
Received May 19, 2019, accepted June 4, 2019, date of publication June 19, 2019, date of current version July 10, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2923821

Analyses of Classifier’s Performance Measures
Used in Software Fault Prediction Studies
MUHAMMAD RIZWAN 1, AAMER NADEEM 1, AND MUDDASSAR AZAM SINDHU 2
1Department of Computer Science, Capital University of Science and Technology (CUST), Islamabad 45750, Pakistan
2Department of Computer Science, Quaid-i-Azam University (QAU), Islamabad 45320, Pakistan

Corresponding author: Muhammad Rizwan (rizwanabuahmad@gmail.com)

ABSTRACT Assessing the quality of the software is both important and difficult. For this purpose, software
fault prediction (SFP) models have been extensively used. However, selecting the right model and declaring
the best out of multiple models are dependent on the performance measures. We analyze 14 frequently used,
non-graphic classifier’s performance measures used in SFP studies. These analyses would help machine
learning practitioners and researchers in SFP to select the most appropriate performance measure for the
models’ evaluation. We analyze the performance measures for resilience against producing invalid values
through our proposed plausibility criterion. After that, consistency and discriminancy analyses are performed
to find the best out of the 14 performance measures. Finally, we draw the order of the selected performance
measures from better to worse in both balance and imbalance datasets. Our analyses conclude that the
F-measure and the G-mean1 are equally the best candidates to evaluate the SFP models with careful analysis
of the result, as there is a risk of invalid values in certain scenarios.

INDEX TERMS Classification, evaluation parameters, machine learning, performance measures, software
fault prediction.

I. INTRODUCTION
Software fault prediction (SFP) is a means to detect fault-
prone components or a number of expected faults in a soft-
ware component. It is generally, done by using the dataset
from the prior releases of the same software system or differ-
ent software, as is done in Cross Product Defect Prediction
(CPDP) [1]. The dataset is used in model building, and then
predicting faults in the system under development/test. SFP
helps in reducing testing cost and improving the quality of the
system. Moreover, this can direct the testing team to focus
more on the fault-prone modules. Predicting the number of
faults potentially provides the criteria for stopping of the
testing process.
SFP is usually done through Machine learning (ML)
algorithms, statistical algorithms or expert’s opinion [2].
ML, besides being the most used model building tech-
nique [3], significantly improves classification accuracy [4].
Numerous MLmodels are being used in SFP. Performance of
these ML models has been compared in [5]. In which authors
reported that Decision Tree and Naïve Bayes are the most
used ML algorithms in SFP studies.

The associate editor coordinating the review of this manuscript and
approving it for publication was Mehul S. Raval.

The declaration of a model as the best is dependent on the
performance measure [6] or sometimes multiple performance
measures [7]. Therefore, selection of performance measures
while keeping in view their scope, relationship and interpre-
tation are of key importance, which is the primary focus of
this paper. The task is even more important when two perfor-
mance measures consent on two classifiers’ performance on
one test set, may conflict on some other test set.
In the classification, performance measures are derived out
of a confusion matrix, which is a useful tool for analyzing
the goodness of a classifier. Existing studies to evaluate these
measures either do not address the performance measures
used in SFP exclusively or limited to very few SFP specific
performance measures. Moreover, there is a sporadic address
on the recommendation of the performance measure. For
these reasons, the objectives of this paper include:

1) A survey of commonly used performance measures
in SFP.

2) Identification of comparative techniques used to evalu-
ate performance measures.

3) A comparison of the surveyed performance measures
and guide to their merits and demerits.

In this paper, we list out 14 performance measures which are
commonly used in SFP studies. The performance measures

82764 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0855-3465
https://orcid.org/0000-0002-8641-8795
https://orcid.org/0000-0002-3411-9224


M. Rizwan et al.: Analyses of Classifier’s Performance Measures Used in SFP Studies

TABLE 1. Studies on performance measures and their respective evaluation parameters.

are evaluated through three evaluation measures Plausibility,
Consistency, and Discriminancy. In the end, we conclude that
F-measure and G-mean1 are better performance measures.
Finally, we ordered all the performance measures as per their
goodness in the balanced and imbalanced datasets. Our work
is significant in the following ways;

1) We discuss as many as 14 performance measures being
used in SFP domain.

2) Present a new tool for the evaluation of performance
measures i.e. Plausibility.

3) Ordered list of performancemeasures as per their effec-
tiveness in the balanced and imbalanced datasets.

Rest of the paper is further organized as follows: Section II
provides the literature review of this field. Section III provides
the overview of the performance measures used in SFP stud-
ies. Section IV briefly classifies the performance measures
into two classes. Section V elaborates the evaluation param-
eters used to evaluate the performance measures followed
by Section VI, in which actual evaluation of performance
measures is conducted. Comparison of our findings with
the existing work is drawn in Section VII followed by the
conclusion in Section VIII . Finally, future directions of the
research are given in Section IX.

II. RELATED WORK
Literature is quite rich in addressing the SFP [2], [5], [8],
[9]. However, evaluation of performance measures, which are
used in SFP have attracted sporadic attention (see Table 1).

Bradle compares Area under the Curve (AUC) with Accu-
racy [10]. He computes the sensitivity of both measures in
Analysis of Variance (ANOVA) and Duncan’s multiple range
test and recommends AUC to be used in SFP studies. More-
over, he observes the effect of increasing samples on standard

error. On the other hand, regardless of SFP, Kubat et al. dis-
cuss the selection of performance measure in satellite image
recognition [11]. They go through the theoretical discussion
on Accuracy, TPR, Precision, G-mean1, and F-measure. Ulti-
mately, they select Receiver operator curve (ROC) for their
experiment.

Peter compares Accuracy, Precision, and F-measure along
with several decision tree splitting criteria through isometric
plots [12]. He identifies Accuracy as skew sensitive, whereas
Precision as an effective skew ratio. Cortes et al. conduct a
detailed statistical analysis of the relationship between Error
rate and AUC [13]. They report the usefulness of an algo-
rithm specifically designed to globally optimize the AUC.
Rosset evaluates the AUC and Error rate for discrimina-
tion [14]. He concludes the preferability of AUC for being
more stable and discriminating. Caruana et al. compare nine
performance measures including average Precision, Preci-
sion/recall, break-even point, squared error etc. without being
specific to SFP [15]. Fürnkranz et al. declare the equiva-
lence of Precision and cost-weighted difference between pos-
itive and negative with conventional measures like Accuracy,
weighted relative Accuracy, entropy, and Gini index [16].
A theoretical and empirical comparison between AUC and
Accuracy are done in [17]. The study proves the domination
of AUC over Accuracy. Davis et al. theoretically compare the
relationship between Precision-recall and ROC curves [18].
Huang et al. use consistency and discriminancy measures for
comparing their proposed measure with root mean square
and AUC [19]. Jiang et al. discuss numerous performance
measures, but evaluation is missing [21]. The most compre-
hensive study was conducted in [22], in which 18 different
performance measures are evaluated empirically in sev-
eral scenarios without limiting to SFP domain. The study

VOLUME 7, 2019 82765



M. Rizwan et al.: Analyses of Classifier’s Performance Measures Used in SFP Studies

concludes the presence of clustering and the relationship
between the measures. Four traits of performance mea-
sures are taken; class threshold choice optimality, separabil-
ity/ranking quality, calibration performance, and sensitivity
(or conversely robustness) to changes in prior class distri-
bution. Though the study focus on the classification mea-
sure, yet does not address the key performance measures
like TPR, Precision etc. Jiao et al. focus on performance
measures used in bioinformatics [23]. They discuss general
purpose of the performance measures without going into the
detail of selection and evaluation of the discussed measures.
Besides them, few more studies have been conducted in this
direction [7], [20].
All of these works either do not address the performancemea-
sures in SFP exclusively or limited to very few performance
measures used in SFP. Moreover, these works are difficult
to compare and understand together because of lack of com-
mon domain, common performance measures, and common
evaluation methodology. Our work is focused instead only on
those performance measures, which are used in SFP studies.
Thereafter, we compare as many as 14 performance measures
against three evaluation criteria.

