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ABSTRACT Low user acceptance is one of the fundamental problems for popularizing advanced driver
assistance systems (ADAS). Systems that are developed for the majority of drivers have to possess stationary
characteristics and be conservative for safety reasons. However, the drivers with disparate driving styles
possess different risk cognition of lane change behavior; therefore, such systems with stationary charac-
teristics may cause frequent interference to aggressive drivers or may be perceived as a radical system by
conservative drivers. An ADAS that adapts to the characteristics of individual drivers during lane change
maneuvers will be more effective and more acceptable to drivers. In this study, we developed an adaptive
algorithm that learns the characteristics of individual drivers during lane changes and determines the optimal
threshold online to adapt to different drivers. Signal detection theory (SDT) was employed and the results of
the accuracy, false negative rate, and false positive rate were used to capture the drivers’ lane change behavior
characteristics. A learning stage and a threshold fluctuation stage were designed in the adaptive algorithm to
determine the optimal warning threshold and amended the optimal warning threshold based on changes in the
drivers’ behaviors. We evaluated the proposed algorithm by conducting the actual vehicle tests with a total
of three participants. The offline statistical analysis results of the participants’ lane change characteristics
were compared with the online results of the warning threshold adjustments from the adaptive algorithm; the
comparison results indicated that the adaptive algorithm could effectively capture the drivers’ lane change
characteristics and determine an appropriate warning threshold. The findings provide an improvement in
the performance of the lane change warning (LCW) system and enhance people’s acceptance of intelligent
systems.

INDEX TERMS Self-learning, lane change characteristics, lane change warning system, signal detection
theory.

I. INTRODUCTION
Lane change warning (LCW) systems have been applied
increasingly in intelligent vehicles to enhance the safety of
lane changes and reduce driver workload [1]–[3]. An LCW
system provides a warning of impending conflict based on
an analysis of the kinematic states between a subject vehicle
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and a target vehicle [4]. The benefits of LCW systems in
improving the safety of lane changes have been adequately
demonstrated [5], [6]. However, an ordinary warning thresh-
old used in an LCW system developed for the average driver
does not adapt to different driving styles. In practical driv-
ing conditions, there are distinct discrepancies in driving
styles and safety requirements among individual drivers [7].
In addition, even the same driver may exhibit different driving
characteristics under different driving conditions [8]. These
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individual differences and state fluctuations have resulted in
considerable difficulties in LCW systems design and also
make the acceptance of LCW systems an enormous chal-
lenge. Therefore, the prompt and accurate adaptation of an
LCW system to different driving behaviors is a key objective
in LCW algorithms exploiting.

At present, it is difficult for an LCW system to auto-
matically capture the driving characteristics of a particular
driver on account of the static LCW thresholds used in the
LCW system. Drivers with different driving characteristics
possess different cognition of the risk associated with lane
change behavior [9]–[11]. For example, prudent drivers are
more inclined toward cautious operations andmay even deem
reasonable lane change behavior as dangerous driving. There-
fore, an LCW system with a relatively small time-to-collision
(TTC) warning threshold might be regarded as unsafe by
prudent drivers. Inversely, the conservative TTC warning
threshold for prudent drivers may be regarded as overcautious
alarm by aggressive drivers and the annoyance of prema-
ture warning may reduce driver trust in the LCW system.
Hence, multifarious methodologies have been exploited in an
effort to improve the acceptance of LCW systems according
to different driving behavior characteristics. Zhu et al. [12]
analyzed the personalized lane change time and personalized
safety margin of lane change behavior deduced from driving
simulator experiments to classify driving styles into three
categories: cautious, normal, and aggressive. A personalized
LCW strategy was proposed based on different driving styles.
Wakasugi [13] proposed an appropriate warning time model
for an LCW system based on different steering behavior
obtained from the results of on-road experiments. In addi-
tion, an LCW threshold according to different traffic envi-
ronments may also reduce the limitations of LCW systems.
In the ISO 17387:2008 standard [14], different TTC warning
thresholds are determined based on the relative approach
velocity between the subject vehicle and a target vehicle in the
adjacent lane. Although LCW thresholds based on different
driving styles and different traffic environments can improve
the acceptance of an LCW system, static LCW thresholds
still do not fit the diversity of driving styles and the different
driving conditions.

