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ABSTRACT This paper proposes a new method for the selection of input–output pairing in decentralized
control structures for multivariable systems. This method proposes the input–output pairing problem as
a multi-objective optimization problem (MOP). For each control structure and loop pairing analyzed,
a different design concept is proposed and a MOP is stated. All MOPs share the same design objectives, and
Pareto fronts associated with each design concept can be compared globally under a multi-objective (MO)
approach. The design objectives were chosen for the MOP, as well as the designer’s preferences, have an
important role in selecting a certain loop pairing. The main contribution of the proposed approach is that it
enables a systematic analysis of the conflicts between the objectives and the performance of a control system.
The method enables selecting a certain input–output pairing and a suitable tuning of the controller directly
using information that a designer can interpret. To show the application of the methodology, two loop pairing
examples are presented, one of them for a two-input–output system (with four scenarios of analysis), and
the other for a three-input–output system (with one scenario of analysis). Through the examples presented
in this paper, it is evident how the designer can affect the loop pairing to be used, either by choosing the
objectives or preferences.

INDEX TERMS Multivariable control system, input-output pairing, decentralized control structures, multi-
objective evolutionary optimization, Pareto front.

I. INTRODUCTION
The development and application of control strategies for
systems with multiple-inputs and multiple-outputs (MIMO)
is a topic of great interest. The complexity of the systems has
increased over time and it is now a challenge to control multi-
variable systems. To propose a solution to the problem of con-
trolling complexMIMO systems, two major approaches have
been proposed: centralized control and decentralized control
structures [1]– [3]. Although each approach has advantages
and disadvantages, in recent years applications with decen-
tralized control structures have increased in number because
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of the ease of implementation and maintenance. Decentral-
ized control structures also behave robustly in the face of fault
and model uncertainties [4]– [7].

The efficiency of the decentralized control structures in the
MIMO systems largely depends on the adequate selection of
the input-output pairing. For a MIMO system with n inputs
and n outputs, there are n! possible input-output pairings
that enable system control. Some of the main methods for
the selection of input-output pairings are shown in [8]. The
problem of how to select input-output pairings in linear mul-
tivariable plants, was treated several decades ago with the
relative gain array (RGA)method. RGA simply uses the static
gains matrix (zero frequency) of the system [9]. Since the
RGAmethod became available, several extensions have been
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proposed to adapt it to other scenarios and requirements. For
example, forMIMO systemswith differing numbers of inputs
and outputs, the nonsquare relative gain array (NSRGA) was
defined [10]. The dynamic relative gain array (DRGA) con-
siders the dynamics of the system and generalizes the applica-
tion of RGA to non-zero frequencies [11]. Another proposed
approach known as partial relative gains (PRG) [12] proposes
a version of the RGA method that considers partially con-
trolled systems and its use is recommended when RGA fails
or is ambiguous. The effective relative gain array (ERGA)
method was introduced to quantify the interaction between
the control loops of a MIMO system. The ERGA method
defines an energy transmission relation to achieve a mini-
mum interaction within the frequency range of interest [13].
The absolute relative gains array (ARGA) was proposed to
solve integrity and robustness problems due to the variation
of parameters and effects of non-linearities in multivariable
systems [14]. To analyze the interactions of the control loops
of multivariable systems in permanent and transitory regimes,
the relative normalized gain array (RNGA) was proposed
[15]. Other works that propose methodologies to face the
complex problem of finding optimal input-output pairings for
the control of MIMO systems are shown in [16]– [19].

After the conventional input-output pairing methods, other
approaches have emerged. For example, in [20] a technique
based on the effective open-loop transfer function (EOTF)
that enables the decomposition of the MIMO system into n
independent systems of a single input-output (SISO) was pro-
posed. Some methods use artificial intelligence techniques
[21], [22], and others are based on the passivity theory [23],
[24]. From another point of view, methods for the selection
of input-output pairings in decentralized control systems can
involve an optimization process ,which can bemulti-objective
as in [25]– [27].

It should be noted that the stated methods can suggest
different types of input-output pairings for the same MIMO
system, and the designer’s preferences and system require-
ments define the selection of one or another loop pairing.
Additionally, the control structure and the adjustment of
its parameters have an important role in the performance
obtained from the system. This may condition the selection of
the input-output pairing, as noted in [12] and shown in [26],
where a bi-objective optimization approach is presented to
choose a loop pairing in a 2× 2 MIMO system.

Following the approach presented in [26], this article aims
to contribute to the generation of a framework that enables
the selection of input-output pairings more in accordance
with the needs and preferences of the control engineer.
An m-dimensional multi-objective optimization approach to
incorporating differing design objectives to be satisfied is
used. In addition, each proposed multivariable control struc-
ture (this entails a certain loop pairing and type of con-
trol) assumes a different design concept. The optimization
process associated with the parameter adjustment of a con-
troller generates a Pareto front. Therefore, it is necessary to
establish an adequate procedure that allows comparing the

various design concepts (with their corresponding Pareto
fronts) that are generated.

Evolutionary multi-objective algorithms (MOEAs) have
been used successfully in controller tuning due to their flex-
ibility to optimize non-convex functions and to handle con-
straints [28]– [31].

An MOEA is responsible for characterizing the Pareto
front and later the decision maker (DM) selects the final
solution based on his/her preferences. Some methodologies
and tools have been developed to help the DM in the task
of selecting optimal solutions [33], [34]. The visualization
tools for the Pareto front arewidely accepted and constitute an
effective technique for the analysis and selection of solutions
from this front [35], [36]. The visualization of the Pareto
front is relatively simple for a bi-dimensionalMOP [37], [38],
but if the number of objectives is greater, graphic analysis
becomes more complicated and requires alternative tools.
The level diagrams (LD) tool features interesting characteris-
tics: it is easy to interpret the results; it is flexible enough
to incorporate various points of view (using the change of
synchronization norm); it offers coloring and highlighting
solutions; interactivity; and the ability to compare design
concepts. All the features of the LD tool are desirable for
Pareto front visualization [39]– [41].

In this paper the ev-MOGA algorithm1 [32] is used for
the characterization of the Pareto fronts associated with
each design concept and the level diagrams tool2 for the
comparison of the fronts using as a norm the QI indicator
proposed in [42]. LD and the quality indicator QI enable
the global comparison of Pareto fronts using a dominance
analysis. It is important to mention that the MOEA used
does not condition the proposed methodology, and therefore,
this article is not intended to make a performance compar-
ison with other MOEAs. Although ev-MOGA is the cho-
sen MOEA, similar results would have been obtained with
other MOEAs.

