and number of active taps are deter-
mined by minimizing the RHS of (32), which is equal to
maximize

Z ′(N , ck ) 1=
k∑
j=1

[Z (N , cj)− Q logN ] (33)
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Obviously, Z ′(N , ck ) is a monotonically increasing function
of k if [Z (N , cj)−Q logN ] > 0. In this case, for large enough
N , active taps will be gotten by the utilization of (33). Herein,
Q = 2σr 2 [54] is chosen, where σr 2 is the power of r(n), and
the required threshold is defined as

T (N ) =
2 logN
N

N∑
n=1

r2(n) (34)

However, the above criteria are valid only when the
white Gaussian noise is used as the input signal. To fur-
ther expand its application, the cross-correlation relationship
should be reduced in Z (N , p) [55], [56]. To achieve this tar-
get, the cross-correlation term S(N , p) of Z (N , p) in (25) is
analyzed

1
N

N∑
n=p+1

r(n)x(n− p)

=
1
N

N∑
n=p+1

ωq(n)x(n− q)x(n− p)

+
1
N

N∑
n=p+1

ωp(n)x(n− p)2

+
1
N

N∑
n=p+1

v(n)x(n− p). (35)

where q and p represent different taps. When N → ∞,

S(N , p) → ωp(n)σ 2
x +

∑
q6=p

ωq(n)m(q− p), and m(q − p) =

lim
N→∞

1
N

N∑
n=p+1

x(n− q)x(n− p). If the input signal is white

Gaussian noise, m(q − p) = 0 for all q 6= p. Thereby, for
enough largeN , only tap p has an effect on perceptual activity
Z (N , p).
Nevertheless, when the colored noise with a finite correla-

tion length L is taken as the system input, any adjacent active
tap q that lags behind the L sample also significantly affects
the perceptual activity Z (N , p). In order to reduce the cou-
pling of correlation coefficients, a new activity measurement
is proposed and given by

Z̃ (N , p)

=

[
N∑

n=p+1

(
r(n)− y(n)+ ω̂p(n)x(n− p)

)
x(n− p)

]2
N∑

n=p+1
x2(n− p)

,

(36)

which can be used in the case of colored input signals, and
then, the cross-correlation term of Z̃ (N , p) can be analyzed
in a more intuitive method, and we have

1
N

N∑
n=p+1

[
r(n)− y(n)+ ω̂p(n)x(n− p)

]
x(n− p)

=
1
N
ωp

N∑
n=p+1

x2(n− p)+
1
N

N∑
n=p+1

v(n)x(n− p)

+

∑
q6=p

1
N

N∑
n=p+1

[ωq − ω̂q(n)]x(n− q)x(n− p) (37)

It is observed that the coupling effects can be reduced when
the estimated ŵq(n) converges to wq in the learning process.
Then, the activity threshold is modified to improve the flexi-
bility of the active tap selection, which is given by

T̃ (N ) =
2 log(N )

N

N∑
n=1

[r(n)− y(n)]2. (38)

To reduce the influence of time variance of prediction error
1W(n) =W−Ŵ(n) on prediction performance, a forgetting
factor is used to the proposed ACD criterion. Then, the posi-
tions of the active channel coefficients can be obtained by the
following criteria

Z̃F (n, p) > T̃ F (n), (39)

where

Z̃F (n, p) =

[
n∑
j=1

(
r(j)−y(j)+ω̂p(j)x(j− p)

)
x(j−p)F(n, j)]2

n∑
j=1

x2(j− p)F(n, j)

T̃ F (n) =
2 log

[
LF (n)

]
LF (n)

n∑
j=1

F(n, j)(r(j)− y(j))2

F(n, j) = (λ)n−j 0� λ < 1

LF (n) =
n∑
j=1

F(n, j). (40)

Then, the ACD scheme is incorporated into the MCC algo-
rithm to construct the ACD-MCC to detect the number and
position of active channel coefficients. After that, only the
active tap coefficients are updated and the inactive tap coef-
ficients are set to be zero. Based on the ACD scheme and
the MCC algorithm, the proposed ACD-MCC algorithm is
summarized as follows.

Multiplications per sample interval (MPSI) is used as a
measurement to analyse the computational complexity [54].
The classical MCC and NMCC algorithms require (2M + 2)
and (3M + 2) MPSIs while the computational complexities
for the ACD-MCC algorithm and ACD-NMCC algorithm
are (2M + 2k + 4) and (2M + 3k + 4), respectively. It is
observed that the proposedACD-basedMCC algorithms have
an acceptable computational in comparison with the MCC
and NMCC algorithms.
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ACD-MCC Algorithm
(1)Initialization

Initialize S(0, p) = E(0) = LF (0) = 0 and G(n, p) = δ,

where 0 < δ � σu
2.