An LCW system can be effective if the driving characteris-
tics of individual drivers are captured and the LCW thresholds
are adaptable to different drivers. Over the years, researchers
have pursued various approaches to improve the self-adaptive
ability of LCW algorithms. There are two common methods
to improve the adaptability of LCW models, i.e., machine
learning models and mathematical optimization models.
Based on the analysis of naturalistic driving data, the objec-
tive of machine learning models is to structure the rela-
tionship between different driving styles and personalized
LCW strategies [15], [16]. Mathematical optimization mod-
els are designed to identify the personalized parameters
of the established LCW models [17], [18]. At present,
commonly used machine learning modeling techniques
include the artificial neural network (ANN) model, hidden

Markovmodel (HMM), fuzzymodel, support vector machine
(SVM), Bayesian network, and Gaussian mixture model
(GMM) [19], [20]. Thesemodels are very effective in terms of
model adaptability to different drivers and accuracy improve-
ment due to sufficient training data based on naturalistic
driving. However, the established models are viewed as a
black box system and the parameters of these models often
lack physical meaning [21]–[23]. Mathematical optimization
models comprise least mean squares (LMS), least squares
(LS), recursive least squares (RLS), and maximum signal-to-
noise ratio (MSNR) approaches. Numerous empirical studies
have been conducted to investigate adaptive LCW strategies.
Toshiya et al. [24] developed a framework of a customized
driving support system for individuals with different driving
characteristics based on a fuzzy logic and a neural network.
The driving simulator experiments indicated that the pro-
posedmodel captured the personal driving characteristics and
adapted to different drivers. Wang et al. [25] established a
dynamic learning model of driving characteristics by com-
bining the GMM and HMM. A vehicle trajectory prediction
model was employed to develop a warning strategy for a
lane departure warning system and the experimental results
indicated that the proposed method can significantly reduce
the false-warning rate. A personalized driver lane change
model with a two-layer sub-models for driver assistance sys-
tems was proposed by Vadim and Ioannou [26]. A kinematic
lane change model was described by the lower layer and the
kinematic model parameters for different drivers were self-
adjusted in the higher layer. Li et al. [27] proposed a lane
change intent estimation model by combining the GMM and
Bayesian network for drivers with different driving styles.
Zhang et al. [28] established a self-learning model for dif-
ferent driver characteristics. The LS method was employed
for the online identification of the driver’s model parameters
and a neural network was used to automatically match the
parameters to the different drivers.

LCW models are an essential component of the design of
adaptive algorithms and various approaches have been pur-
sued to establish the most appropriate warning indicators and
warning criteria that conform to a driver’s perception of lane
change safety. Gipps [29] proposed a lane change decision
model for the microscopic traffic simulation. In this model,
if the requisite deceleration for lane change was smaller than
−4 m/s2, the lane change operation was regarded as unsafe
behavior. Hossein et al. [30] employed the minimum lon-
gitudinal safe distance between the subject vehicle and rear
vehicle in the target lane during lane changes to determine the
safety boundary and the minimum safe spacing (MSS) model
was established based on the analysis of naturalistic driving
data. Wang et al. [31] combined the minimum safe distance
and the anticipated deceleration of the rear vehicle to develop
an ameliorative LCW indicator. In recent years, many studies
have focused on confirming the most suitable TTC value as
an LCW indicator. A warning algorithm combined with the
TTC threshold and the distance between the subject vehicle
and rear vehicle in the target lane was proposed by the Bosch
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company [32]. In detail, the TTC warning threshold was 3.5 s
if the longitudinal distance between the rear bumper of the
subject vehicle and rear vehicle in the target lane was in the
range of 3 m to 25 m; when the distance ranged from 25 m
to 45 m, the TTC warning threshold was reduced to 2.5 s.
Wang et al. [33] developed different TTC warning thresholds
depending on different driving styles. Suzanne et al. [34]
divided the conflict zones of lane changes into four levels
based on different TTC thresholds.

Due to the complexity and instability of machine learn-
ing models [35], they are not maturely used in practical
adaptive LCW algorithms. Although numerous self-learning
algorithms of driving characteristics based on mathematical
optimization methods have been developed to improve the
performance and acceptance of longitudinal driver assistance
systems (i.e., forward collision warning system) [36], [37],
researches focused on the performance improvement of vehi-
cle lateral safety systems (i.e., LCW system) are sparse.
In addition, the efficiency and accuracy of existing self-
learning algorithms require improvements. In this paper, a
self-learning method to determine a driver’s lane change
characteristics based on signal detection theory (SDT) was
proposed. SDT judgment is a process based on a statistical
decision. This method is usually used to assess the discrimi-
natory ability of participants between signal and noise using
the accuracy, false positive rate, and false negative rate. The
TTC and relative distance between the subject vehicle and
rear vehicle in the target lane were determined and used as
the LCW indicators. By learning the characteristics of the two
indicators during lane changes of different drivers, the pro-
posed adaptive algorithm was able to capture the unique lane
change characteristics of the drivers and determine the opti-
mal warning thresholds corresponding to the different drivers.
In order to verify the effectiveness of the adaptive algorithm,
an embedded system platform and a test vehicle platform
were developed to conduct a real vehicle test. The remainder
of the paper is organized as follows. The self-learningmethod
of the drivers’ lane change characteristics based on the SDT is
introduced in Section II. The vehicle verification experiments
are presented in Section III. The results and discussions are
presented in Section IV. Finally, conclusions are drawn in
Section V.

