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ABSTRACT Load forecasting is useful for various applications, including maintenance planning. The study
of load forecasting using recent state-of-the-art hybrid artificial intelligence (AI) and deep learning (DL)
techniques is limited in South Africa (SA) and South African power distribution networks. This paper
proposes a novel hybrid AI and DL South African distribution network load forecasting system. The system
comprises of modules that handle the collection of the loading data from the field, analysis of data integrity
using fuzzy logic, data preprocessing, consolidation of the loading and the temperature data, and load
forecasting. The load forecasting results are then used to inform maintenance planning. The load forecasting
is conducted using a hybrid AI/DL load forecastingmodule. A novel comparative study of recent state-of-the-
art AI techniques is also presented to determine the best technique to deploy in this module when forecasting
South African power redistributing customers’ loads. The impact of the inclusion of weather parameters
and loading data clean up on the load forecasting performance of a hybrid AI technique, optimally pruned
extreme learning machines (OP-ELM), and a deep learning technique, long short-term memory (LSTM),
is also investigated. These techniques are compared with each other and also with a commonly used powerful
hybrid AI technique, adaptive neuro-fuzzy inference system (ANFIS). LSTM was found to achieve higher
load forecasting accuracies than ANFIS and OP-ELM in forecasting the two distribution customers’ loads
in this paper. Only the LSTM models’ performance improved with the inclusion of temperature in their
development.

INDEX TERMS Adaptive neuro-fuzzy inference systems, artificial intelligence, deep learning, distribution
networks, extreme learning machines, load forecasting, recurrent neural networks, long short-term memory.

I. INTRODUCTION
Electricity has been regarded as South Africa’s gross domes-
tic product’s (GDP) main driver [1], [2]. Developing coun-
tries still experience a lack of electricity access [3]–[6].
These countries, including South Africa, have electrification
programs that are driving the connection of its citizens to
the power grid. South Africa (S.A.) obtained its democracy
in 1994, and has since then electrified more than 5.2 million
homes and over 12 000 schools [7]. The South African gov-
ernment plans to achieve universal supply by 2025/2026 [8].
In order to achieve this goal, while ensuring continuity of
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supply, utilities need planning at different levels of the power
system. Load forecasting whose importance was established
in different studies including [9] and [10], becomes important
in order to achieve a sustainable power supply.

Load forecasting has different windows which it can be
classified into. These windows are short term, medium term
and long term, which respectively cover hours to weekly
forecasts, monthly to quarterly forecasts and then yearly
forecasts [11]. With the movement towards the smart grid
in developed countries, recent load forecasting studies have
moved past the customer supply point [12]–[14]. Appliance
power consumption data have been incorporated to forecast
load using a fuzzy logic approach [13]. Australian resi-
dential load was forecasted using long short-term memory
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recurrent neural networks (LSTM-RNN) models developed
using smart meter data [14]. Other researchers have moved
towards understanding and predicting customer behavior in
demand response [15]–[18]. This behavior influences the
customer’s consumption/load profile and thus load forecast-
ing [16], [17]. In [15] the nearest neighbor algorithm and
Markov chain algorithm was used to predict user behavior
and energy management. Recent load forecasting studies are
moving towards deep learning techniques [19]–[22]. The rise
in the use of these techniques can be associated with the
rise in computational power and access to labeled data [23].
These techniques have achieved excellent performance in
computer vision, speech and language processing [23]–[27].
The three popular deep learning techniques are convolu-
tional neural networks (CNN), deep belief networks (DBN)
and recurrent neural networks (RNN). In [19] cycle-based
LSTM and time dependency CNN was used for load fore-
casting. LSTM-RNN has been shown to be a robust method
in load forecasting [28]. LSTM’s performance was found to
match that of state-of-the-art techniques and supersedes a few
cases [28]. In [20] and [29] the authors found that LSTM-
based models performed better than convolutional networks
in energy consumption forecasting and natural language pro-
cessing, respectively. Weather conditions have been included
as input parameters in a number of load forecasting stud-
ies [10], [30], [31]. These weather parameters’ data are not
always collected or kept by power utilities. This data can also
come at a cost when sourced externally from the utility and
commercially used. Hence, the need to understand if weather
parameters improve the load forecasting performance of AI
models.

The study of the application of AI in S.A. load forecasting
is limited [9], [32]–[38]. Some of these studies are outdated
and do not use recently developed techniques [34], [35].
Ijumba’s study is from 1999 and used artificial neural net-
works (ANN) [34]. Medium-term load forecasting has been
seen to be complex and requires more sophisticated tech-
niques such as deep learning over shallow ANN [19]. Despite
this recommendation, a recent SA load forecasting study from
2018 utilized ANN [39]. Despite being around for some time
ANFIS is still a powerful technique and was the most com-
mon technique used in these studies. ANFIS has been shown
to be superior to most popular statistical and artificial intelli-
gence techniques [9], [40]. ANFIS is thus used in this study
as a comparison base for the performance of the techniques
used in this study. Marwala et al. introduced the recent state
of the art extreme learning machines (ELM) and its improved
version, optimally pruned extreme learning machine (OP-
ELM) in SA load forecasting [32], [33]. Their studies focused
on the country’s total consumption and not on distribution
level power networks. They also did not compare these
techniques to any state-of-the-art deep learning technique.
Yuill et al.’s study focused on short-term load forecasting,
with 30 minutes ahead load forecasting using ANFIS [35].
This study was conducted for optimal generation scheduling
in SA. Short term load forecasting cannot be used to plan