The proposed multi-objective approach is applied to two
systems (a 2 × 2 system and a 3 × 3 system) with the
aim of selecting the input-output pairing and, simultaneously,
the most appropriate parameter tuning of the control system,
according to the preferences of the designer. For the 2 × 2
system (which is taken as a base example in order to present
the possibilities of the proposed methodology), four analy-
sis scenarios are proposed: scenario 1 with MOPs of two
objectives, scenario 2 and 4 with MOPs of four objectives
and scenario 3 with MOPs of eight objectives. In the first
three scenarios, the same objectives are used to evaluate
the performance of the controlled system and the design
objectives are increasingly disaggregated to obtain more

1ev-MOGA algorithm available at:
https://es.mathworks.com/matlabcentral/fileexchange/31080-ev-moga
-multiobjective-evolutionary-algorithm.

2Level diagrams interactive tool available at:
https://es.mathworks.com/matlabcentral/fileexchange/62224-interactive
-tool-for-decision-making-in-multiobjective-optimization-with-level
-diagrams.
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information about the compensation that occurs between
them. It is observed that for an appropriate loop pairing selec-
tion, the aggregation of objectives can hide relevant informa-
tion. In the fourth scenario, other objectives are proposed to
show how the preferences of the designer can influence the
loop pairing choice. In the 3 × 3 system, a scenario with six
design objectives is set, in order to analyze the compensation
between the errors of each output and the control efforts of
each input individually. This example is intended to show the
scalability of themethodology, which is applicable to systems
of any number of inputs-outputs. Obviously, the increase in 1)
the number of inputs-outputs, 2) the number of alternative
loop pairings to be studied and 3) the complexity of the
simulations associated with the selected objectives, increases
the computational cost and makes the analysis phase more
difficult.

This paper examines the proposals in [11] and [15], where
each proposed methodology suggests different types of loop
pairings, as well as the proposal in [26].

Through the examples presented, the ability of the
proposed methodology to offer a control engineer a multi-
dimensional framework to select optimal input-output pair-
ings is demonstrated. The selection of a loop pairing depends
on a designer’s preferences. Constraints on design objectives
are taken into account in eachMOP in order to avoid solutions
with low performance.

This paper is organized as follows: Section II details
the basics of multi-objective optimization and an intro-
ductory explanation about comparison of design concepts.
Section III shows a new framework for selecting input-
output pairings in MIMO systems with the proposed multi-
objective approach. In sections IV and V the proposed
methodology is applied to 2 × 2 and 3 × 3 systems
with several analysis scenarios. Finally some conclu-
sions are presented in Section VI. Appendix A presents
an analysis of the computational cost of the proposed
methodology.

II. THEORETICAL CONSIDERATIONS OF
MULTI-OBJECTIVE OPTIMIZATION
Engineering problems usually require handling situations
where multiple objectives need to be optimized simultane-
ously, and this action often presents some type of conflict
(improving some objectives worsens others). Multi-objective
optimization techniques deal with these problems. A multi-
objective optimization problem (MOP) can be stated as
in (1)-(5).

min
x∈D

J(x) (1)

J(x) = {J1(x), J2(x), . . . , Js(x)} (2)

subject to: g(x) ≤ 0 (3)

h(x) = 0 (4)

x ≤ xi ≤ x, i = [1, . . . , n] (5)

where x = (x1, x2, . . . xn) ∈ Rn is the decision vector; D is the
decision space; J(x) ∈ Rm is the objective vector; g(x), h(x)
are the constraint vectors; and x, x are the upper and lower
bounds of the decision space. In general, there is not a single
optimal solution, but a set of optimal solutions with different
trade-offs between design objectives, where no one is better
than another. This set of Pareto optimal solutions is known as
the Pareto front [43].

The Pareto optimal set Xp, is based on the definition of
Pareto dominance [44], and is formed by solutions that are
not dominated by others. It is established that one vector x1

dominates another vector x2, (denoted by x1 ≤ x2), if J(x1)
is not worse than J(x2) in all the objectives, and it is better
in at least one objective (see Fig. 1). Pareto dominance is
defined as in (6) and the Pareto optimal set Xp is defined
as in (7)-(8).

∀i ∈ {1, . . . , s}, Ji(x1) ≤ Ji(x2) ∧ ∃k ∈ {1, . . . , s} :

Jk(x1) < Jk(x2) (6)

FIGURE 1. Pareto front, Pareto set and basic notion of Pareto dominance. (a) Pareto front for a bi-objective MOP.
(b) Decision variables of the Pareto set.
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FIGURE 2. Pareto fronts and comparison of design concepts using level diagrams (LD). (a) Pareto fronts and zones of
preference for design concepts 1 and 2. (b) Pareto fronts of design concepts 1 and 2 using LD with 2-norm. (c) Pareto
fronts of design concepts 1 and 2 using LD with QI-norm.

Xp = {x ∈ D| 6 ∃x′ ∈ D : x′ ≤ x} (7)

J(Xp) = {J(x)|x ∈ Xp} (8)

In practice, optimization algorithms find a set of solutions
X∗p ⊂ Xp, and J(X∗p) represents J(Xp) satisfactorily. Con-
sidering the set X∗p, a designer can select from it a solution
according to his/her preferences or design specifications. For
example, by selecting the solution that is closest (measured by
some norm || ||n) to the ideal point Jideal , which minimizes
each objective of the MOP.

A preliminary notion to differentiate the strengths and
weaknesses of the Pareto fronts when they are compared is
proposed in [45]. In this work, a design concept is defined as
an idea to solve a specific problem. For each design concept,
an MOP is proposed, from which its Pareto front is obtained.
In the context of process control, a design concept may be
related to a particular control structure, or a certain input-
output pairing, as proposed in [42]. In Fig. 2 the comparison
of two design concepts in a bi-objective MOP using the level
diagrams (LD) tool with different synchronizations (2-norm

and QI -norm [42]) is shown. Three zones can be observed,
each establishing a preference relation of one concept over
another. In each zone of the Pareto fronts it is feasible to select
solutions that correspond to different design alternatives that
a designer can choose. In zone 1, design concept 2 dominates
concept 1, and this is also observable in the LD, where the
QI indicator of concept 2 is less than one (QI < 1) as shown
in Fig. 2 (c). In zone 2, the opposite to zone 1 occurs, and
zone 3 is only covered by design concept 1.

III. MULTI-OBJECTIVE PROPOSAL FOR THE SELECTION
OF INPUT-OUTPUT PAIRINGS IN MULTIVARIABLE
SYSTEMS
Consider a multivariable process to be controlled with n
inputs (u1, . . . , un) and n outputs (y1, . . . , yn) defined by
a matrix of transfer functions according to equations (9),
(10). The decentralized multivariable control of the process
described in (9) is defined by: 1) a vector ck that contains
the controllers of each output (see equation 11 and 2) a
loop pairing matrix Lckp which connects the outputs of the

VOLUME 7, 2019 81997
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FIGURE 3. Block diagram of the decentralized multivariable control
system defined in (11) and (12).

controllers with the process inputs in order to establish a
particular loop pairing (see equation 12).