II. ADAPTIVE LCW ALGORITHM DESIGN
The development of the adaptive LCW algorithm includes
the selection of the warning indicators, the determination
of the warning criteria, learning of the lane change charac-
teristics, and online adjustment of the warning threshold. The
different lane change warning criteria intuitively paralleled
to different warning indicators and warning thresholds. For
the same warning criterion, the personalized characteristics
of the different drivers are adequately depicted by the values
of the warning indicators. Currently, the performance of the
conventional self-learning algorithms of driver lane change
characteristics (i.e. neural network, HMM, and GMM) in
embedded systems requires further improvement. Hence,

we employed SDT method to learn the personalized drivers’
lane change characteristics and determine the optimal warn-
ing threshold for different drivers.

A. WARNING INDICATOR SELECTION AND WARNING
CRITERION ESTABLISHMENT
The selection of the warning indicators is the basis for deter-
mining the warning criteria. At present, the following three
indicators have been used in LCW systems: the relative dis-
tance between the subject vehicle and rear vehicle in the target
lane, the required deceleration of the rear vehicle, and the
TTC. The relative distance is an important indicator in the
gap acceptance lane change model and the minimum safe
spacing (i.e., the minimum acceptable relative distance for a
lane change) is widely used to assessing lane change safety.
The required deceleration of the rear vehicle can be modeled
as game behavior between the subject vehicle and rear vehicle
during the actual lane changes. However, some of the param-
eters needed to determine the required deceleration cannot be
obtained directly. As the primary warning indicator, the TTC
not only represents the influence of the relative distance on
the lane change behavior but also takes into account the
relative velocity, which has been widely used in various lane
change safety models. However, a single indicator is often not
sufficient to ensure lane change safety, i.e., a small relative
speed will result in a large TTC value. In this study, we used
the relative distance as an additional indicator to compensate
for the disadvantages of the TTC indicator.

Numerous empirical studies have investigated the effect of
different LCW criteria, such as the TTC and relative distance
indicators; the warning criteria established by the Bosch com-
pany are shown in Table I. In order to determine the matching
degree between the existing warning criteria and the driver
lane change characteristics, vehicle road tests were conducted
in our previous study [38]. During the tests, participants drove
the test vehicle (i.e., shown in Fig. 3) in a normal manner
on a freeway and extremity moment of lane changes were
recorded. When participants pressed the wireless button on
the left side of the steering wheel, the extremity moment was
confirmed by the participants as the last time the test vehicle
could execute a lane change without coming into conflict
with the vehicle approaching from the rear in the target lane.
The corresponding lane change warning indicator values at
the extremity moment can be derived based on the collected
parameters (i.e., test vehicle speed, target vehicle speed, rel-
ative distance, etc.). The extremity moment indicated the
driver’s cognition of lane change safety and the difference in
extremity moment reflected the individual driving character-
istics. In order to improve the acceptance of LCW systems,

TABLE 1. The warning criteria formulated by the BOSCH company.
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the warning threshold should keep consistent with driver’s
subjective cognition of lane change safety. A comparison of
the relative distance between the subjective safety cognition
and the existing warning criteria are depicted in Fig. 1. The
blue marks indicate the responses of the individual drivers.
The gray area denotes the warning interval resulting from the
existing warning criteria. The blue marks located in the gray
area denote instances in which the existing warning criterion
captured the drivers’ lane change characteristics and was
consistent with the safety cognition of the driver. However,
approximately 60% of the data are outside of the gray area,
indicating that the existing warning criteria does not conform
to the drivers’ cognition of lane change safety.

FIGURE 1. Comparisons of the relative distance for existing warning
criteria and drivers’ lane change safety cognition.

In order to establish a warning criterion that could cap-
ture the majority of drivers’ lane change characteristics,
we modified the existing warning criteria based on empirical
researches. The modified warning criterion was divided into
two parts depending on the speed of the subject vehicle.
When the subject vehicle speed ranged between 40 km/h and
80 km/h, the warning criterion in the low-speed range was
activated. The definition of warning thresholds under this
criterion was that the longitudinal relative distance between
the subject vehicle and rear vehicle in the target lane reached
4 m or the longitudinal relative distance reached 19 m with a
TTC value reached 3 s. When these thresholds were reached,
a warning was transmitted to the drivers. The warning crite-
rion in the high-speed range was triggered when the subject
vehicle speed was greater than 80 km/h. The definition of
warning thresholds under this criterion was that the longitu-
dinal relative distance between the subject vehicle and rear
vehicle in the target lane reached 5 m or the longitudinal
relative distance reached 20 m with a TTC value reached 3 s.