III. PERFORMANCE MEASURES USED IN SFP
The performance measures for classifiers are derived out of
four cases; these are 1; true positive (TP), false negative (FN),
true negative (TN), and false positive (FP). Total positive
instances are denoted by P and total negative instances are
denoted by N. In SFP domain, a positive class is a faulty
class. In multiclass dataset wherein classes can represent
type of fault like Functionality faults, communication faults,
syntactic faults etc. or severity of fault [24], [25], like Low,
Medium, High. In such a case, the positive class would be
the class of interest and the four cases can easily be iden-
tified through ‘‘one vs. all’’ framework [26]. The selected
performancemeasures are computed once the positive class is
identified. In this paper the objective and findings will prevail
irrespective of the problem type (binary or multiclass). For
simplicity, we discuss only the binary classes. So, if a clas-
sifier declares any faulty instance as faulty, the classification
is TP. If a classifier declares any instance as fault-free when
it is actually faulty, the classification is FN. If the classifier
declares any fault-free instance as fault-free, the classification
is TN. Finally, if a classifier labels any instance as faulty when
it is actually fault-free, the classification is FP.
This section briefly describes 14 classifiers’ performance

measures which are used in SFP (Table 2). However, follow-
ing classes of measures are out of our paper’s scope:

1) Graphical evaluationmethods [21] like ROC, Precision-
Recall curve, lift chart [18] etc.

2) Least commonly used performance measures in SFP
like Effort [27], Efficiency [28], Inspection [29] etc.

3) Performance measures not used in SFP studies like
Conditional log likelihood (CLL) [30] etc.

1In this paper, the term ‘‘four cases’’ would refer TP, FN, TN, and FP.

TABLE 2. Usage of performance measures in the SFP studies.

A. PRECISION
Precision and True positive rate (discussed afterward) typ-
ically used in document retrieval, proposed in [31]. Pre-
cision is about being precise. Precision measures the
chance of correctly predicting faulty modules among the
modules classified as fault-prone. It is also named as
correctness [32]–[34] and in the field of biomedicine,
it is named as positive predictive value (PPV) [35].
Mathematically,

Precision =
TP

TP+ FP
(1)

B. TRUE POSITIVE RATE (TPR)
TPRmeasures the ability of a classifier in identifying positive
samples. It has some other names also, like recall [36], sen-
sitivity [27], hit rate [37], and probability of detection (PD)
[38]. Mathematically, it can be written as;

TPR =
TP
P

(2)

Precision-recall curve [18] is another important measure
which is a composite of Precision (discussed earlier)
and TPR. However, it is beyond the scope of this paper.

C. TRUE NEGATIVE RATE (TNR)
TNR measures the ability of a predictor in identifying nega-
tive samples. It is also named as specificity [32], [39]. ROC
incorporates TPR (just discussed) and TNR to compute AUC.
Mathematically it can be written as;

TNR =
TN
N

(3)

D. ACCURACY
Accuracy shows the correct predictions. It is a good measure
when the classes in the test dataset are nearly balanced [20].
It measures the ability of a classifier in correctly identifying

82766 VOLUME 7, 2019



M. Rizwan et al.: Analyses of Classifier’s Performance Measures Used in SFP Studies

all samples, no matter it is positive or negative.

Accuracy =
TP+ TN
P+ N

(4)

E. F-MEASURE
F-measure is the harmonic mean between Precision and TPR,
first introduced in [40]. It tells how precise a classifier is (how
many instances it classifies correctly), as well as how robust
it is. Mathematically it is written as.

F-measure =
(β2 + 1)× Precision× TPR
β2 × Precision+ TPR

(5)

where, β can be 0.5, 1 and 2 for F0.5, F1, and F2 measures
respectively. Varying the value of β allows different weights
to be assigned to Precision and TPR. Detail derivation of
F-measure and assigning the value of β are discussed in [35].

F. G-MEAN1 AND G-MEAN2
Geometric mean (G-mean) is proposed in [11]. It has two
variants G-mean1 and G-mean2. These measures evaluate
the degree of inductive bias in terms of a ratio of positive
accuracy and negative accuracy [48].

G-mean1 =
√
TPR× Precision (6)

G-mean2 =
√
TPR× TNR (7)

G. J COEFFICIENT
Youden proposes J coefficient back in 1950 [106]. It is also
known as Youden’ index [107], denoted by γ . J is the Jaccard
index. Its value ranges [-1, 1]. Mathematically, it can be
written as;

J coefficient = TPR+ TNR− 1 (8)

J coefficient equals to one, represents the perfect classifica-
tion, whereas negative-one shows the worst case.

H. FALSE POSITIVE RATE (FPR) AND FALSE NEGATIVE
RATE (FNR)
False positive rate is also called as probability of false
detection (PF) [63], [65].

FPR =
FP

FP+ TN
(9)

FNR computes the degree of false detection of faulty
modules;

FNR =
FN

FN + TP
(10)

I. TYPE-I ERROR, TYPE-II ERROR AND ERROR RATE
Mathematical form of these measures are;

Type-I error =
FP

P+ N
(11)

Type-II error =
FN

P+ N
(12)

Error rate =
FP+ FN
P+ N

(13)

Type-I and Type-II errors are also named as Type-I and
Type-II misclassifications [20]. Likewise, Error rate is also
known as overall misclassification rate [7], [34] or simply,
misclassification rate [108].

J. BALANCE
In practice, FPR and TNR (recall) need to be balanced, which
is achieved by computing the difference between the best FPR
which is zero and the difference between the best TNR which
is 1. Rest of the factors are for normalization and computing
percentage [61].

Balance = 1−

√
(0− FPR)2 + (1− TPR)2

2
(14)

IV. CLASSIFICATION OF PERFORMANCE MEASURES
The measures discussed in the last section can be classi-
fied into two orthogonal classes; (1) Positive and negative
oriented measures, (2) base, derived and complement mea-
sures2. These two classes are shortly discussed below;

A. POSITIVE AND NEGATIVE ORIENTED MEASURES
Positive oriented measures refer to the performance mea-
sure whose higher value is desirable. Among the list of
measures discussed earlier, Precision, TPR, TNR, Accuracy,
F-measure, G-mean1, G-mean2, and J coefficient are positive
oriented measures. In contrast to that, where lower values are
desirable, are referred to as negative oriented measures. FPR,
FNR, Type-I error, Type-II error, Error rate, and Balance are
all negative oriented measures.

B. BASE, DERIVED, AND COMPLEMENT MEASURES
As the name implies, base measures are directly computed
out of the confusion matrix, whereas derived measures can
be computed from base measures. TPR, TNR, Type-I error,
Type-II error are all base measures whereas the rest of the
measures can be derived out of any or some of these base
measures. There can also be a unique category of derived
measures i.e. complement measures. These measures have
a strict inverse proportionality relationship with some other
measures. Three measures which have a complement rela-
tionship with the other three measures are;

1) Accuracy to Error rate
2) TPR to FNR
3) TNR to FPR

‘‘Complement’’ is a symmetric relationship whereas ‘‘base
and derived’’ is asymmetric in nature. Figure 1 shows the
base, derived, and complement measures. Base measures3

are filled-in with a black color to discriminate them from
derived measures, which are shown by hollow rectangles.
Unidirectional arrow is directed from base to derived mea-
sures, whereas the bidirectional arrow is between comple-
ment measures.

2The word ‘‘complement’’ is borrowed from set theory.
3Base measures having complement measures can also be taken as base

measures.