Y(s) = G(s)U(s) (9)

y1(s)
...

yi(s)
...

yn(s)

 =


g11(s) g12(s) . . . g1n(s)
...

... . . .
...

gi1(s) gi2(s) . . . gin(s)
...

... . . .
...

gn1(s) gn2(s) . . . gnn(s)





u1(s)
...

ui(s)
...

un(s)


(10)

ck =
[
Cck
y1,û1

, . . .Cck
yi,ûi

, . . . ,Cck
yn,ûn

]
(11)

u1(s)
...

ui(s)
...

un(s)

 = Lckp



û1(s)
...

ûi(s)
...

ûn(s)

 (12)

k ∈ {1, . . . ,w};

where Cck
yi,ûi

represents the controller of the output yi of the
control ck . The controller Cck

yi,ûi
produces the control action

ûi, which is connected to one process input (ui) by means of
the loop pairing matrix Lckp (see Fig. 3). Lckp is a n×nBoolean
matrix,

Lckp =

l11 . . . l1n
... . . .

...

ln1 . . . lnn

 lij∈ [0, 1] ∀i, j ∈ [1 . . . n], (13)

which contains only one ‘‘1’’ in each row and column, that is∑n
i=1 lij = 1 ∀j ∈ [1 . . . n] and

∑n
j=1 lij = 1 ∀i ∈ [1 . . . n].

FIGURE 4. Flow chart of the proposed methodology for selecting pairings
in multivariable systems.

For example, in a 3 × 3 system where y1 is controlled with
u2 (l21 = 1), y2 is controlled with u3 (l32 = 1) and y3
is controlled with u1 (l13 = 1), Lckp matrix would be the
following:

Lckp =

0 0 1
1 0 0
0 1 0

 .
Each controller Cck

yi,ûi
presents a vector of adjustment

parameters xckyi , therefore the control of the process would be
parameterized by the vector (14).

xck = [xcky1, . . . , x
ck
yn] (14)

Each process control ck represents an alternative or design
concept to be optimally adjusted (through its parameters
xck and a given loop pairing Lckp ). Since the optimiza-
tion approach is multi-objective, each concept will gen-
erate a set of optimal Pareto solutions Xck and its front
J(Xck ).Therefore, for each design concept the MOP is pro-
posed as in (15)-(17).

Xck
= argmin

xck
J(xck ) (15)

J(xck ) = [J1(xck ), . . . , Js(xck )] (16)

xck ≤ xck ≤ xck (17)

where, xck and xck are the lower and upper bounds of the
design parameters xck of the concept ck , which define the
search space. J1, . . . , Js are the objectives to be minimized,
and these objectives in the k optimization problems are
associated with each design concept ck .

The proposed methodology is summarized in Fig. 4.
In stage A, the k MOPs associated with the k concepts (the
loop pairings and chosen control structures) are defined so

81998 VOLUME 7, 2019
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that the scenario (the design objectives) are used to compare
them. In stage B, an optimization process is performed for
each MOP and its Pareto fronts are obtained. In stage C,
the Pareto fronts associated with each concept are compared
using the LD and QI tools. Finally, the designer uses his/her
preferences to choose a controller for the plant (the loop
pairing and parameters of the controllers for each output).
If the designer is not satisfied with the results of the estab-
lished problem, the process establishing new concepts and/or
different scenarios is repeated.

Some considerations about the computational cost of the
proposal are presented in appendix A.

IV. EXAMPLE 1
To show the proposed multi-objective approach to select
input-output pairings in MIMO systems, the example pro-
posed in [11] is analyzed. For the process described in (18),
RGA (3) suggests a diagonal pairing, and DRGA (3D)
suggests an off-diagonal pairing according to equation (19).[

y1(s)
y2(s)

]
= G(s)

[
u1(s)
u2(s)

]

=


5e−40s

100s+ 1
1e−4s

10s+ 1
−5e−4s

10s+ 1
5e−40s

100s+ 1

[u1(s)u2(s)

]
(18)

3 =

[
0.8333 0.1667
0.1667 0.8333

]
;3D =

[
0.25 0.75
0.75 0.25

]
(19)

To control the system, 1-DOF PIs controllers were
designed and tuned by optimizing a single specific index
or control objective. This index is also used for the deter-
mination of the most suitable input-output pairings between
two alternatives or design concepts. The design concepts are:
concept c1 or diagonal pairing; and concept c2 or off-diagonal
pairing as shown in (20), (21) and (24),, (25) respectively. The
controllers are shown in (22), (23) and (26), (27).

c1 =
[
Cc1
y1,û1

,Cc1
y2,û2

]
(20)

Lc1p =
[
1 0
0 1

]
(21)

Cc1
y1,û1
=

K c1
1 (s+ 1/Tic11 )

s
,Cc1

y2,û2
=
K c1
2 (s+ 1/Tic12 )

s
(22)

xc1 =
[
K c1
1 ,Ti

c1
1 ,K

c1
2 ,Ti

c1
2

]
(23)

c2 =
[
Cc2
y1,û1

,Cc2
y2,û2

]
(24)

Lc2p =
[
0 1
1 0

]
(25)

Cc2
y1,û1
=

K c2
1 (s+ 1/Tic21 )

s
,Cc2

y2,û2
=
K c2
2 (s+ 1/Tic22 )

s
(26)

xc2 =
[
K c2
1 ,Ti

c2
1 ,K

c2
2 ,Ti

c2
2

]
(27)

The authors propose in [11] to obtain the most adequate
loop pairing by analyzing the x∗c1 and x∗c2 controllers. The
x∗c1 and x∗c2 controllers are obtained from the optimization
of a single objective that agglutinates the control actions with
the errors of all the outputs as shown in (28)-(30).

x∗c1 = argmin
xc1

J (xc1) (28)

x∗c2 = argmin
xc2

J (xc2) (29)

J (xc1) = J (xc2) =
∫ tf

0

(
e21 + e

2
2 + u

2
1 + u

2
2

)
|
r2=0
r1=1

dt

+

∫ tf

0

(
e21 + e

2
2 + u

2
1 + u

2
2

)
|
r2=1
r1=0

dt (30)

where, e1 = r1 − y1 and e2 = r2 − y2, are the errors of
each output with respect to the established set point, and u1,
u2 are the control efforts. The PIs controllers obtained by
optimizing (28) and (29) for both design concepts are shown
in Table 1.

TABLE 1. Mc Avoy DRGA diagonal and off-diagonal PIs controllers with
their performances in J(x).

The system responses for the diagonal and off-diagonal
PIs controllers are shown in Fig. 5. To establish a coherent
comparison framework and analyze the controllers proposed
in Table 1, the integral of the squared error (ISE) associated
with each output is evaluated, and the integral of the control
action (ISU) associated with each input. Results are shown
in Table 2.
Table 1 shows that J (xc2) < J (xc1), which means that

from the approach proposed in [11] the off-diagonal pairing
is preferable to the diagonal pairing to control the proposed
system in (18). When observing Table 2 it can also be noted
that the ISE in the output y2 of the off-diagonal controller
shows a marked improvement compared to the diagonal, but
in output y1 the opposite occurs. Something similar occurs
when evaluating the ISU for each control effort.