B. SELF-LEARNING ALGORITHM BASED ON SDT
SDT is originally developed in psychology researches [39].
Psychologists determined that human perception can be
regarded as comprehensive information processing, i.e., the
perceived information represents the signal and the random
factors during human perception represent noise [40]. The
process of information identification by participants is con-
sidered a process of signal recognition and elimination of

noise. In a system containing both signal and noise, the SDT
method can be used to evaluate the discrimination ability
of participants between signal and noise. In psychological
experiments, SDT is usually used to test the characteristics
of participants and their response to signals. Actually, SDT
judgment is a process of statistical decision. The participants
characteristics are evaluated based on the detection of H0
(Noise), and H1 (Signal). As shown in Table 2, there are
four possible outcomes of signal identification, namely hit,
false positive, false negative, and correct rejection. When a
signal is identified as noise by the participant, the outcome
is labeled as a false negative and if a noise is identified as
a signal, the outcome is labeled as a false positive. A hit and
correct rejection indicate that the signal or noise was correctly
identified by the participants.

TABLE 2. SDT judgment matrix.

An intelligent LCW system should adapt to different driv-
ing styles to achieve the highest accuracy and improve system
acceptability. The objective signal and noise based on the
SDT method in this study represent the driver completed
lane change operation, and driver abandoned lane change
operation, respectively. Accordingly, the subjective signal
and noise with regard to the LCW criterion represent warning
and no warning, respectively. In order to adapt to different
drivers, the warning judgment from the LCW system should
match the lane change decisions by the participants as much
as possible. Hence, the warning threshold should be adap-
tively adjusted in real-time based on the driver’s lane change
characteristics. The LCW judgment matrix based on the SDT
judgment matrix is presented in Table 3. A false negative
means that the driver abandoned a lane change and the LCW
system produced no warning. A false positive means that
the driver completed a lane change operation and the LCW
system still produced a warning. The other two outcomes
represent correct warnings.

TABLE 3. The lane change warning judgment matrix based on the SDT
judgment matrix.
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The accuracy of the LCW system Pr is:

Pr =
Nc + Nq − Nw − Nl

Nc + Nq
(1)

The false positive rate of the LCW system Pw is:

Pw = Nw
/
Nc (2)

The false negative rate of the LCW system Pl is:

Pl = Nl
/
Nq (3)

where Nc represents the number of complete lane change
operations, Nq represents the number of yielding lane change
operations, Nw represents the number of completed lane
change operations with a warning from the LCW system,
Nl represents the number of yielding lane change operations
with no warning from the LCW system.

In order to easily label the lane change characteristics,
we defined the false negative rate Pw and the false posi-
tive rate Pl as the aggressive index and conservative index,
respectively. The two indices were closely related to the
driver’s individual lane change characteristics. The higher the
aggressive index, the greater the proportion of events was
when the driver consistently completed lane changes with
LCW system warnings. In this case, the warning was not
heeded by the driver and was considered too conservative for
the aggressive driver. Similarly, the higher the conservative
index, the greater the proportion of events waswhen the driver
decided to abandon lane changes with no warning from the
LCW system. The driver was very cautious and although
the system regarded the current traffic scenario as safe for
lane changes, this behavior was considered too aggressive for
the conservative driver. The accuracy Pr reflected the match-
ing degree between the warning criterion and the individual
characteristics and was one of the indicators of whether the
LCW criterion needed to be revised. The proposed adap-
tive algorithm automatically determined the optimal warning
thresholds according to the values of Pr , Pw, and Pl .

The flow-chart of the self-learning algorithm of the driver
lane change characteristics is depicted in Fig. 2. The imple-
mentation of the adaptive algorithm consisted of the learning
stage and the thresholds fluctuation stage. In the learning
stage, the relative parameters of the driver’s individual lane
changes were recorded and the lane change characteristics
were captured using the SDT method. During this phase,
each lane change behavior (including completed lane changes
and yielding lane changes) was added to the original dataset
and the values of Pr , Pw, and Pl were calculated after each
lane change operation. The optimal threshold was determined
based on the values of Pr , Pw, and Pl , and the selected
threshold was exploited to judge the manifestation of the
next sample according to Table 2. In addition, the selected
threshold was also used as the basis for the following calcu-
lations of Pr , Pw, and Pl . Since the purpose of this stage was
to learn the driver’s lane change characteristics, a warning
would not deliver to drivers even when the warning threshold
was reached. The learning stage was terminated when the

FIGURE 2. Flow-chart of the self-learning algorithm of driver lane change
characteristics.

value of Pr reached a predetermined value, which indicated
that the warning threshold based on this driver’s lane change
characteristics had been captured. After the learning stage,
the selection of the optimal warning thresholds still followed
the steps shown in Fig.2 and we defined this phase as the
threshold fluctuation stage. The purpose of this stage was to
adapt the warning thresholds according to the driver’s state
fluctuations regarding lane change characteristics. The filter-
ing steps for the optimal threshold were the same as those
in the learning stage. Inversely, the warning was issued to the
driver once the warning threshold was reached. Following are
the details of the process.