VOLUME 7, 2019 82767



M. Rizwan et al.: Analyses of Classifier’s Performance Measures Used in SFP Studies

FIGURE 1. Base, derived, and complement measures.

V. EVALUATION CRITERIA
A. PLAUSIBILITY
Plausibility refers to the absence of implausible values.
Implausible values can be of three types:
Type:1 Occurrence of ‘‘divided by zero’’. For instance, for

(0, 0, 1, 0)4 F-measure will produce ‘‘divided by
zero’’ error. Thus, F-measure will be declared as
implausible value carrier in this particular scenario.

Type:2 Non-minimum value of positive oriented mea-
sures or non-maximum value of negative oriented
measures for the worst classification. The worst clas-
sification occurs when none of the instances is cor-
rectly classified. One such scenario is (0, 1, 0, 0),
wherein Type-I error is 0.5, which is non-maximum
value. Thus, Type-I error will be declared as implau-
sible value carrier in this scenario.

Type:3 Non-maximum value of positive oriented mea-
sures or non-minimum value of negative oriented
measures for the best classification. The best clas-
sification is achieved when all the instances are cor-
rectly classified. One such scenario is, (1, 0, 1, 0).

Second and third types are in a mutually exclusive relation-
ship, while they both can have co-occurrence with the first
type. This evaluation parameter is named as ‘‘plausibility’’,
because implausible value carrier measure either provides
insufficient information or does not provide any information
about the goodness of a classifier. Plausibility can have effect
on the evaluation parameters discussed in the earlier studies,
however, exclusive consideration of this aspect is deprived in
the literature.

B. CONSISTENCY AND DISCRIMINANCY
Consistency and discriminancy between performance mea-
sures are proposed in [109], wherein AUC and Accuracy
are compared. However, these two measures can be used to
evaluate other performance measures also. Thus, Rosset [14]
computes discriminancy between AUC and Error rate, and
Haung and Ling [17] use discriminancy and consistency both
to evaluate AUC and Accuracy.
Consistency computes the consensus of two performance
measures on evaluating different classifiers. It is a symmetric
relationship. Two performance measures, say f and g are
consistent with each other when comparing two algorithms a
and b, if both f and g stipulate that a is better than b. However,
if f stipulates that a is better than b and g contradicts that, then
f and g are said to be inconsistent.

4This notation is used in this paper, where first, second, third and fourth
number shows TP, FN, TN, and FP cases respectively.

Discriminancy is an ability of one performance measure over
another to discriminate different classifiers. For instance,
if f declares a as different (better or worse) than b, while
g declares both a and b as equivalent. Then f is more dis-
criminating that g.
Both of these parameters are formally defined in [109] as:
Definition 1 (Consistency): For two measures f, g on domain
9, f and g are (strictly) consistent if there exists no a, b such
that f (a) > f (b) and g(a) < g(b).
Definition 2 (Discriminancy): For two measures f, g on
domain 9, f is (strictly) more discriminating than g if there
exists a, b belong to9 such that f (a) 6= f (b) and g(a) = g(b)
and there exists no a, b belong to 9 such that g(a) 6= g(b)
and f (a) = f (b).
Generally, neither strict discriminancy nor strict consistency
exists between performance measures [109]. Therefore, sta-
tistical consistency and statistical discriminancy is subject to
be computed, which are defined as:
Definition 3 (Degree of consistency): For two measures f and
g on domain 9, let
R = {(a, b)|a, b ∈ 9 , f (a) > f (b), g(a) > g(b)} and
S = {(a, b)|a, b ∈ 9 , f (a) > f (b), g(a) < g(b)}

Degree of consistency(f , g) =
|R|

|R| + |S|
(15)

We do a minor augmentation to the definition 3 to make it
generic enough to cover all possibilities.
Definition 4 (Degree of consistency (augmented)): For two
measures f and g on domain 9, let
R = {(a, b)|a, b ∈ 9 , f (a) > f (b), g(a) > g(b) ∨ f (a) =
f (b), g(a) = g(b)}
S = {(a, b)|a, b ∈ 9 , f (a) > f (b), g(a) ≯ g(b)} ∨ f (a) =
f (b), g(a) 6= g(b)
Definition 5 (Degree of discriminancy): For two measures f
and g on domain 9, let
P = {(a, b)|a, b ∈ 9 , f (a) > f (b), g(a) = g(b)} and
Q = {(a, b)|a, b ∈ 9 , g(a) > g(b), f (a) = f (b)}

Degree of discriminancy(f /g) =
|P|
|Q|

(16)

While computing degree of discriminancy, the ∞ implies
strict discriminancy of one measure over another.

VI. EVALUATION OF PERFORMANCE MEASURES
A. PLAUSIBILITY ANALYSIS
1) EXPERIMENTAL DESIGN
The occurrence of zero in any of the four cases potentially
leads to implausible values. Thus, all possible scenarios hav-
ing zero and a non-zero value in the four cases are considered.
That makes a total of 14 scenarios, wherein, three scenarios
show the best performance and three scenarios show theworst
performance. All of these scenarios are shown in Table 3.
The performance measures are evaluated against these
14 scenarios.

82768 VOLUME 7, 2019



M. Rizwan et al.: Analyses of Classifier’s Performance Measures Used in SFP Studies

TABLE 3. The result of plausibility analysis along with the type of implausible value. Top four rows show the values of the four cases (TP, FN TN, and FP),
which could be zero or greater than zero; Empty cell shows the plausible value.

2) RESULT AND DISCUSSION
Plausibility analysis concludes that:

1) F-measure is the worst of all, by having implausible
values in seven scenarios, including implausible value
of Type-1 and Type-3 in one best classification and
Type-1 and Type-2 in all three worst classifications.
It is further illustrated that F-measure cannot identify
the worst classification.

2) F-measure is followed by G-mean2, J coefficient and
Balance by having implausible values in six scenarios.

3) Accuracy and Error rate are the safest of all by having
never implausible value.

4) Complement measures have the same behavior as that
of their countermeasures. Like, Accuracy and Error rate
both, never produce implausible value. Likewise, TPR
and FNR produce implausible value three times.

5) Derived measures always inherit the Type-3 implau-
sible value from their base measures with some time
addition of their own. Like, F-measure produces Type-
3 implausible value seven times, where five are taken
from its base measures.

The implication of the above findings is that the measures
having more occurrences of implausible value should not be
used where there is a high chance of occurrence of zero in any
of the four cases.

B. CONSISTENCY AND DISCRIMINANCY ANALYSES
1) EXPERIMENTAL DESIGN
Consistency and discriminancy analyses are conducted
between two classifiers. Logically, diversity between results
makes more rigorous analyses. In order to achieve this,
we performed following steps to get diverse results from
hypothetical classifiers.
Step:1 We take two types of datasets; balanced and imbal-

anced, as is done in [17]. In fact, this leads to three
datasets; In the first dataset, P = N (Where, P and N
show total number of positive and negative instances,
respectively), in the second dataset P < N and third
dataset has P > N .

a) Dataset-1: P = N , n = 12;P = 6,N = 6
b) Dataset-2: P < N , n = 30;P = 12,N = 18
c) Dataset-3: P > N , n = 30;P = 18,N = 12
The reason for specifying the value of n, P and N is
described in Step-3.

Step:2 In this step, we generate diverse conditions that
a result is supposed to satisfy. Diverse conditions
imply a different relationship between pairs of cases.
Pairs of cases are (TP,FN ), (TP,TN ), (TP,FP),
(FN ,TN ), (FN ,FP), and (TN ,FP). Each pair can
have three possible relationships between them =,
<, and>. Each of the six pairs are combined to make
a single condition like, {TP > FP∧TP = FN∧TP <
TN ∧ TN > FP ∧ TN > FN ∧ FP < FN} is
one condition for single result to satisfy. Eventually,
the pairs with all possible relationships make a total
of 729 unique conditions. Of course some conditions
cannot be satisfied which are identified and dropped
in the next step.