The off-diagonal controller has minimized J (xc2), priori-
tizing the minimization of the error e2 and sacrificing e1, u1,

TABLE 2. Evaluation of the ISE and ISU for the Mc Avoy DRGA diagonal
and off-diagonal controllers of Table 1. The best results are
highlighted in bold.

VOLUME 7, 2019 81999
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FIGURE 5. System responses for the controllers described in Table 1.

u2, whose values are greater than for the diagonal controller
(see Table 2). These details are not detected if only the value
of J is analyzed, because they have been hidden when adding
the ISE and ISU in a single design objective. To decide which
loop pairing is preferable for a designer, without considering
all the a priori preferences, several scenarios are proposed.
These scenarios will be analyzed with the proposed multi-
objective approach.

A. FIRST SCENARIO
By using the methodology proposed in stage A, two design
objectives are stated for the MOP. An objective that aggluti-
nates control efforts and another objective which aggregates
the errors of the outputs. Besides, the diagonal design concept
(k = 1), and off-diagonal design concept (k = 2) are
considered (see definitions of the concepts in equations (20)
and (24)). These design concepts remain fixed for all exam-
ples of this paper. The MOP can be proposed as in (31)-(37).

min
xck

J(xck ) (31)

J(xck ) = {J1(xck ), J2(xck )} (32)

J1(xck ) =
∫ tf

0

(
e21 + e

2
2

)
|
r2=0
r1=1

dt

+

∫ tf

0

(
e21 + e

2
2

)
|
r2=1
r1=0

dt (33)

J2(xck ) =
∫ tf

0

(
u21 + u

2
2

)
|
r2=0
r1=1

dt

+

∫ tf

0

(
u21 + u

2
2

)
|
r2=1
r1=0

dt (34)

tf = 1000 seconds

xck ≤ xck ≤ xck (35)

TABLE 3. Bounds of the decision vectors xc1 and xc2.

TABLE 4. Design objectives for the Mc Avoy DRGA diagonal and
off-diagonal controllers for the first scenario.

J1(xck ) ≤ 300; J2(xck ) ≤ 150 (36)

xck =
[
K ck
1 ,Ti

ck
1 ,K

ck
2 ,Ti

ck
2

]
(37)

The bounds of decision vectors xc1 and xc2 are described
in Table 3, and they remain fixed for all scenarios. The
optimized design objectives (stage B) of the McAvoy DRGA
diagonal and off-diagonal controllers are presented in Table 4.
The Pareto fronts for each design concept (stage C) are shown
in Fig. 6.

There are three zones in the Pareto fronts, A, B and C (see
Fig. 6). Zone A is covered only by the off-diagonal concept.
In zone A are the controllers with better performances in their
outputs, but with greater control efforts. The off-diagonal
controller in PA is selected to show this conflict (see objec-
tives J1 and J2 in Table 5).
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FIGURE 6. Pareto fronts and comparison of design concepts using level diagrams for the first scenario. The points PA, PB and PC,
have been selected to analyze their trade-offs. The performance of the controllers proposed in [11] are shown in red hexagram
(DRGA diagonal) and green hexagram (DRGA off-diagonal). (a) Pareto fronts for diagonal and off-diagonal concepts. (b) Pareto
fronts using LD with 1-norm without normalizing.

TABLE 5. PIs diagonal and off-diagonal controllers in PA, PB and PC. The
performance of each is shown in J(x).

In Zone B the off-diagonal concept dominates the diagonal
concept. In this zone it is possible to find an off-diagonal
controller that dominates the McAvoy DRGA diagonal con-
troller, for example in PB1. Table 4 shows that the DRGA
off-diagonal controller has smaller errors in the outputs than
the diagonal controller because J1(xc2) < J1(xc1), but also
presents greater control efforts because J2(xc2) > J2(xc1).
Considering a multi-objective approach and analyzing the
design objectives of the MOP individually, it can be said
that the DRGA off-diagonal controller does not dominate the
DRGA diagonal controller.

The DRGA diagonal and off-diagonal controllers belong
to the Pareto fronts. They are obtained by intersecting with

each front the lines J1(xck ) + J2(xck ) = L. The value L is
constant, and L =

∑2
q=1 Jq(x

c1) = 224.9 for the DRGA
diagonal controller and L =

∑2
q=1 Jq(x

c1) = 205.6 for the
DRGA off-diagonal controller (see Fig. 6 (a)).

In Zone C, the diagonal concept dominates the off-diagonal
concept. This zone corresponds to the controllers with lesser
control efforts but with greater errors in the outputs. An exam-
ple that shows this conflict is the diagonal controller in PC
and its objectives are shown in Table 5.
The ISE and ISU of the controllers in PA,PB,PC are

shown in Table 6, and their responses in Fig. 7 and Fig. 8.
The off-diagonal controller in PA compared with the diag-
onal controller in PC presents a better performance in the
outputs y1 and y2 (see Table 6, in bold). Only the diag-
onal controller in PC is better for controlling the output
y1 when it follows the set point r1 = 0, r2 = 1. The
best performance of the off-diagonal controller in PA has
a disadvantage given that its control effort has worsened.
Its oscillatory behavior can be observed in Fig. 7. The
responses of the controllers in PB are shown in Fig. 8. It is
possible to observe in Table 6 that the diagonal controller
in PB has a better performance in the output y1, and the
off-diagonal controller in PB has a better performance in
output y2.
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FIGURE 7. Off-diagonal controller response in PA and diagonal in PC corresponding to zones A and C.

TABLE 6. Evaluation of the ISE and ISU for the controllers
in PA, PB and PC.

The controllers in PB of both design concepts have a
J1(xc1) ≈ J1(xc2) and a J2(xc1) ≈ J2(xc2). Nevertheless,
it can be seen in Fig. 8 that their outputs are very different.
These characteristics are not detectable when considering
only two objectives and it can be worthwhile to make a final
decision and offer a solution for the MOP. For this reason,
and knowing that this scenario has the advantage of a simple
decision making process for analyzing the MOP, it can be
interesting to continue disaggregating the MOP by defining
a new scenario in stage A to analyze in detail the trade-off
between design objectives (controller responses).

B. SECOND SCENARIO
In this scenario, the MOP with four design objectives is
proposed (stage A). The errors of each output are not mixed,
and now they constitute two independent objectives, and the
other two objectives are the control efforts of each input. The
MOP is defined as (38)-(46).

min
xck

J(xck ) (38)

J(xck ) = {J1(xck ), J2(xck ), J3(xck ), J4(xck )} (39)

TABLE 7. Design objectives for the Mc Avoy DRGA diagonal and
off-diagonal controllers of the second scenario.