1. Database establishment and updating of lane change
behavior. The database was used to capture the information
required for self-learning of the drivers’ lane change charac-
teristics obtained from the SDT method and the parameters
recorded by the database included the TTC value, the relative
distance between the subject vehicle and rear vehicle in the
target lane, the speed of the subject vehicle, the lane change
type (completed or abandoned lane change), and the warning
results (whether the system issued a warning).

The lane change sample dataset (including completed lane
change and yielding lane change) consisted of 500 data points
derived from naturalistic driving experiments in our previous
study [41]. During the tests, participants drove the test vehicle
(i.e., shown in Fig. 3) in a normalmanner on a freeway and the
parameters of the lane change were recorded. By analyzing

FIGURE 3. Components of the test platform.
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the video of the naturalistic driving experiments, we deter-
mined the relevant parameters at the initiation of lane change
and at the time of yielding the lane change. Then 350 groups
completed and 150 groups abandoned lane change were
selected to constitute the original database. The threshold
corresponding to an accuracy Pr of 80% was determined as
the initial threshold (TTC=3 s). During the learning stage,
the new data were added to the original dataset for calculation
of Pr , Pw, and Pl . After each calculation, the data point in the
original dataset that had the largest error with regard to the
optimal threshold would be overwritten by the new data that
belonged to the individual. The learning stage was terminated
when the accuracy Pr reached 85%. The previous data were
not be substituted by the more recent data of the individual
during the threshold fluctuation stage.

2. Calculation of the optimal value of the TTC thresholds.
According to the SDTmethod, we determined the adjustment
range of the TTC threshold as [0 s, 8 s] and the selection
step of the TTC threshold was determined as 0.2 s. The
accuracy Pr , the false negative rate Pw, and the false pos-
itive rate Pl were calculated for different TTC thresholds
according to (1), (2), and (3), respectively. The threshold with
the highest accuracy and relatively low false negative rate
and false positive rate was selected as the optimal warning
threshold.

3. Calculation of the optimal value of the relative distance
threshold. Since the warning criterion used in this study
consists of an upper limit and lower limit of the relative
distance, it was necessary to determine two optimal warning
thresholds. The lower limit threshold indicated that an alarm
was triggered if the relative distance was less than the set
value. The upper limit threshold indicated that an alarm was
triggered when both the relative distance and TTC value were
less than the set values respectively. According to the warning
criterion established in this study, the initial lower limit and
upper limit thresholds were determined as 4 m and 19 m
in the low-speed range, respectively. Similarly, the initial
thresholds in the high-speed range were confirmed as 5 m
and 20 m, respectively. For the optimal threshold of the upper
limit, we determined the adjustment range of the relative
distance as [-5 m, 5 m], which indicated that we would search
for the optimal value in the range of [14 m, 24 m] in the
low-speed range. For the optimal threshold of the lower limit,
we determined the adjustment range of the relative distance
as [-4 m, 4 m], which indicated that we would search for the
optimal value in the range of [0 m, 8 m] in the low-speed
range. The selection step of relative distance threshold was
determined as 0.5 m, which indicated that the values of Pr ,
Pw, and Pl were calculated every 0.5 m. The threshold with
the highest accuracy and relatively low false negative rate
and false positive rate was selected as the optimal warning
threshold.

III. ACTUAL VEHICLE EXPERIMENTS
At present, the research and verification of adaptive LCW
algorithms based on driving characteristics are principally

conducted using a driving simulator, whereas verification
results derived from real vehicle tests are sparse. However,
there is a distinct difference between a driver’s lane change
characteristics in the driving simulator and under normal
driving conditions. In addition, the difference in the hardware
also affects the verification results of the adaptive algorithm.
Therefore, in this study, we established a data collection
system and embedded system in a real vehicle to acquire
the parameters and execute the adaptive algorithm during the
vehicle experiments.

A. TEST PLATFORM
To achieve our research objective of a verification test,
a data collection system and embedded system in an ordi-
nary vehicle was exploited. The integrated platform and the
instrumentation are shown in Fig. 3. The data collection
system included two millimeter-wave radars (one for the
front and one for the rear), video monitoring system, GPS,
Mobileye system, controller area network (CAN) bus, and
industrial computer. The data collection system stored all the
parameters while providing the required parameters for the
adaptive algorithm (i.e., the TTC value and relative distance
between the subject vehicle and rear vehicle during lane
changes, the lane change type, and the speed of the subject
vehicle). The millimeter-wave radar was used to obtain the
relative speed and distance between the subject vehicle and
rear vehicle. The video monitoring system was used to record
the lane changes. The GPS device provided the geographical
positions and speed of the subject vehicle. The Mobileye
system provided the distance between the subject vehicle and
the lane line. The CAN bus served as the data transmission
channel. The industrial computer was used to record the data
obtained from the instruments. The embedded system pro-
vided a platform for the operation of the adaptive algorithm;
the systemwas implemented as a C application. The sampling
frequency of the data collection system and the embedded
system was 20 Hz.