Step:3 In this step, we assign values to four cases a way
that maximum conditions can be satisfied. To assign
values to four cases, we develop a tool that uses
all values ranges from one 5 to 20. Using the tool,
conditions which could not be satisfied are automat-
ically identified and dropped. Eventually, in the first
dataset, where P = N , 17 conditions are satisfied.
In the second and third dataset whereP < N andP >
N respectively, 41 conditions could be satisfied. All
satisfied conditions in each dataset and their values
in corresponding cases are shown in Table 4. In the
first dataset, n is taken as 12 because it is the smallest
number that could satisfy as many conditions as
when n is taken as 80. In the second and third dataset,
n is taken as 30 for the same reason. Results against
each dataset are assumed to be results from hypo-
thetical classifiers. Intuitively speaking, the result
of 17 classifiers are taken from the first dataset and

5We started with one to avoid an occurrence of zero value in any case for
it could cause implausible value.

VOLUME 7, 2019 82769



M. Rizwan et al.: Analyses of Classifier’s Performance Measures Used in SFP Studies

TABLE 4. The result from 99 classifiers with corresponding satisfied
conditions; The topmost block is the result from the balanced dataset,
whereas middle and lower blocks show results when P < N and P > N
respectively.

results from 41 classifiers are taken from second and
third dataset each. Table 4 can be viewed as results
from 99 different hypothetical classifiers.

Step:4 In this step, all the performance measures are com-
puted against results from 99 classifiers.

Step:5 Finally, we make all possible pairs of results (from
every classifier), within a dataset. That makes a total
of 136 pairs in the balanced dataset and 820 pairs in
each imbalanced datasets. That would allow apply-
ing consistency and discriminancy analyses on each
pair.

2) RESULTS AND DISCUSSION ON CONSISTENCY ANALYSIS
The result of consistency on balanced and imbalanced
datasets are shown in Table 5. This experiment concludes
that;

1) Generally, the degree of consistency is influenced by
the relationship between P and N.

2) Complementing measures always have 100% consis-
tency between them.

3) Other than complementing measures, the following
pairs are strictly consistent across the datasets;
a) {TPR, Type-II error}
b) {TNR, Type-I error}
c) {FNR, Type-II error}
d) {FPR, Type-I error}

4) There are four pairs of performance measures having
strict consistency between them only in the balanced
dataset.
a) {F-measure, G-mean1}
b) {G-mean2, Balance}
c) {Accuracy, J coefficient}
d) {J coefficient, Error rate}

5) Strict consistency holds transitive relationship in the
respective dataset.

6) All the strictly consistent performance measures in the
imbalanced datasets are found strictly consistent in
balanced dataset also.

Above findings imply that the strictly consistent performance
measures are not supposed to be used together to prevent
redundant evaluation of machine learning models, as is done
in different studies [48], [83] etc. Instead, least consistent
performance measures may be used. In addition to that, P to
N ratio in the dataset should be considered while choosing the
performance measures to compare different models.

3) RESULTS AND DISCUSSION ON DISCRIMINANCY
ANALYSIS
Discriminancy analysis is done in three different dimensions.
Firstly, we compute the degree of discriminancy between all
possible pairs of the performance measures (see Table 6).
Secondly, we compute discriminancy ability of each perfor-
mancemeasure irrespective of other.Whose results are drawn
in Figure 2. Finally, we try to generalize the scenarios when

82770 VOLUME 7, 2019



M. Rizwan et al.: Analyses of Classifier’s Performance Measures Used in SFP Studies

TABLE 5. Degree of consistency between performance measures. The
topmost block is the result from the balanced dataset, whereas middle
and lower blocks show results when P < N and P > N respectively.

the respective performance measure alone fails to discrimi-
nate two classifiers (see Table 7). The discriminancy analysis
concludes that:

1) F-measure is strictly more discriminant than rest of
the performance measures excluding G-mean1, across
all datasets. Likewise, G-mean1 is strictly more dis-
criminant than the rest of the performance measures
excluding F-measures in all the datasets.

2) In the balanced dataset, strict discriminancy of Preci-
sion, G-mean2 and, Balance are found over Accuracy,
J coefficient, and Error rate.

3) In the imbalanced datasets when P > N , Balance has
strict discriminancy over G-mean2 and J coefficient.

4) Complementing measures have zero degree of discrim-
inancy over each other. Moreover, they share same
discriminancy relationship with other measures as that
of their countermeasures.

5) Derived measures have a higher degree of discrimi-
nancy than their base measures.

Our next focus is to individually evaluate the performance
measures to discriminate 99 classifiers. Eventually, we con-
clude results shown in Figure 2. Figure depicts that none
of the performance measures successfully discriminate all
the classifiers. Moreover, the best out of the performance
measures are F-measure and G-mean1, which discriminate
98 classifiers, yet not effective enough to discriminate all the
classifiers. This small experiment spurs to figure out the cases

TABLE 6. Degree of discriminancy between performance measures in the
first row over the performance measure in the first column. The topmost
block is the result from the balanced dataset, whereas middle and lower
blocks show results when P < N and P > N respectively.

FIGURE 2. Number of discriminated classifiers by the performance
measures.

where the performance measures fail to discriminate two
different classifiers. We conclude that performance measures
have an inherent property not to discriminate classifiers hav-
ing certain common properties. These properties are written
in Table 7. Middle column of the table shows conditions,
if satisfied by a classifier a and b, then the respective measure
would not be able to discriminate a and b.

4) COMBINED ANALYSIS OF CONSISTENCY AND
DISCRIMINANCY
Ling et al. design two rules for combined effect of consistency
and discriminancy between performance measures [109].

VOLUME 7, 2019 82771



M. Rizwan et al.: Analyses of Classifier’s Performance Measures Used in SFP Studies

TABLE 7. Non-discriminable scenarios for performance measures.

Rule-1: If C(f ,g) = 1.0 and D(f /g) = ∞, then f is strictly
better than g.
Rule-2: If C(f ,g) > 0.5 and D(f /g) > 1, then f is statistically
better than g.
Combined analysis of consistency and discriminancy infers
the overall goodness of one performance measure over
another. Table 8 depicts the comparison between performance
measures in the first column and performance measures on
the header row. The former is better than the later one if the
specified cell contains ‘‘Yes’’. The table illustrates that the
following order from better to worst prevails in the balanced
dataset:
1st : F-measures/G-mean1
2nd : Precision
3rd : G-mean2
4th: Balance
5th: J coefficient
6th: Accuracy / Error rate
7th: TPR / FNR / TNR / FPR / Type-I error / Type-II error
The above order is slightly modified in the imbalanced
datasets.
1st : F-measures/G-mean1
2nd : G-mean2
3rd : Balance
4th: J coefficient
5th: Precision
6th: Accuracy/Error rate
7th: TPR / FNR / TNR / FPR / Type-I error / Type-II error
The base measures are identified as the worst of all the

measures with the exception of Precision, which is quite
unstable, as it degrades from 2nd to 5th position as we move

TABLE 8. Combined result of consistency and discriminancy.

from balanced to the imbalanced datasets. F-measure and
G-mean1 are the best of all measures. However, if there is
a chance of occurrence of zero in any of the case, then next
better measures may be used.

VII. COMPARISON WITH OTHER STUDIES
Plausibility analysis deduces the outperformance of Accu-
racy and Error rate as compared to rest of the performance
measures. Though AUC has been compared with Accuracy
by many studies [10], [11], [15], [17] and with Error rate
by some others [13], [14], however, evaluation in plausibility
and in comparison with the performance measure we take,
have not been done before. Besides this, Accuracy / Error rate

82772 VOLUME 7, 2019



M. Rizwan et al.: Analyses of Classifier’s Performance Measures Used in SFP Studies

is found to be less discriminating. So, when it comes to the
evaluation of single model then Accuracy / Error rate may be
used as is done by many authors, whereas, for the comparison
of different models, it is not encouraged. Same conclusion is
drawn in [14].
Selection of performance measure to compare different clas-
sifiers is subjected by many studies [6], [20], [23]. Most
of these studies not clearly declare any performance mea-
sure or a pair of performance measure (from the list we
have drawn) to be used in classifiers’ evaluation. Amongst
them, [20] declares that Precision and Type-I error are closely
related, our work agrees that both of these two measures are
found consistent in 1164 comparisons out of 1776.