J1(xck ) =
∫ tf

0
e21|

r2=0
r1=1

dt +
∫ tf

0
e21|

r2=1
r1=0

dt (40)

J2(xck ) =
∫ tf

0
e22|

r2=0
r1=1

dt +
∫ tf

0
e22|

r2=1
r1=0

dt (41)

J3(xck ) =
∫ tf

0
u21|

r2=0
r1=1

dt +
∫ tf

0
u21|

r2=1
r1=0

dt (42)

J4(xck ) =
∫ tf

0
u22|

r2=0
r1=1

dt +
∫ tf

0
u22|

r2=1
r1=0

dt (43)

tf = 1000 seconds

xck ≤ xck ≤ xck (44)

{J1(xck ), J2(xck ), J3(xck ), J4(xck )}

≤ 300 (45)

xck =
[
K ck
1 ,Ti

ck
1 ,K

ck
2 ,Ti

ck
2

]
(46)

The performance of the McAvoy DRGA diagonal and off-
diagonal controllers are shown in Table 7 (stage B). The
DRGA diagonal controller is better in three of the four design
objectives (J1, J3, J4), compared to the DRGA off-diagonal
controller (see Table 7).

The Pareto fronts of the diagonal design concept (xc1)
and the off-diagonal design concept (xc2) are shown
in Fig. 9 (a) and (b) respectively. The comparison of both
design concepts when applying the QI quality indicator is
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FIGURE 8. Diagonal and off-diagonal controllers responses in PB corresponding to zone B.

FIGURE 9. Pareto fronts of the diagonal and off-diagonal design concepts using 1-norm without normalizing. (a) Diagonal concept.
(b) Off-diagonal concept.

shown in Fig. 10 (a). The Pareto fronts with 1-norm without
normalizing

∑4
i=1 Ji(x

ck ) in both design concepts are shown
in Fig. 10 (b) (stage C).

With the proposed multi-objective approach, the diagonal
controller in PD is better in J1, J3, and J4 than the McAvoy
DRGA controller off-diagonal (this controller minimizes the
error in the output y2, i.e. J2) (see Table 7 and Table 8). The
controller in PD is also better in J2, J3, J4, than the controller
in PE (this controller minimizes the error in the output y1,
i.e. J1). The controller in PF has prioritized minimizing the

control efforts of each input (i.e. J3, J4) (see Table 8). The
responses of these controllers are shown in Fig. 11.
In Fig. 9 (a), the yellow solutions in the design objectives J1

and J2 reveals that the diagonal design concept has a conflict
between these objectives.
The conflict between J1 and J2 implies that improving the

performance at output y1 has the consequence of worsening
the performance at output y2. The opposite is also true, and it
is shown in the purple solutions in the same objectives. There
is also conflict between objectives J1 and J3 and between
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FIGURE 10. Comparison of design concepts using level diagrams for scenario 2. The solutions PD, PE, PF, were selected to analyze their response.
(a) Design concepts using LD with QI-norm. (b) Design concepts using LD with 1-norm without normalizing.

TABLE 8. PIs controllers in PD, PE, PF, shown in Fig. 9 and Fig. 10. Their
performances are compared according to the objectives J(x), and the best
results are highlighted in bold.

J2 and J4, that is, between each of their input-output pairings
(see controllers in PD and in PF in Table 8).
The tuning parameters and the performance of the diago-

nal controllers in PD, PF , (with different trade-off between
objectives) and the off-diagonal controller in PE (with the
best performance in J1) are shown in Table 8 and in Fig. 9
and Fig. 10.
The yellow solutions in Fig. 9 (b) indicate that in the

off-diagonal design concept there is also conflict between the
performances of outputs y1 and y2 (J1 and J2). The relation-
ship that exists between the performances of each output and
its control efforts are shown in the purple solutions in the
objectives (J1 and J3), (J2 and J4). The best performances
at output y2 correspond to the greatest control efforts (see
J2 and J4 of controller DRGA off-diagonal in Table 7). The
same occurs between the best performance of the output y1
and its control effort u1 (see J1 and J3 of the controller in PE
in Table 8). These conflicts are also evident in the responses
of the controllers shown in Fig. 11.

An interesting aspect that shows this scenario with greater
clarity is that when comparing the design concepts it is
observed that there is a wide region where the diagonal
concept is preferable to off-diagonal. The region where the
diagonal design concept is preferable to the off-diagonal con-
cept corresponds to values where QI < 1 (see (a) in Fig. 10).

The ISE and the ISU were evaluated for the controllers in
PD, PE , and PF (see Table 9). Although in this scenario it is
possible to observe the errors in each of the outputs and their
control efforts for each set point r1 and r2, it is not feasible
to know the relation of conflictivity of each independently.
This scenario has a more complex decision making process,
but it has the advantage that it provides more information
about the compensation that occurs between the MOP design
objectives than the first scenario. This scenario shows that the
off-diagonal concept is preferable over the diagonal concept
only when there is a very strong preference to minimize J2.
To analyze the conflicts and performance of the outputs and

control actions for each set point independently, it is feasible
to go back to stage A of the methodology and generate a sce-
nario with eight design objectives such as the one proposed
in third scenario.

C. THIRD SCENARIO
In this scenario, the MOP with eight design objectives is
proposed. The errors associated with each of the outputs are
analyzed completely independently as well as the control
efforts of each of the inputs. A step in each set points r1 and
r2 is applied. Therefore, the MOP is defined as (47)-(55).

min
xck

J(xck ) (47)

J(xck ) = {J1(xck ), J2(xck ), J3(xck ), J4(xck ), J5(xck ),

J6(xck ), J7(xck ), J8(xck )} (48)
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FIGURE 11. Responses of the selected controllers in PD, PE, PF, compared with the DRGA off-diagonal controller proposed in [11].

TABLE 9. Evaluation of the ISE and ISU for the controllers selected in PD,
PE, PF. The comparison between them is shown in bold.

J1(xck ) =
∫ tf

0
e21|

r2=0
r1=1

dt; J2(xck ) =
∫ tf

0
e22|

r2=0
r1=1

dt (49)

J3(xck ) =
∫ tf

0
e21|

r2=1
r1=0

dt; J4(xck ) =
∫ tf

0
e22|

r2=1
r1=0

dt (50)

J5(xck ) =
∫ tf

0
u21|

r2=0
r1=1

dt; J6(xck ) =
∫ tf

0
u22|

r2=0
r1=1

dt (51)

J7(xck ) =
∫ tf

0
u21|

r2=1
r1=0

dt; J8(xck ) =
∫ tf

0
u22|

r2=1
r1=0

dt (52)

tf = 1000 seconds

xck ≤ xck ≤ xck (53)

{J1(xck ), J2(xck ), J3(xck ), J4(xck ), J5(xck ),

× J6(xck ), J7(xck ), J8(xck )}

≤ 300 (54)

xck =
[
K ck
1 ,Ti

ck
1 ,K

ck
2 ,Ti

ck
2

]
(55)

The performances of the McAvoy diagonal and off-
diagonal controllers are shown in Table 10. The Pareto fronts
of this MOP for the diagonal and off-diagonal concepts are
shown in Fig. 12 and Fig. 13 respectively.