(2)At iteration n,

S(n, p) = λS(n− 1, p)+[
r(n)− y(n)+ ω̂p(n)x(n− p)

]
x(n− p)

G(n, p) = λG(n− 1, p)+ x2(n− p)

E(n) = λE(n− 1)+ [r(n)− y(n)]2

LF (n) = λLF (n− 1)+ 1

Z̃F (n, p) = S(n,p)2

G(n,p)

T̃ F (n) =
E(n) log

[
LF (n)

]
LF (n)

(3)Using the ACD scheme addressed above, the channel

coefficient p is detected as an active tap in the case of

Z̃F (n, p) > T̃ F (n).

(4)Incorporating the ACD scheme into the MCC, the

updating equation of the proposed ACD-MCC algorithm

is obtained and given by ω̂p(n+ 1) = ω̂p(n)

+µ exp(−e(n)
2

2σ 2
)e(n)x(n− p).

IV. SIMULATION RESULTS AND DISCUSSIONS
In this paper, the multi-path CIR with length ofM = 256 and
K non-zero coefficients is used to investigate the estimation
and tracking performance of the proposed ACD-based MCC
algorithms. The typical CIRs of a multi-path channel are pre-
sented in Fig. 1. Three different input signals, namely, white
Gaussian signal (WGN), colored signal (CN) and speech
signal (SS) are used in the simulations. The white Gaussian
signal is implemented using a zero-mean Gaussian distribu-
tion random signal whose variance is σ 2

x = 1, while the
colored signal is realized by x(n) = 0.8x(n−1)+z(n), where
z(n) is a discrete white zero-mean unit-variance progress.
Here, the speech signal has a sampling rate of 8 kHz, which
is recorded in our lab. Two kind of impulsive noises are
used to verify the estimation performance of the proposed
ACD-based algorithms. The normalized misalignment (NM)

with the definition of 10log10

(∥∥∥W− Ŵ(n)
∥∥∥2
2
/ ‖W‖22

)
is

used as a metric to evaluate the behavior of the developed
ACD-MCC and ACD-NMCC algorithms. Also, the results
are compared with theMCC, NMCC, ZA-MCC, ZA-NMCC,
RZA-MCC, RZA-NMCC algorithms. In all the experiments,
µ is the step-size while ρ represents the ZA parameters for the
ZA-MCC, ZA-NMCC, RZA-MCC and RZA-NMCC algo-
rithms. In addition, σ = 4 is set in the MCC-type algorithms,
while the parameter δ in the RZA-MCC and RZA-NMCC is
10, and the parameter λ in the ACD-based algorithms is set to
be 0.99. All simulation lines are obtained from 100 average
Monte Carlo runs.

FIGURE 1. Two different-sparsity CIRs employed in simulations.
(a) Channel 1 : A Channel with length of 256 and 8 active taps.
(b) Channel 2 : A Channel with length of 256 and 16 active taps.

A. THE PERFORMANCE OF THE PROPOSED ACD-BASED
MCC ALGORITHMS IN BERNOULLI-GAUSSIAN MIXED
NOISE ENVIRONMENT
The discrete-time CIRs are presented in Fig. 1. It is noted
that there are only K = 8 active channel coefficients and
248 inactive taps in Channel 1, where the Channel 2 consists
of K = 16 non-zero channel coefficients and 240 inactive
ones. Channel 2 is used in Simulation A, while for Sim-
ulation B, Channel 1 corresponds to the CIR for the first
half of the simulation, and Channel 2 is used in the second
half of the simulation. The additive noise v(n) is the sum of
Gaussian white noise s(n) and impulse noise i(n), where s(n)
is a discrete white zero-mean unit-variance Gaussian noise
with a signal-to-noise ratio of 30 dBwhile the impulsive noise
i(n) with a signal-to-interference ratio of 15 dB is generated
by i(n) = b(n)H (n), where b(n) is a Bernoulli process whose
probability equals to P [b(n) = 1] = 0.1.
The parameters for the mentioned algorithms in all experi-

ments are conducted under Bernoulli noise distribution envi-
ronment are shown in Table 1, and the performance analysis
for channel 2 under Bernoulli-Gaussian noise environment
are demonstrated in Fig. 2. It is found that the proposed
ACD-based algorithms achieve the fastest convergence and
lowest steady-state NM compared with the mentioned sparse
MCC algorithms. Moreover, we can intuitively observe from
Fig. 2 that the ACD-NMCC is superior to the ACD-MCC
because of the normalization operation. From Simulation B,
the proposed ACD-based algorithms shows relatively faster
tracking ability than the other algorithms. Also, we can
clearly see that with the increase ofK , theNMs ofACD-based
algorithms are getting worse since the sparsity of the channel
is changing to be dense. However, their performance is still
better than other algorithms.
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FIGURE 2. Simulation A, B: Performance of proposed ACD-based algorithms under Bernoulli Gaussian mixed noise environment.