B. PARTICIPANTS AND TEST ROUTE
Three experienced drivers were recruited to participate in the
experiments. The three male drivers were of similar age (30,
34, and 35 years old) and possessed similar driving expe-
rience (5, 6, and 7 years). The participants were physically
healthy and none had been involved in a severe traffic acci-
dent in the past five years. Before the experiments, the par-
ticipants were provided an opportunity to perform some trips
to become familiar with the test vehicle. In order to obtain
as many lane changes as possible, a full closed two-way,
4-lane expressway was selected to perform the experiments.
On account of the heavy traffic and a limited number of
lanes, more lane changes were recorded than in experiments
in a 6-lane expressway. The participants totally completed
50 tests with an average duration of an hour and a half in the
city expressway of Xi’an, Shaanxi, China. We notified the
participants that the driving data were only used to evaluate
our algorithm and would not be used for any other purpose.
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C. PROCEDURES
During the whole experiments, the participants were
informed of the initial points and destinations; for each lane
change, the participants were required to turn on the lane
change indicator before the initiation of the lane change, and
turn off the lane change indicator when the participants aban-
doned the lane change. No other instructions and restrictions
were imposed on the participants. They could navigate the
test vehicle as they saw fit while obeying traffic laws and
ensuring driving safety. The relative parameters of the subject
vehicle and target vehicle were continuously stored by the
data collection system. The trigger of the turn signal indicated
that the driver intended to perform a lane change and the val-
ues of the TTC and the relative distance between the subject
vehicle and rear vehicle were passed on to the adaptive algo-
rithm programmed in the embedded system by the CAN bus.
In order to ensure that the driver’s lane change behavior was
recorded accurately, we needed to determine the precise point
when the lane change was initiated. We used the value of the
distance between the subject vehicle and lane line obtained
from the Mobileye system to supplement the confirmation
of the lane change initiation moment. When the turn signal
light was triggered and the sustained period of growth of the
distance between the subject vehicle and either side lane line
exceeded 0.5 s, then the lane change initiation moment was
confirmed as 0.5 s before. The corresponding values of the
TTC and the relative distance between the subject vehicle and
rear vehicle were recorded to reflect the driver’s lane change
characteristics. In addition, the completed and yielding lane
changes were also confirmed by the value of the distance
between the subject vehicle and the lane line. A completed
lane change was defined as the subject vehicle entering the
target lane (the value of the distance between the subject
vehicle and either side lane line shifted from negative to pos-
itive) and the yielding lane change was defined as the subject
vehicle returning to the current lane (the sign of the distance
value between the subject vehicle and either side lane line
was opposite to the previous value).In this study, a discrete
Kalman filter [42] was used to filter the discrete data collected
by the sensors. During the experiments, warnings from the
adaptive algorithm were not delivered to the drivers. The
learning results and the warning threshold adjustment results
were recorded in the background.

IV. RESULTS AND DISCUSSION
In order to ensure that the proposed algorithm could accu-
rately capture the driver’s lane change characteristics, after
the actual vehicle experiments, we statistically analyzed the
average TTC values of the participants who had completed
lane change and yielded lane change in the learning stage
and the fluctuation stage; then we compared the offline sta-
tistical results with the optimal thresholds derived from the
proposed adaptive algorithm based on the SDT method. The
comparative analysis was performed in the learning stage and
the threshold fluctuation stage, respectively. The comparison

results in the learning stage indicated that the adaptive warn-
ing algorithm was capable of capturing the drivers’ lane
change characteristics to develop an appropriate warning
threshold for individual drivers. The comparison results in the
threshold fluctuation stage demonstrated that the proposed
algorithm was able to determine a suitable warning threshold
based on the fluctuations in the behavior of the participants.

A. ONLINE ADJUSTMENT RESULTS
During the learning stage, the adaptive algorithm learned the
drivers’ characteristics and selected an appropriate warning
threshold based on the results of Pr , Pw, and Pl . For par-
ticipant 1 (P1), participant 2 (P2), and participant 3 (P3),
the values of the warning threshold in low-speed region (the
subject vehicle speed was greater than 40 km/h and less than
80 km/h) after the learning stage were determined as TTC =
4.0 s, D1(the upper limit of the relative distance) = 23.5 m,
and D2(the lower limit of the relative distance) = 7.5m;
TTC = 3.4 s, D1 = 21.0m, andD2=6.5m; and TTC= 3.0 s,
D1 = 18.0 m, and D2 = 5.0 m, respectively. For P1, P2, and
P3, at the end of the learning stage, the number of lane change
samples was 384, 352, and 415, respectively; the detailed
results are shown in Table 4. In the updated sample database
(included the original data and the personal data), as shown
in Table 3, the lane change manifestation detection results
of the three participants after the learning stage are shown
in Tables 5, 6, and 7, respectively. It was observed that the
adaptive algorithm required a different number of lane change
samples to capture the lane change characteristics of the three
participants during the learning stage. The small sample size
indicated that the participant’s driving styles resembled the
conventional drivers’ styles in the original database.