The yellow and purple stripes in each design concept
indicate the conflicts between the design objectives of the
MOP (see Figs. 12,13). For the off-diagonal design concept,
a conflict between J5(xc2) and J7(xc2) is observed (improving
one means worsening the other). The conflict between these
objectives enables observing that the control effort u1 is
greater when the step signal is applied in r1 and lower when it
is applied in r2. The objectives J6(xc1) and J8(xc1) represent
the control effort u2 of the diagonal design concept, a lower
level of conflictivity can be observed than in the off-diagonal
concept.

It is important to emphasize that this information was
hidden in the first and second scenarios. If a designer or
control engineer wants to establish these types of details
in the performance of the system he or she should analyze
this scenario. For both design concepts, objectives J1(xck )
and J3(xck ) represent errors in the output y1 and J2(xck ),
while J4(xck ) in the output y2 does not present any conflict
between them. These objectives can be merged to reduce the
complexity of the MOP without losing relevant information
for the decision-making stage.

Moreover, in Fig. 11 it is important to analyze whether
the control efforts of each selected controller are oscillating.
To ensure that the optimal controllers improve this aspect it
is possible to go back again to stage A and propose a new
scenario with new design objectives. In this scenario it will
show howmodifying design objectives can drastically change
the designer’s preferences for selecting a certain input-output
pairing.

D. FOURTH SCENARIO
The MOP with four design objectives is proposed. The inte-
gral of the absolute value of the error (IAE) is used as a perfor-
mance index for each output, and the integral of the absolute
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FIGURE 12. Pareto front using 1-norm without normalizing for the diagonal design concept.

FIGURE 13. Pareto front using 1-norm without normalizing for the off-diagonal design concept.

value of the derivative control signal (IADU) for the control
actions. Applying the IAE is intended to give a greater phys-
ical sense to analyzing the error for reference input tracking,
and avoiding less intuitive squared signals. To decrease the
oscillations in the control actions, and as a consequence in
the system response, the IADU is proposed. The MOP is
proposed as (56)-(64).

min
xck

J(xck ) (56)

J(xck ) = {J1(xck ), J2(xck ), J3(xck ), J4(xck )} (57)

Jk (xck ) =
∫ tf

0
|e1|

∣∣∣r2=0
r1=1

dt +
∫ tf

0
|e1|

∣∣∣r2=1
r1=0

dt (58)

J2(xck ) =
∫ tf

0
|e2|

∣∣∣r2=0
r1=1

dt +
∫ tf

0
|e2|

∣∣∣r2=1
r1=0

dt (59)

J3(xck ) =
∫ tf

0

∣∣∣∣du1dt
∣∣∣∣ ∣∣∣r2=0r1=1

dt +
∫ tf

0

∣∣∣∣du1dt
∣∣∣∣ ∣∣∣r2=1r1=0

dt (60)

J4(xck ) =
∫ tf

0

∣∣∣∣du2dt
∣∣∣∣ ∣∣∣r2=0r1=1

dt +
∫ tf

0

∣∣∣∣du2dt
∣∣∣∣ ∣∣∣r2=1r1=0

dt (61)

tf = 1000 seconds

xck ≤ xck ≤ xck (62)

{J1(xck ), J2(xck )}

< 500; {J3(xck ), J4(xck )} < 2 (63)

xck =
[
K ck
1 ,Ti

ck
1 ,K

ck
2 ,Ti

ck
2

]
(64)
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FIGURE 14. Pareto front using 1-norm for the diagonal an off-diagonal design concepts. (a) Diagonal concept. (b) Off-diagonal concept.

TABLE 10. Design objectives for the Mc Avoy DRGA diagonal and off
diagonal controllers of the third scenario.

The optimized objectives for the controllers in PH , PJ , and
PK is shown in Table 11. The Pareto fronts of both design
concepts are shown in Fig. 14. The stripes in yellow and
purple indicate the trade-offs between the design objectives.

For the diagonal concept, the indicator QI presents values
below the unit (QI < 1), and the off-diagonal concept is
above the unit (QI > 1). This shows that from the proposed
MO approach the diagonal concept is widely preferable to the
off-diagonal concept (see Fig. 15 (a)).

The off-diagonal concept would only be preferable in the
region where J2(xck ) < 104.8 is covered only by the off-
diagonal design concept. The IAE and IADU values for the
controllers in PH , PJ , PK (selected in Fig. 14 and Fig. 15)
are shown in Table 12.
As a compromise solution for the MOP, the diagonal con-

troller in PJ has been selected because it performs better
in three design objectives compared with PH and PK (see
Table 11). The responses of these controllers now have lower
oscillations compared to the second and third scenarios (see
Fig. 16).

TABLE 11. Controllers selected in PH, PJ, PK of Fig. 14 and Fig. 15. The
design objectives (performance) of each controller are compared and
highlighted in bold.

TABLE 12. Evaluation of the IAE and IADU for the controllers selected in
PH, PJ and PK of Fig. 16. In bold, the IAE and IADU of the controllers are
compared.

V. EXAMPLE 2
The 3 × 3 system proposed in [15], whose model is shown
in (65), is used in this section. To control this system, RGA
suggests the loop pairing: y1− u3/y2− u2/y3− u1 (LP1); and
RNGA a different one: y1−u2/y2−u3/y3−u1 (LP2), see (66)
and (67), respectively.
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FIGURE 15. Comparison of diagonal and off-diagonal design concepts with the QI indicator and 1-norm. Only solutions where
QI < 5 were selected. (a) LD with the QI-norm. (b) LD with the 1-norm.