TABLE 1. Simulation parameters under Bernoulli Gaussian mixed noise
environment.

B. THE PERFORMANCE OF THE PROPOSED ACD-BASED
MCC ALGORITHMS IN STUDENT.T DISTRIBUTION NOISE
ENVIRONMENT
Another non-Gaussian noise environment using Student.
T distribution is considered to investigate the performance

of the proposed ACD-based algorithms since it has strong
tail, and the simulated results are discussed in Fig. 3. Herein,
the disturbance noise v(n) is modeled by Student-t distribu-
tion with freedom degree of 4. Some parameters are changed
to beµACD−NMCC = 0.16 for simulation C. Other parameters
are presented in Table 2. It can be seen from the simulation C
(a) that the ACD-based MCC algorithms provide faster con-
vergence rate and achieves better steady-state performance
than those of theMCC-type algorithms when the white Gaus-
sian input signal is used as the input signal. The ACD-MCC
algorithm provides about 7 dB gain compared to that of
the RZA-MCC algorithm. In contrast, when the input signal
are colored signal or speech signal, we can observe that the
ACD-based MCC algorithms are superior to the other MCC
algorithms, and the performance of the devised ACD-based
algorithms are better than the mentioned algorithms. In addi-
tion, we can see from the simulation D that the proposed
ACD-based algorithms can track the time-varying channel
well.
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FIGURE 3. Simulation C, D: Performance of proposed ACD-based MCC algorithms under Student-t distribution noise environment.

TABLE 2. Simulation parameters under Student-t distribution noise
environment.

C. CONVERGENCE OF THE ACD-BASED MCC
ALGORITHMS
The convergence experiment for the ACD-based algorithms
is carried out in Bernoulli mixed noise environment, where

the colored signal is used as the input signal. In addition,
the l0-NMCC algorithm which is inspired by [27], [28] is
used as a comparison algorithm to verify the superiority
of the ACD-based algorithms. In order to ensure that all
the algorithms have the same NM level, the parameters are
modified to beµMCC0.003,µNMCCµACD-MCC0.05,µZA-MCC
0.0045, µZA - NMCCµRZA - NMCC0.0083, µRZA-MCC0.006,
µACD-NMCC0.6, µl0 - NMCC0.09, ρZA - MCC = 1 ×
10−5, ρZA - NMCC = 2 × 10−5, ρRZA - MCC = 5 ×
10−5, ρRZA - NMCC = 1 × 10−4, ρl0−NMCC = 1.5 × 10−5.
The obtained simulation results are presented in Fig. 4. It can
be seen that the proposed ACD-based MCC algorithms can
provide the fastest convergence speed in comparison with
the mentioned ACE algorithms. Especially, the proposed
ACD-NMCC has the fastest convergence and lowest NM
since the ACD scheme can precisely seek the position of
the active channel coefficients and ignore the updating of the
inactive taps during the learning procedure.
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FIGURE 4. Convergence of the ACD-based MCC algorithms.

D. INFLUENCE OF SNR ON THE ACD-BASED
MCC ALGORITHMS
The steady-state NM performance of the proposed
ACD-based algorithms are investigated in different signal-
to-noise ratios (SNRs). The colored signal and Bernoulli
distributed noise environment are considered in this exper-
iment. The experimental parameters are the same as that in
the Table 1, and the simulation results with different SNRs
are presented in Fig. 5. It is noted that the NM is reduced
when SNR ranges from 5 dB to 40 dB. Also, the proposed
ACD-based MCC algorithms achieve the lowest NM for any
SNRs.

FIGURE 5. Effects of SNRs on the ACD-based MCC algorithms.

V. CONCLUSIONS
In this paper, an active coefficient detection (ACD) crite-
rion is presented and incorporated into the maximum cor-
rentropy criterion (MCC)-based adaptive filters to improve
the performance for identifying the sparse channels. The
proposed ACD-based algorithms have been derived in detail,
and their performance has been studied under the different

noise environments and different sparsity with three common
input signals. The performance obtained from the various
simulations showed that the proposedACD-basedMCC algo-
rithms outperform the MCC, NMCC, ZA-MCC, ZA-NMCC,
RZA-MCC, RZA-NMCC for dealing with sparse channel
estimations.
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