TABLE 4. The number of lane change samples of the participants in the
learning stage.

TABLE 5. The number of lane change manifestations for p1.

The values of Pr , Pw, and Pl with different TTC thresholds
and the three participants were calculated at the termina-
tional moment of the learning stage; the results are depicted
in Figs. 4, 5, and 6. For P1, the value of Pl continuously
decreased with the increase in the TTC threshold value,
whereas the value of Pw consecutively increased. The value
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TABLE 6. The number of lane change manifestations for p2.

TABLE 7. The number of lane change manifestations for p3.

FIGURE 4. The values of Pr , Pw , and Pl with different TTC thresholds
for P1.

FIGURE 5. The values of Pr , Pw , and Pl with different TTC thresholds
for P2.

FIGURE 6. The values of Pr , Pw , and Pl with different TTC thresholds
for P3.

slowly increased as the TTC threshold value increased from
3.0 to 4.0 s and then continuously decreased after the thresh-
old reached 4.0 s. The highest value of Pr reached 86.2% at
a TTC threshold of 4.0 s and the highest values of Pl and Pw

were 30.1%, and 8.2%, respectively. For P2 and P3, the trends
of Pr , Pl , and Pw were similar to the results of P1 as shown
in Fig. 4. The highest values of Pr were 86.8% and 85.5%
with TTC thresholds of 3.4 s and 3.0 s, respectively. The
values of Pl and Pw were 29.2% and 7.8% and 30.8% and
8.6%, respectively. P1 possessed the highest value of Pl of
almost 70% at a TTC threshold of 3.0 s, which indicated
that P1 was the most conservative driver among the three
participants; and the warning function was regarded as invalid
on account of the safer (higher) warning threshold of P1 than
the system’s initial value.

Similarly, the values of Pr , Pl , and Pw with different
D1 and D2 thresholds were calculated at the terminational
moment of the learning stage and the results are shown
in Figs. 7, 8, and 9. For P1, P2, and P3, The highest values of
Pr were 85.7%, 86.4%, and 85.2% with the D1 thresholds
of 23.5 m, 21.0 m, and 18.0 m and the corresponding values
of Pl and Pw were 30.2% and 8.8%, 29.3% and 8.1%, and
30.8% and 8.6%, respectively. The highest values of Pr were
85.2%, 85.8%, and 86.1% with the D2 thresholds of 7.5 m,
6.5 m, and 5.0 m and the corresponding values of Pl and Pw
were 32.5% and 9.4%, 28.7% and 8.3%, and 34.8% and 7.6%,
respectively. The warning thresholds in the high-speed region
(the subject vehicle speed was greater than 80 km/h) were
determined according to the calculation results of Pr , Pw, and
Pl and the results are shown in Table 8.

FIGURE 7. The values of Pr , Pw , and Pl with different D1 thresholds
for P1.

FIGURE 8. The values of Pr , Pw , and Pl with different D1 thresholds
for P2.

During the threshold fluctuation stage, the original samples
would not be replaced by new data and a large number of
individual lane changes were recorded in the database. The
variability of the individual lane change characteristics would
bring about the changes in the values of Pr , Pw, and Pl .
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FIGURE 9. The values of Pr , Pw , and Pl with different D1 thresholds
for P3.

TABLE 8. The warning thresholds for the three participants after the
learning stage.

We defined two threshold adjustment strategies according to
the changes in the three values. The decrease in Pr with the
increase in Pl (under the same warning threshold) indicated
that the current warning threshold was relatively radical (TTC
threshold was too low) for certain individuals and the number
of yielding lane changes without system warning was high.
The decrease in Pr with the increase in Pw (under the same
warning threshold) demonstrated that the current warning
threshold was relatively conservative (TTC threshold was too
high) for certain individuals and the number of completed
lane changes with system warning was high. During the
experiments, the warning thresholds were adjusted twice in
this stage. For P1, the continuous variation of Pr and Pw were
emerged from the 948th to 953th lane change samples. For
P3, the continuous variation of Pr and Pl were emerged from
the 1285th to1290th lane change samples. The results before
the threshold adjustments are presented in Figs. 10 and 11,
respectively. The warning thresholds for P1 and P3 were
adjusted to TTC = 3.8 s, D1 = 23.5 m, and D2 = 7.5 m
and TTC = 3.2 s, D1 = 18.0 m, and D2 = 5.0 m according
to the results of Pr , Pw, and Pl . The results indicated that P1
became less conservative and P3 became more conservative.

FIGURE 10. The values of Pr , Pw , and Pl with different TTC thresholds for
P1 in the threshold fluctuation stage.

FIGURE 11. The values of Pr , Pw , and Pl with different TTC thresholds
for P3 in the threshold fluctuation stage.