In order to test both loop pairing alternatives, in [15] decen-
tralized 1-DOF PID controllers are designed based on IMC-
PID tuning rule. Simulation results demonstrate that LP2 is
significantly better than LP1.
In order to carry out a more in-depth study of the problem,

the proposed MO methodology is applied, establishing two
design concepts, c1 (loop pairing LP1) and c2 (loop pairing
LP2), defined in (68)-(79). In the same way that [15], each
loop pairing has associated the design of PID controllers
of 1-DOF with derivative filter (N = 100).y1(s)y2(s)
y3(s)



=


e−9s

6s2 + 17s+ 1
−9e−5s

s2 + 4s+ 1
13e−3s

3s2 + 35s+ 1
−5e−13s

2s2 + 19s+ 1
8e−2s

s2 + 33s+ 1
7e−5s

s2 + 3s+ 1
−16e−3s

s2 + 5s+ 1
3e−7s

s2 + 14s+ 1
e−11s

3s2 + 25s+ 1


×

u1(s)u2(s)
u3(s)

 (65)

3

=

−0.0054 0.3981 0.6073
−0.0992 0.6912 0.4080
1.1046 −0.0893 −0.0153

 (66)

38

=

−0.0024 0.9237 0.0787
−0.0063 0.0829 0.9235
1.0088 −0.0066 −0.0022

 (67)

c1
=

[
Cc1
y1,û1

,Cc1
y2,û2

,Cc1
y3,û3

]
(68)

Lc1p

=

0 0 1
0 1 0
1 0 0

 (69)

Cc1
y1,û1

= K c1
1

(
1+

1

Tic11 s
+ Tdc11

N
1+ N/s

)
(70)

Cc1
y2,û2

= K c1
2

(
1+

1

Tic12 s
+ Tdc12

N
1+ N/s

)
(71)

Cc1
y3,û3

= K c1
3

(
1+

1

Tic13 s
+ Tdc13

N
1+ N/s

)
(72)

xc1

=

[
K c1
1 ,Ti

c1
1 ,Td

c1
1 ,K

c1
2 ,Ti

c1
2 ,Td

c1
2 ,K

c1
3 ,Ti

c1
3 ,Td

c1
3

]
(73)

c2

=

[
Cc2
y1,û1

,Cc2
y2,û2

,Cc2
y3,û3

]
(74)

Lc2p

=

0 0 1
1 0 0
0 1 0

 (75)

Cc2
y1,û1

= K c2
1

(
1+

1

Tic21 s
+ Tdc21

N
1+ N/s

)
(76)
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FIGURE 16. Responses of the selected controllers in the Pareto fronts of the fourth scenario.

FIGURE 17. Pareto fronts for the loop pairings LP1 and LP2 of the second example.

Cc2
y2,û2

= K c2
2

(
1+

1

Tic22 s
+ Tdc22

N
1+ N/s

)
(77)

Cc2
y3,û3

= K c2
3

(
1+

1

Tic23 s
+ Tdc23

N
1+ N/s

)
(78)

xc2

=

[
K c2
1 ,Ti

c2
1 ,Td

c2
1 ,K

c2
2 ,Ti

c2
2 ,Td

c2
2 ,K

c2
3 ,Ti

c2
3 ,Td

c2
3

]
(79)

By following the proposed MO methodology, two MOPs
are proposed (corresponding to stage A of Fig. 4), k = 1
corresponds to loop pairing LP1 and k = 2 to LP2, see
equations (80)-(86). Six design objectives are set for each
MOP, allowing an independent evaluation of the performance
of the outputs and control efforts (stage B). Here eη represents
the error of each output and uη the control effort of each input.

min
xck

J(xck ) (80)

J(xck ) = {J1(xck ), J2(xck ), J3(xck ), J4(xck ), J5(xck ),

×J6(xck )} (81)

VOLUME 7, 2019 82009



V. Huilcapi et al.: Loop Pairing Method for Multivariable Control Systems Under an MO Optimization Approach

FIGURE 18. Responses of the PID controllers selected in the Pareto fronts of the second example.

FIGURE 19. Control efforts of the PID controllers selected in the Pareto fronts of the second example.

Jη(xck ) =
∫ tf

0
|eη|

∣∣∣r2,r3=0
r1=1

dt +
∫ tf

0
|eη|

∣∣∣r1,r3=0
r2=1

dt

+

∫ tf

0
|eη|

∣∣∣r1,r2=0
r3=1

dt (82)

Jη+3(xck ) =
∫ tf

0

∣∣∣∣duηdt
∣∣∣∣ ∣∣∣r2,r3=0r1=1

dt +
∫ tf

0

∣∣∣∣duηdt
∣∣∣∣ ∣∣∣r1,r3=0r2=1

dt

+

∫ tf

0

∣∣∣∣duηdt
∣∣∣∣ ∣∣∣r1,r2=0r3=1

dt (83)

η = 1, 2 and 3

tf = 1000 seconds

xck ≤ xck ≤ xck (84)

J1(xck ) ≤ 400, J2(xck ) ≤ 400, J3(xck ) ≤ 300,

J4(xck ) ≤ 1, J5(xck ) ≤ 1, J6(xck ) ≤ 0.5 (85)

xck = [K ck
1 ,Ti

ck
1 ,Td

ck
1 ,K

ck
2 ,Ti

ck
2 ,Td

ck
2 ,

×K ck
3 ,Ti

ck
3 ,Td

ck
3 ] (86)
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TABLE 13. Bounds of the decision vectors xc1 and xc2 for the second
example.

TABLE 14. Controllers P1 and P2 selected in Fig. 17. The design objectives
of each controller are compared and highlighted in bold.

The bounds of xck are shown in Table 13.
Fig. 17 shows the Pareto fronts of each pairing, LP1 and

LP2. The first thing that stands out is that it is possible, in both
loop pairings, to find controllers with good performance for
any of the objectives independently. The greatest difference
can be seen in J1, where LP1 can achieve a better performance
than LP2. The solution P1 is chosen for LP1 and it is observed
that there is a conflict between the objectives J1, J2, J3, i.e.
improving the performance of the output y1 has the effect of
worsening the performance of y2 and y3. This does not happen
with LP2, where it is feasible to find a trade-off zone (green
solutions: J1 < 30.5, J2 < 33.2, J3 < 23.8), where there
are solutions with a satisfactory performance for the three
system outputs. The solution P2 was chosen in this area and
it is observed that this solution does not present a conflict
between the objectives J1, J2, J3 but between these and the
control efforts (especially with u3).With respect to the control
efforts (J4, J5, J6), it is observed in the Pareto fronts that both
controllers have very close efforts for the inputs u1 and u3,
but for the input u2 the effort of the controller in P2 is much
less than that of P1.
Table 14 shows the performance of the outputs and the

control efforts for the solutions P1 and P2 selected on each
Pareto front. Fig. 18 shows the system outputs. It can be seen
that the controller P1 is slightly better than P2 to control
the output y1, but the controller P2 represents a noticeable
improvement over P1 to control the outputs y2 and y3. Fig. 19
shows the control efforts of each controller, P1 and P2.

VI. CONCLUSIONS
In this paper a new method to select input-output pair-
ings in MIMO systems using a multi-objective optimization
approach has been presented. In this approach, the control
structure, the design objectives of the MOP, the optimal
adjustment of the controller parameters, and the designer’s
preferences have an important role in the selection of a certain
input-output pairing.

The method proposes a multivariable control structure as
an alternative or design concept. Each design concept to be
compared has a type of control and an associated loop pairing.
For each design concept an MOP is proposed, and the Pareto
front is obtained with the optimal settings of the controller
parameters. This enables an m -dimensional analysis of the
benefits of the possible types of loop pairings. In this way,
a detailed analysis of the performance of the MIMO systems
can bemade, as well as the conflicts that occur when choosing
a certain input-output pairings.