VIII. CONCLUSION
Our experiments declare that F-measure and G-mean1 are
equally the most discriminating performance measures,
hence the most suitable to evaluate two different classifiers.
Besides this, both of these measures are found to be the least
scorer in plausibility analysis. So, it is good to use one of
them when there is NO possibility of occurrence of zero in
any of the four cases. However, where there is a chance of
occurrence of zero in any of the case, Precision would be
relatively a good choice for having more plausibility score
and more discriminating.

IX. FUTURE GUIDELINES
For future work, we plan to evaluate the performance mea-
sures used in regression like Completeness [57], Average
absolute error [110] etc. Moreover, our work is limited to
evaluate performance measure used in SFP, however, perfor-
mancemeasures used in other domainsmay also be evaluated.

REFERENCES
[1] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B.Murphy, ‘‘Cross-

project defect prediction: A large scale experiment on data vs. domain
vs. process,’’ in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM
SIGSOFT Symp. Found. Softw. Eng., 2009, pp. 91–100.

[2] C. Catal and B. Diri, ‘‘A systematic review of software fault prediction
studies,’’ Expert Syst. Appl., vol. 36, no. 4, pp. 7346–7354, May 2009.

[3] S. Beecham, T. Hall, D. Bowes, D. Gray, S. Counsell, and S. Black,
‘‘A systematic review of fault prediction approaches used in software
engineering,’’ Lero, Dubrovnik, Croatia, Tech. Rep. Lero-TR-2010-04,
2010.

[4] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2011.

[5] R. Malhotra, ‘‘A systematic review of machine learning techniques for
software fault prediction,’’ Appl. Soft Comput., vol. 27, pp. 504–518,
Feb. 2015.

[6] E. Arisholm, L. C. Briand, and E. B. Johannessen, ‘‘A systematic and
comprehensive investigation of methods to build and evaluate fault pre-
diction models,’’ J. Syst. Softw., vol. 83, no. 1, pp. 2–17, Jan. 2010.

[7] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, ‘‘Comparing the effective-
ness of several modeling methods for fault prediction,’’ Empirical Softw.
Eng., vol. 15, no. 3, pp. 277–295, Jun. 2010.

[8] C. Catal, ‘‘Software fault prediction: A literature review and current
trends,’’ Expert Syst. Appl., vol. 38, no. 4, pp. 4626–4636, 2011.

[9] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, ‘‘Software fault
prediction metrics: A systematic literature review,’’ Inf. Softw. Technol.,
vol. 55, no. 8, pp. 1397–1418, Aug. 2013.

[10] A. P. Bradley, ‘‘The use of the area under the ROC curve in the evalua-
tion of machine learning algorithms,’’ Pattern Recognit., vol. 30, no. 7,
pp. 1145–1159, Jul. 1997.

[11] M. Kubat, R. C. Holte, and S. Matwin, ‘‘Machine learning for the detec-
tion of oil spills in satellite radar images,’’Mach. Learn., vol. 30, nos. 2–3,
pp. 195–215, Feb. 1998.

[12] P. A. Flach, ‘‘The geometry of ROC space: Understanding machine
learning metrics through ROC isometrics,’’ in Proc. 20th Int. Conf. Mach.
Learn.Menlo Park, CA, USA: AAAI Press, 2003, pp. 194–201.

[13] C. Cortes andM.Mohri, ‘‘AUC optimization vs. error rate minimization,’’
in Proc. 16th Int. Conf. Neural Inf. Process. Syst. (NIPS). Cambridge,
MA, USA: MIT Press, 2003, pp. 313–320.

[14] S. Rosset, ‘‘Model selection via the AUC,’’ in Proc. 21st Int. Conf. Mach.
Learn., 2004, p. 89.

[15] R. Caruana and A. Niculescu-Mizil, ‘‘Data mining in metric space:
An empirical analysis of supervised learning performance criteria,’’ in
Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2004, pp. 69–78.

[16] J. Fürnkranz and P. A. Flach, ‘‘ROC ‘n’ rule learning–towards a better
understanding of covering algorithms,’’ Mach. Learn., vol. 58, no. 1,
pp. 39–77, Jan. 2005.

[17] J. Huang andC.X. Ling, ‘‘UsingAUC and accuracy in evaluating learning
algorithms,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 3, pp. 299–310,
Mar. 2005.

[18] J. Davis and M. Goadrich, ‘‘The relationship between Precision–Recall
and ROC curves,’’ in Proc. 23rd Int. Conf. Mach. Learn. (ICML).
New York, NY, USA: ACM, 2006, pp. 233–240.

[19] J. Huang and C. X. Ling, ‘‘Constructing new and better evaluation mea-
sures for machine learning,’’ in Proc. IJCAI, 2007, pp. 859–864.

[20] T. J. Ostrand and E. J. Weyuker, ‘‘How to measure success of fault
prediction models,’’ in Proc. 4th Int. Workshop Softw. Quality Assurance,
Conjunct 6th ESEC/FSE Joint Meeting, 2007, pp. 25–30.

[21] Y. Jiang, B. Cukic, and Y.Ma, ‘‘Techniques for evaluating fault prediction
models,’’ Empirical Softw. Eng., vol. 13, no. 5, pp. 561–595, 2008.

[22] C. Ferri, J. Hernández-Orallo, and R. Modroiu, ‘‘An experimental com-
parison of performance measures for classification,’’ Pattern Recognit.
Lett., vol. 30, no. 1, pp. 27–38, Jan. 2009.

[23] Y. Jiao and P. Du, ‘‘Performance measures in evaluating machine learning
based bioinformatics predictors for classifications,’’ Quant. Biol., vol. 4,
no. 4, pp. 320–330, Dec. 2016.

[24] Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng, ‘‘Learning to predict
severity of software vulnerability using only vulnerability description,’’
in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2017,
pp. 125–136.

[25] Y. Zhou and H. Leung, ‘‘Empirical analysis of object-oriented design
metrics for predicting high and low severity faults,’’ IEEE Trans. Softw.
Eng., vol. 32, no. 10, pp. 771–789, Oct. 2006.

[26] B. Kolo, Binary and Multiclass Classification. Weatherford, OK, USA:
Weatherford Press, 2010.

[27] T. Menzies, J. DiStefano, A. Orrego, and R. Chapman, ‘‘Assessing pre-
dictors of software defects,’’ in Proc. Workshop Predictive Softw. Models,
2004, pp. 1–4.

[28] L. Guo, B. Cukic, and H. Singh, ‘‘Predicting fault prone modules by
the Dempster–Shafer belief networks,’’ in Proc. 18th IEEE Int. Conf.
Automated Softw. Eng., Oct. 2003, pp. 249–252.

[29] A. Mahaweerawat, P. Sophatsathit, and C. Lursinsap, ‘‘Software fault
prediction using fuzzy clustering and radial-basis function network,’’ in
Proc. Int. Conf. Intell. Technol., InTech/VJFuzzy, Vietnam, Dec. 2002.

[30] D. Grossman and P. Domingos, ‘‘Learning Bayesian network classifiers
by maximizing conditional likelihood,’’ in Proc. 21st Int. Conf. Mach.
Learn., 2004, p. 46.

[31] A. Kent, M. M. Berry, F. U. Luehrs, Jr., and J. W. Perry, ‘‘Machine
literature searching VIII. Operational criteria for designing information
retrieval systems,’’ Amer. Document., vol. 6, no. 2, pp. 93–101, 1955.