TABLE 9. The TTC statistical results of the different lane changes in the
learning stage.

FIGURE 12. Frequency histogram of the TTC of the yielding lane changes
for P1.

B. COMPARISON RESULTS
The offline statistical analysis of the participants’ lane change
characteristics was conducted in the learning stage and the
threshold fluctuation stage. The TTC statistical results for P1,
P2, and P3 for the different types of lane changes in the learn-
ing stage are shown in Table 9. The average TTC of the com-
pleted lane changes of the three participants were 13.127 s,
10.482 s, and 8.081 s, respectively. The average TTC of the
yielding lane changes of the three participants were 4.381 s,
3.812 s, and 3.408 s, respectively. In addition, the TTC results
of the yielding lane changes were an important factor in the
establishment of the TTC warning threshold. The frequency
histograms of the TTC of the yielding lane change for the
three participants are depicted in Figs. 12, 13, and 14. The
results in Table 9 and Figs. 12 to 14 demonstrated that P1 was
the most conservative driver among the three participants;
and P3 was the most aggressive driver. These results were in
agreement with the results from the adaptive algorithm and
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FIGURE 13. Frequency histogram of the TTC of the yielding lane changes
for P2.

FIGURE 14. Frequency histogram of the TTC of the yielding lane changes
for P3.

the average TTC of the yielding lane change for the three
participants were similar to the results for the TTC warn-
ing thresholds determined by the adaptive algorithm. The
findings indicated that the proposed self-learning algorithm
effectively captured the drivers’ lane change characteristics
and determined an appropriate warning threshold after the
learning stage.

The TTC statistical results of the different types of
lane changes for P1 and P3 in the threshold fluctuation
stage (only the fluctuation samples were selected ) are
shown in Table 10. A comparison of the results shown
in Table 10 and Table 8 indicated significant differences in
the TTC indicators of completed lane change. The average
TTC values of the completed lane changes and yielding lane
changes of P1 were 8.852 s, and 3.849 s, respectively, which
indicated that P1 was less conservative than before. The
results for P3 indicated that this driver was more conservative
than before. These results demonstrated that the proposed

TABLE 10. The TTC statistical results of the lane changes for p1 and p3 in
the threshold fluctuation stage.

algorithm was able to adapt to the changes and to determine
an appropriate warning threshold.

V. CONCLUSIONS
The self-learning algorithm for determining individual driv-
ing characteristics will improve the acceptance of intelli-
gent systems and enhance the safety of intelligent vehicles.
In this study, an adaptive algorithm for determining the LCW
threshold based on the drivers’ lane change characteristics
was established and real vehicle tests with three participants
were performed to verify the efficiency and accuracy of the
proposed algorithm. Based on the analysis of existing warn-
ing criteria, the TTC and the relative distance between the
subject vehicle and rear vehicle were used as the warning
indicators and the initial warning threshold according to the
difference in subject vehicle speed were selected for the adap-
tive algorithm. In order to capture the drivers’ lane change
characteristics promptly and accurately, the SDTmethod was
employed to determine the optimal warning threshold and
implement an online adjustment of the warning threshold
according to the results of the accuracy, false negative rate,
and false negative rate. The learning stage and the threshold
fluctuation stage were evaluated separately in the adaptive
algorithm to capture the lane change characteristics and select
the optimal threshold according to the changes in individual
behavior.

A test vehicle platform with an embedded system and a
data collection system were developed to perform the real
vehicle tests. During the learning stage, the optimal warning
thresholds in the low-speed region for the three participants
were TTC = 4.0 s, D1 = 23.5 m, and D2 = 7.5 m; TTC =
3.4 s, D1 = 21.0 m, and D2 = 6.5 m; and TTC = 3.0 s,
D1 = 18.0 m, and D2 = 5.0 m, while the thresholds in the
high-speed region were TTC = 4.2 s, D1 = 25.5 m, and
D2 = 8.5 m; TTC = 3.6 s, D1 = 21.0 m, and D2 = 7.0 m;
and TTC = 3.2 s, D1 = 18.5 m, and D2 = 5.5 m,
respectively. During the threshold fluctuation stage, for P1
and P3, the thresholds were ameliorated to TTC = 3.8 s,
D1 = 23.5 m, and D2 = 7.5 m; and TTC = 3.2 s, D1 =

18.0 m, and D2 = 5.0 m in the low-speed region. The offline
results of the lane change characteristics were consistent with
the warning thresholds derived from the proposed algorithm,
which demonstrated the validity of the adaptive algorithm for
learning the drivers’ lane change characteristics. In a future
study, we will improve the learning efficiency of the adaptive
algorithm by identifying the driving styles in advance and
considering the specific traffic environments for the confir-
mation of the warning threshold. In addition, the selected
optimal warning threshold can also be useful in microscopic
traffic simulationmodeling to simulate different styles of lane
change behavior.
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