The method is applied to 2× 2 and 3× 3 systems. For the
2×2 system, RGA clearly proposes a diagonal pairing, while
DRGA prefers an off-diagonal pairing. To show how the
designer’s preferences can influence when choosing one or
another loop pairing, and show the proposed method, several
scenarios are analyzed. The ISE, ISU, IAE, IADU indexes
are proposed as control performance indicators. In the first
example, the designer initially gives the same relative impor-
tance to the ISE and ISU, for which they are added in a
single objective to beminimized. In this case, the off-diagonal
concept is better than the diagonal concept. The designer
makes a decision a priori and obtains a single optimal
solution for each loop pairing. From this initial example,
the first scenario is proposed by disaggregating the MOP
into two design objectives. This scenario reveals that the
off-diagonal design concept does not dominate the diagonal
concept completely, since it is only preferable in a certain area
of interest. In the second scenario, errors in the outputs and
control efforts are analyzed partially independently (without
mixing), and an MOP with four objectives is proposed. The
analysis of the Pareto fronts of each design concept reveals
that the diagonal concept has better characteristics than the
off-diagonal concept. In fact, the off-diagonal concept would
be eligible only if a designer gives greater importance to the
objective J2 (ISE associated with the output y2). This shows
that the designer in the initial example selected this preference
without awareness, because when mixing ISE and ISU of
both outputs and inputs, this phenomenon was hidden.

In the third scenario, an MOP with eight design objectives
is proposed. In this scenario, the errors of each output (ISE)
and the control efforts (ISU) are analyzed independently.
The complexity of the analysis of the trade-off between
objectives increased, but there is a much greater level
of detail for a designer to take an optimal solution for
the MOP. To reduce the size of the MOP and decrease
the complexity of the decision-making stage, a designer
may decide to combine the design objectives that are not
in conflict.
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Later, because the control actions are very oscillatory in
the previous scenarios, it was decided to change the design
objectives of the MOP. This produced a radical change in the
system responses, and now the diagonal design concept was
widely preferred over the off-diagonal concept. In this way,
it was revealed how the designer’s preferences through the
choice of MOP objectives, can condition the choice of input-
output pairing.

The application of the MO method to the 3 × 3 system
shows again that according to the preferences of the designer
LP1 or LP2 would be preferred. Contrary to what is man-
ifested in [15], it is observed that LP2 is not clearly better
than LP1. With a proper parameter setting of the controllers
of LP1 it is possible to control the system satisfactorily. The
pairing LP2 has a zone with satisfactory solutions for the
three system outputs, while the pairing LP1 has a conflict
between its outputs, that is to say, improving one implies
worsening the others. If the preference of the designer is
to obtain a good control for all the outputs (accepting their
corresponding increase in the control effort), then the pairing
LP2 would be the one chosen.

An advantage of the presented methodology is that it
enables analyzing the dynamics of a closed loop system
for selecting one loop pairing or another a posteriori. The
selection of an input-output pairing and the conditions of the
process (plant) are based on the designer’s preferences (with
a level of complexity selectable by the designer).

Future work will focus on expanding the proposed
approach for nonlinear systems, and uncertain multivariable
systems. It would also be interesting to analyze systems with
restrictions on the outputs, or in which a certain loop pairing
must go out of line for maintenance.

It is predictable that the number of parameters and
objectives to be optimized will require improving the com-
putational cost of the optimization algorithms and the visual-
ization tools for the Pareto fronts.

APPENDIX A
ANALYSIS OF THE COMPUTATIONAL COST OF THE
PROPOSED LOOP PAIRING METHOD
First of all, it must be made clear that the computational cost
of the proposedmethodology is difficult to generalize, since it
depends onmany factors. In general, it is higher than the com-
putational cost of many of the classic loop pairing methods.
However, it should be noted that the methodology takes into
account the preferences of the designer, the type of controllers
used and the tuning of their parameters. These considerations
are decisive in the loop pairing and they cannot be ignored
if a pairing adjusted to the needs of the designer is desired.
Therefore, it would not be entirely fair to compare compu-
tationally the proposed methodology with classical method-
ologies, since the cost of loop pairing cannot be separated
from the cost of tuning the control structure. Nevertheless,
this section provides a reflection on the computational cost
that would have to be assumed when applying the proposed
methodology.

The computational cost (CC) of the proposed loop pairing
method depends mainly on the number of MOPs that are pro-
posed and the computational cost of each of them, see (87).

CC =
w∑
k=1

CC(MOPck ) (87)

The number ofMOPs is equal to the number of design con-
cepts ck to analyze. As can be seen in (11) a design concept
consists of a given loop pairing and the controllers associated
with each control loop. The number of loop pairings to be
studied will be at least two, but in a system n × n there can
exist until n! possible pairings.
The computational cost of aMOP depends on three factors:

1) the number of solutions evaluated in the optimization
process (ηp), 2) the cost of calculating the chosen design
objectives CCJ (shown in (16)) and 3) the cost of the MO
algorithm itself (CCMO).

CC(MOPck ) = ηpCCJ + CCMO (88)

Normally, ηpCCJ >>> CCMO, because CCJ has associ-
ated simulations (nsimul) of the controlled system that must
be performed to calculate the objectives (which usually mea-
sure performance and control efforts). On the other hand, ηp
depends on the number of evaluations of the objective func-
tion required by the optimization algorithm used. It should be
noted that the computational cost of the optimization can vary
considerably if, for example, the execution is parallelized. It is
not the objective of this work to discuss the optimization algo-
rithm used, since the methodological proposal is independent
of the selected algorithm.

As can be concluded from what has been said so far, there
are a lot of variables that make it difficult to determine the
computational cost. In order to quantify it, the following
assumptions will be made:

1) To consider CCMO negligible.
2) Given a specific loop pairing problem, all concepts will

have the same computational cost.
3) CCJ = nsimul · CCsimul , considering that, given a

particular problem, the cost of a simulation is always
the same.

Therefore:

CC ≈ w · ηp · nsimul · CCsimul (89)

For example, if the designers only want to analyze one type
of controller for each pairing loop (among the nloops that they
want to study) and the number of simulations nsimul = n, then
the computational cost will be:

CC ≈ nloops · ηp · n · CCsimul, (90)

with nloops ∈ [2 . . . n!].
The computational cost in the examples 1 and 2 which

have been proposed in this article was evaluated on a hard-
ware platformwith an Intel(R) Core(TM) i7-7700HQ proces-
sor (2.80 GHz, 16 GB RAM) and with MATLAB R2017b.
In both examples, ηp = 8000 solutions were evaluated and
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two design concepts were analyzed, one for each pairing
(nloops = 2). The number of simulations was nsimul = n = 2
for example 1 and nsimul = n = 3 for example 2. For
example 1 the second scenario was chosen. A computational
cost of 13.256 ·103 seconds was measured. For example 2 the
computational cost was 26.146 · 103 seconds.
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