[32] Y. Singh, A. Kaur, and R. Malhotra, ‘‘Prediction of fault-prone software
modules using statistical and machine learning methods,’’ Int. J. Comput.
Appl., vol. 1, no. 22, pp. 8–15, 2010.

[33] L. C. Briand, V. R. Brasili, and C. J. Hetmanski, ‘‘Developing inter-
pretable models with optimized set reduction for identifying high-
risk software components,’’ IEEE Trans. Softw. Eng., vol. 19, no. 11,
pp. 1028–1044, Nov. 1993.

[34] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P. Thambidurai,
‘‘Object-oriented software fault prediction using neural networks,’’ Inf.
Softw. Technol., vol. 49, no. 5, pp. 483–492, May 2007.

[35] Y. Sasaki, ‘‘The truth of the F-measure,’’ Teach Tutor Mater, vol. 1, no. 5,
pp. 1–5, 2007.

VOLUME 7, 2019 82773



M. Rizwan et al.: Analyses of Classifier’s Performance Measures Used in SFP Studies

[36] A. Marcus, D. Poshyvanyk, and R. Ferenc, ‘‘Using the conceptual cohe-
sion of classes for fault prediction in object-oriented systems,’’ IEEE
Trans. Softw. Eng., vol. 34, no. 2, pp. 287–300, Mar. 2008.

[37] A. E. Hassan and R. C. Holt, ‘‘The top ten list: Dynamic fault prediction,’’
in Proc. 21st IEEE Int. Conf. Softw. Maintenance (ICSM), Sep. 2005,
pp. 263–272.

[38] T. Menzies, J. D. Stefano, K. Ammar, K. McGill, P. Callis, J. Davis,
and R. Chapman, ‘‘When can we test less?,’’ in Proc. 5th Int. Workshop
Enterprise Netw. Comput. Healthcare Ind., Sep. 2003, pp. 98–110.

[39] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer, and
R. Haesen, ‘‘Mining software repositories for comprehensible software
fault prediction models,’’ J. Syst. Softw., vol. 81, no. 5, pp. 823–839,
May 2008.

[40] N. Chinchor, ‘‘MUC-4 evaluation metrics,’’ in Proc. 4th Conf. Message
Understand. (MUC4). Stroudsburg, PA, USA: Association for Computa-
tional Linguistics, 1992, pp. 22–29. doi: 10.3115/1072064.1072067.

[41] A. Tosun, B. Turhan, and A. Bener, ‘‘Validation of network measures as
indicators of defective modules in software systems,’’ in Proc. 5th Int.
Conf. Predictor Models Softw. Eng. (PROMISE). New York, NY, USA:
ACM, 2009, pp. 5:1–5:9.

[42] C. Catal, B. Diri, and B. Ozumut, ‘‘An artificial immune system approach
for fault prediction in object-oriented software,’’ in Proc. 2nd Int.
Conf. Dependability Comput. Syst. (DepCoS-RELCOMEX), Jun. 2007,
pp. 238–245.

[43] A. Kaur and R. Malhotra, ‘‘Application of random forest in predict-
ing fault-prone classes,’’ in Proc. Int. Conf. Adv. Comput. Theory
Eng. (ICACTE), Dec. 2008, pp. 37–43.

[44] E. Arisholm, L. C. Briand, andM. Fuglerud, ‘‘Data mining techniques for
building fault-proneness models in telecom Java software,’’ in Proc. 18th
IEEE Int. Symp. Softw. Rel. (ISSRE), Nov. 2007, pp. 215–224.

[45] A. G. Koru and H. Liu, ‘‘Building effective defect-prediction models in
practice,’’ IEEE Softw., vol. 22, no. 6, pp. 23–29, Nov. 2005.

[46] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, ‘‘Classifying software
changes: Clean or buggy?’’ IEEE Trans. Softw. Eng., vol. 34, no. 2,
pp. 181–196, Mar./Apr. 2008.

[47] Y. Singh, A. Kaur, and R. Malhotra, ‘‘Software fault proneness prediction
using support vector machines,’’ in Proc. World Congr. Eng., vol. 1, 2009,
pp. 1–3.

[48] H. He and E. A. Garcia, ‘‘Learning from imbalanced data,’’ IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[49] M.A. deAlmeida and S.Matwin, ‘‘Machine learningmethod for software
quality model building,’’ in Proc. Int. Symp. Methodol. Intell. Syst.Berlin,
Germany: Springer, 1999, pp. 565–573.

[50] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, ‘‘Problems
with precision: A response to ‘Comments on ‘Data mining static code
attributes to learn defect predictors,’’’’ IEEE Trans. Softw. Eng., vol. 33,
no. 9, pp. 637–640, Sep. 2007.

[51] G. J. Pai and J. B. Dugan, ‘‘Empirical analysis of software fault content
and fault proneness using Bayesian methods,’’ IEEE Trans. Softw. Eng.,
vol. 33, no. 10, pp. 675–686, Oct. 2007.

[52] G. Denaro, L. Lavazza, and M. Pezzè, ‘‘An empirical evaluation of object
oriented metrics in industrial setting,’’ J. Object Technol., Sep. 2015.

[53] T. Menzies and J. S. Di Stefano, ‘‘How good is your blind spot sam-
pling policy,’’ in Proc. 8th IEEE Int. Symp. High Assurance Syst. Eng.,
Mar. 2004, pp. 129–138.

[54] T. Gyimothy, R. Ferenc, and I. Siket, ‘‘Empirical validation of object-
oriented metrics on open source software for fault prediction,’’ IEEE
Trans. Softw. Eng., vol. 31, no. 10, pp. 897–910, Oct. 2005.

[55] A. B. de Carvalho, A. Pozo, and S. R. Vergilio, ‘‘A symbolic fault-
prediction model based on multiobjective particle swarm optimization,’’
J. Syst. Softw., vol. 83, no. 5, pp. 868–882, May 2010.

[56] X. Xuan, D. Lo, X. Xia, and Y. Tian, ‘‘Evaluating defect prediction
approaches using a massive set of metrics: An empirical study,’’ in Proc.
30th Annu. ACM Symp. Appl. Comput., 2015, pp. 1644–1647.

[57] Y. Singh, A. Kaur, and R. Malhotra, ‘‘Empirical validation of object-
oriented metrics for predicting fault proneness models,’’ Softw. Quality
J., vol. 18, no. 1, pp. 3–35, 2010.

[58] Y. Jiang, B. Cukic, and T.Menzies, ‘‘Fault prediction using early lifecycle
data,’’ in Proc. 18th IEEE Int. Symp. Softw. Rel. (ISSRE), Nov. 2007,
pp. 237–246.

[59] L. Guo, Y. Ma, B. Cukic, and H. Singh, ‘‘Robust prediction of fault-
proneness by random forests,’’ in Proc. 15th Int. Symp. Softw. Rel.
Eng. (ISSRE), Nov. 2004, pp. 417–428.

[60] R. Moser, W. Pedrycz, and G. Succi, ‘‘A comparative analysis of the effi-
ciency of change metrics and static code attributes for defect prediction,’’
in Proc. 30th Int. Conf. Softw. Eng., May 2008, pp. 181–190.

[61] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code
attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

[62] W. Afzal, ‘‘Using faults-slip-through metric as a predictor of fault-
proneness,’’ in Proc. 17th Asia Pacific Softw. Eng. Conf. (APSEC),
Nov./Dec. 2010, pp. 414–422.

[63] B. Turhan and A. Bener, ‘‘A multivariate analysis of static code attributes
for defect prediction,’’ in Proc. QSIC, Oct. 2007, pp. 231–237.

[64] B. Turhan and A. Bener, ‘‘Software defect prediction: Heuristics for
weighted Naïve Bayes,’’ in Proc. ICSOFT, 2007, pp. 244–249.

[65] B. Turhan, G. Kocak, and A. Bener, ‘‘Software defect prediction using
call graph based ranking (CGBR) framework,’’ in Proc. 34th Euromicro
Conf. Softw. Eng. Adv. Appl., Sep. 2008, pp. 191–198.

[66] A. B. de Carvalho, A. Pozo, S. Vergilio, and A. Lenz, ‘‘Predicting fault
proneness of classes trough a multiobjective particle swarm optimization
algorithm,’’ in Proc. 20th IEEE Int. Conf. Tools Artif. Intell., Nov. 2008,
pp. 387–394.

[67] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, ‘‘On the relative
value of cross-company and within-company data for defect prediction,’’
Empirical Softw. Eng., vol. 14, no. 5, pp. 540–578, 2009.

[68] H. Zhang and X. Zhang, ‘‘Comments on ‘Data mining static code
attributes to learn defect predictors,’’’ IEEE Trans. Softw. Eng., vol. 33,
no. 9, pp. 635–637, Sep. 2007.

[69] B. Turhan and A. Bener, ‘‘Analysis of Naive Bayes’ assumptions on
software fault data: An empirical study,’’Data Knowl. Eng., vol. 68, no. 2,
pp. 278–290, 2009.

[70] V. U. B. Challagulla, F. B. Bastani, and I. Yen, ‘‘A unified framework for
defect data analysis using the MBR technique,’’ in Proc. 18th IEEE Int.
Conf. Tools Artif. Intell. (ICTAI), Nov. 2006, pp. 39–46.

[71] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, ‘‘Empir-
ical validation of three software metrics suites to predict fault-proneness
of object-oriented classes developed using highly iterative or agile soft-
ware development processes,’’ IEEE Trans. Softw. Eng., vol. 33, no. 6,
pp. 402–419, Jun. 2007.

[72] A. A. Porter and R. W. Selby, ‘‘Empirically guided software develop-
ment using metric-based classification trees,’’ IEEE Softw., vol. 7, no. 2,
pp. 46–54, Mar. 1990.

[73] N. J. Pizzi, A. R. Summers, andW. Pedrycz, ‘‘Software quality prediction
using median-adjusted class labels,’’ in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), vol. 3, May 2002, pp. 2405–2409.

[74] Q. Wang, B. Yu, and J. Zhu, ‘‘Extract rules from software quality predic-
tion model based on neural network,’’ in Proc. 16th IEEE Int. Conf. Tools
Artif. Intell. (ICTAI), Nov. 2004, pp. 191–195.

[75] A. Mahaweerawat, P. Sophatsathit, C. Lursinsap, and P. Musilek, ‘‘Fault
prediction in object-oriented software using neural network techniques,’’
in Proc. Adv. Virtual Intell. Comput. Center (AVIC), Jan. 2004.

[76] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, ‘‘Predicting the location and
number of faults in large software systems,’’ IEEE Trans. Softw. Eng.,
vol. 31, no. 4, pp. 340–355, Apr. 2005.

[77] S. Bibi, G. Tsoumakas, I. Stamelos, and I. Vlahavas, ‘‘Regression via
Classification applied on software defect estimation,’’ Expert Syst. Appl.,
vol. 34, no. 3, pp. 2091–2101, Apr. 2008.

[78] Z. Li and M. Reformat, ‘‘A practical method for the software fault-
prediction,’’ in Proc. IEEE Int. Conf. Inf. Reuse Integr., Aug. 2007,
pp. 659–666.

[79] A. Mahaweerawat, P. Sophatsathit, and C. Lursinsap, ‘‘Adaptive self-
organizing map clustering for software fault prediction,’’ in Proc. 4th
Int. Joint Conf. Comput. Sci. Softw. Eng., Khon Kaen, Thailand, 2007,
pp. 35–41.

[80] P. Tomaszewski, J. Håkansson, H. Grahn, and L. Lundberg, ‘‘Statistical
models vs. expert estimation for fault prediction in modified code—
An industrial case study,’’ J. Syst. Softw., vol. 80, no. 8, pp. 1227–1238,
Aug. 2007.

[81] A. G. Koru and H. Liu, ‘‘An investigation of the effect of module size
on defect prediction using static measures,’’ SIGSOFT Softw. Eng. Notes,
vol. 30, no. 4, pp. 1–5, May 2005.

[82] Y. Ma, L. Guo, and B. Cukic, A Statistical Framework for the Predic-
tion of Fault-Proneness (Advances in Machine Learning Applications in
Software Engineering). Singapore: Idea Group Publishing, 2006.

[83] Y. Ma, L. Guo, and B. Cukic, A Statistical Framework for the Predic-
tion of Fault-Proneness (Advances in Machine Learning Applications
in Software Engineering). Pennsylvania, PA, USA: IGI Global, 2007,
pp. 237–263.

82774 VOLUME 7, 2019



M. Rizwan et al.: Analyses of Classifier’s Performance Measures Used in SFP Studies

[84] K. El Emam, W. Melo, and J. C. Machado, ‘‘The prediction of faulty
classes using object-oriented design metrics,’’ J. Syst. Softw., vol. 56,
no. 1, pp. 63–75, Feb. 2001.

[85] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, ‘‘Comparing case-based
reasoning classifiers for predicting high risk software components,’’
J. Syst. Softw., vol. 55, no. 3, pp. 301–320, Jan. 2001.

[86] K. Kaur, A. Kaur, and R. Malhotra, ‘‘Alternative methods to rank the
impact of object oriented metrics in fault prediction modelling using
neural networks,’’ Int. J. Eng. Appl. Sci., vol. 1, pp. 99–104, Jan. 2005.

[87] S. Zhong, T. M. Khoshgoftaar, and N. Seliya, ‘‘Unsupervised learning for
expert-based software quality estimation,’’ in Proc. 8th IEEE Int. Symp.
High Assurance Syst. Eng., Mar. 2004, pp. 149–155.

[88] C. Catal, U. Sevim, and B. Diri, ‘‘Clustering and metrics thresholds based
software fault prediction of unlabeled programmodules,’’ inProc. 6th Int.
Conf. Inf. Technol., New Generat. (ITNG), Apr. 2009, pp. 199–204.

[89] B. Yang, Q. Yin, S. Xu, and P. Guo, ‘‘Software quality prediction using
affinity propagation algorithm,’’ in Proc. IEEE Int. Joint Conf. Neural
Netw. (IEEE World Congr. Comput. Intell., Jun. 2008, pp. 1891–1896.

[90] N. Seliya and T. M. Khoshgoftaar, ‘‘Software quality analysis of unla-
beled program modules with semisupervised clustering,’’ IEEE Trans.
Syst., Man, Cybern. A, Syst., Humans, vol. 37, no. 2, pp. 201–211,
Mar. 2007.

[91] Y. Liu, T. M. Khoshgoftaar, and N. Seliya, ‘‘Evolutionary optimization of
software qualitymodelingwithmultiple repositories,’’ IEEE Trans. Softw.
Eng., vol. 36, no. 6, pp. 852–864, Nov. 2010.

[92] N. Seliya and T.M. Khoshgoftaar, ‘‘Software quality estimation with lim-
ited fault data: A semi-supervised learning perspective,’’ Softw. Quality J.,
vol. 15, no. 3, pp. 327–344, Sep. 2007.

[93] Q. Wang, J. Zhu, and B. Yu, ‘‘Feature selection and clustering in software
quality prediction,’’ in Proc. 11th Int. Conf. Eval. Assessment Softw. Eng.
(EASE). Salford, U.K.: Swinton, 2007, pp. 21–32.

[94] F. Xing, P. Guo, and M. R. Lyu, ‘‘A novel method for early software
quality prediction based on support vector machine,’’ in Proc. 16th IEEE
Int. Symp. Softw. Rel. Eng. (ISSRE), Nov. 2005, pp. 212–222.

[95] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J. Aud, ‘‘Appli-
cation of neural networks to software quality modeling of a very large
telecommunications system,’’ IEEE Trans. Neural Netw., vol. 8, no. 4,
pp. 902–909, Jul. 1997.

[96] T. M. Khoshgoftaar, E. B. Allen, and J. C. Busboom, ‘‘Modeling software
quality: The software measurement analysis and reliability toolkit,’’ in
Proc. ICTAI, Nov. 2000, pp. 54–61.

[97] P. Guo andM. R. Lyu, ‘‘Software quality prediction using mixture models
with EM algorithm,’’ in Proc. APAQS, Oct. 2000, pp. 69–78.

[98] N. F. Schneidewind, ‘‘Investigation of logistic regression as a dis-
criminant of software quality,’’ in Proc. 7th Int. Softw. Metrics
Symp. (METRICS), 2001, pp. 328–337.

[99] T. M. Khoshgoftaar and N. Seliya, ‘‘Comparative assessment of software
quality classification techniques: An empirical case study,’’ Empirical
Softw. Eng., vol. 9, no. 3, pp. 229–257, Sep. 2004.

[100] T. M. Khoshgoftaar and N. Seliya, ‘‘Improving usefulness of software
quality classification models based on Boolean discriminant functions,’’
in Proc. 13th Int. Symp. Softw. Rel. Eng., Nov. 2002, pp. 221–230.

[101] T. M. Khoshgoftaar and N. Seliya, ‘‘Software quality classification mod-
eling using the SPRINT decision tree algorithm,’’ Int. J. Artif. Intell.
Tools, vol. 12, no. 3, pp. 207–225, 2003.

[102] F. Lanubile, A. Lonigro, and G. Vissagio, ‘‘Comparing models for
identifying fault-prone software components,’’ in Proc. SEKE, 1995,
pp. 312–319.

[103] W. W. Cohen and P. Devanbu, ‘‘A comparative study of inductive logic
programming methods for software fault prediction,’’ in Proc. ICML,
1997, pp. 66–74.

[104] N. Ohlsson, M. Zhao, and M. Helander, ‘‘Application of multivariate
analysis for software fault prediction,’’ Softw. Qual. J., vol. 7, no. 1,
pp. 51–66, Mar. 1998.

[105] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang, ‘‘Impli-
cations of ceiling effects in defect predictors,’’ in Proc. 4th Int. Workshop
Predictor Models Softw. Eng., 2008, pp. 47–54.

[106] W. J. Youden, ‘‘Index for rating diagnostic tests,’’ Cancer, vol. 3, no. 1,
pp. 32–35, 1950.

[107] M. Sokolova, N. Japkowicz, and S. Szpakowicz, ‘‘Beyond accuracy,
F-score and ROC: A family of discriminant measures for performance
evaluation,’’ in Proc. Australas. Joint Conf. Artif. Intell. Berlin, Germany:
Springer-Verlag, 2006, pp. 1015–1021.

[108] M. Zhong, ‘‘An analysis of misclassification rates for decision trees,’’
Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., College Eng. Comput.
Sci., 2007.

[109] C. X. Ling, J. Huang, and H. Zhang, ‘‘AUC: A statistically consistent and
more discriminatingmeasure than accuracy,’’ inProc. IJCAI, vol. 3, 2003,
pp. 519–524.

[110] Z. Xu, T.M. Khoshgoftaar, and E. B. Allen, ‘‘Prediction of software faults
using fuzzy nonlinear regression modeling,’’ in Proc. 5th IEEE Int. Symp.
High Assurance Syst. Eng. (HASE), Nov. 2000, pp. 281–290.

MUHAMMAD RIZWAN received the M.S.
degree in software engineering from Riphah Inter-
national University, Islamabad. His master’s thesis
was on software fault tolerance. He is currently
pursuing the Ph.D. degree in computer sciences
from the Capital University of Science and Tech-
nology (CUST), Islamabad, Pakistan, where he
is also a Research Scholar. His research interests
include machine learning, software engineering,
and software fault tolerance. He is also working

on the evaluation of coupling metrics on software fault prediction.

AAMER NADEEM received the M.Sc. degree in
computer science from Quaid-i-Azam University
(QAU), the M.S. degree in software engineer-
ing from the National University of Sciences and
Technology (NUST), and the Ph.D. degree in com-
puter science fromMohammad Ali Jinnah Univer-
sity (MAJU). During his Ph.D. degree, he was a
Visiting Scholar with The Chinese University of
Hong Kong (CUHK) under a research collabora-
tion. He has over 30 years of teaching, research,

and industrial experience in computer science and software engineering. He
is currently theHead of the Software Engineering Program at the Capital Uni-
versity of Science and Technology (CUST). He is also the Head of the Center
for Software Dependability (CSD), a research group at CUST, working in
the areas of software reliability, software fault tolerance, formal methods,
and safety-critical systems. He has supervised 46 master’s and two Ph.D.
research theses in the areas of software testing, fault tolerance, and formal
methods. He is also an Approved Ph.D. Supervisor for scholars funded by
the indigenous fellowship schemes of the Higher Education Commission
(HEC) of Pakistan. He has authored or coauthored over 90 papers in reputable
international journals and conferences. He is also a Reviewer or an Editorial
Board Member of several international peer-reviewed journals and confer-
ences. He is also a Professional Member of the Association for Computing
Machinery (ACM).

MUDDASSAR AZAM SINDHU received the
M.Sc. degree in computer science from the Uni-
versity of the Punjab, Lahore, Pakistan, and the
Licentiate degree in engineering and the Ph.D.
degree in computer science from the Royal Insti-
tute of Technology (KTH), Sweden. He is cur-
rently an Assistant Professor with Quaid-i-Azam
University (QAU), Islamabad. He is involved in
developing new theories, algorithms, and tools for
software testing with a focus on automatic test case

generation. More specifically, he is interested in software testing, model
mining, algorithms, and formal methods. He is also involved with numerous
funded projects. He has authored or coauthored over 12 papers in reputable
international journals and conferences.

VOLUME 7, 2019 82775


	INTRODUCTION
	RELATED WORK
	PERFORMANCE MEASURES USED IN SFP
	PRECISION
	TRUE POSITIVE RATE (TPR)
	TRUE NEGATIVE RATE (TNR)
	ACCURACY
	F-MEASURE
	G-MEAN1 AND G-MEAN2
	J COEFFICIENT
	FALSE POSITIVE RATE (FPR) AND FALSE NEGATIVE RATE (FNR)
	TYPE-I ERROR, TYPE-II ERROR AND ERROR RATE
	BALANCE

	CLASSIFICATION OF PERFORMANCE MEASURES
	POSITIVE AND NEGATIVE ORIENTED MEASURES
	BASE, DERIVED, AND COMPLEMENT MEASURES

	EVALUATION CRITERIA
	PLAUSIBILITY
	CONSISTENCY AND DISCRIMINANCY

	EVALUATION OF PERFORMANCE MEASURES
	PLAUSIBILITY ANALYSIS
	EXPERIMENTAL DESIGN
	RESULT AND DISCUSSION

	CONSISTENCY AND DISCRIMINANCY ANALYSES
	EXPERIMENTAL DESIGN
	RESULTS AND DISCUSSION ON CONSISTENCY ANALYSIS
	RESULTS AND DISCUSSION ON DISCRIMINANCY ANALYSIS
	COMBINED ANALYSIS OF CONSISTENCY AND DISCRIMINANCY


	COMPARISON WITH OTHER STUDIES
	CONCLUSION
	FUTURE GUIDELINES
	REFERENCES
	Biographies
	MUHAMMAD RIZWAN
	AAMER NADEEM
	MUDDASSAR AZAM SINDHU