maintenance in distribution networks. The part of the power
system value chain that the study data were collected from,
was not clarified. This study incorporated weather parame-
ters, temperature and humidity. Their impact was studied for
ANFIS only and on a single data set. The impact of not using
these weather parameters was not investigated. Motepe et al.
found that ANFIS models can achieve better performance
in forecasting a SA distribution network’s load without the
inclusion of temperature in the model development [37]. This
study focused on one AI technique, ANFIS, and load type,
a power redistributor. In another recent study, Motepe et al.
found that for the same load profile in [37] DBN models
achieved better performance with temperature used in the
model development [38]. It is thus evident that published
research on load forecasting using deep learning techniques
in South Africa (S.A.) is almost non-existent. The impact
of temperature on the performance of AI and deep learning
techniques in SA load forecasting has not been well investi-
gated. Therefore, further studies with other state of the art AI
techniques and DL techniques still need to be explored. The
impact of temperature inclusion on the performance of these
techniques also needs to be investigated further.

This paper contributes to the body of knowledge of load
forecasting studies in South Africa through the following
contributions: (i) A novel investigation of a recent state-of-
the-art hybrid AI technique, OP-ELM, and deep learning
techniques in South African Distribution networks load fore-
casting through two case studies of real SA power redistrib-
utors. (ii) An introduction of a novel hybrid AI and deep
learning distribution load forecasting system for power redis-
tributor loads. (iii) An investigation of load forecasting per-
formance impact due to temperature inclusion in the hybrid
AI and DL models development. (iv) A novel investigation
of the load forecasting performance impact due to cleaning
up loading data to remove spikes and dips before developing
hybrid AI and deep learning models.

The paper is arranged as follow: Section II presents an
overview of five AI techniques: fuzzy logic, neural net-
works, adaptive neuro-fuzzy inference systems, optimally
pruned extreme learning machines and long short-term mem-
ory recurrent neural networks. Section III presents the pro-
posed hybrid AI and DL load forecasting system. Section IV
presents the system and experimental setup. The results are
given in Section V. The paper is then concluded in Section VI.

II. ARTIFICIAL INTELLIGENCE AND DEEP
LEARNING TECHNIQUES
A. FUZZY LOGIC
Fuzzy logic is an expert system that was developed in 1930 by
Negnevitsky [41]. Fuzzy logic has been applied widely in
power systems related studies.Motepe et al. used fuzzy logic
to determine power consumption data accuracy [42]. In [43]
short-term load forecasting was conducted using fuzzy logic.
Active power loss forecasting has also been conducted using
fuzzy logic [44]. Fuzzy logic systems have a short-fall in
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that they depend on expert experience to develop the fuzzy
rules they operate from. Different experts can therefore build
models that give different results from the same data [45].
Fuzzy logic also lacks the ability to learn and to self-adjust
to a new environment [10]. The Mamdani inference system
and Sugeno/Takagi-Sugeno (TS) inference system are the
popular fuzzy logic inference systems. The Mamdani infer-
ence system is applied in four key steps: fuzzification of the
input variables, evaluation of the rules, aggregation of the
rule output and then defuzzification [41]. Themain difference
between the TS and Mamdani is in the last two steps. The TS
type output is either a linear function or constant. Equation (1)
defines a TS type output. The TS fuzzy logic inference system
is commonly applied in data-driven modeling.

Ri : if z is Ai then yi = aTi z+ ci (1)

where Ri is the rule, Ai is the antecedent, ai the consequent
parameter vector, ci the bias, i = 1, 2, . . . .n, y is the output
and is given by (2).

y =

∑n
i=1 αi(z)yi∑n
i=1 αi(z)

(2)

where αi is the ith rule’s degree of fulfillment. The TS model
can be considered as a piece-wise smooth linear approxima-
tion of the non-linear function. This is due to the TS model
parameters being local linear models of the non-linear system
under consideration.

B. ARTIFICIAL NEURAL NETWORKS
Artificial neural networks (ANN), also just termed neural
networks, are non-linear mathematical processing networks
designed to mimic the human brain [46]. Neural networks
have been applied in numerous fields, such as load fore-
casting, image recognition, speech recognition, data retrieval,
energy consumption prediction, mine dam water level moni-
toring and prediction [40], [47], [48]. Neural networks have
synaptic weights which connect their neurons. These neurons
can have a single output and multiple inputs. The output is
derived from the input by the sum of weighted values and the
bias as shown in (3) [49].

y =
∑n

i=1
wizi + bi (3)

where z is the input, y is the output, w the weight and b the
bias. The aim of the training is to achieve a minimum error
between the target value and the model output. This training
is conducted through multiple iterations to fine-tuning the
synaptic weights. These iterations continue until an accept-
able error is or a set threshold is reached. Equation (4) gives
the error function:

E (w) =
1
2

∑N

j

∥∥y (zj,w)− tj∥∥2 (4)

here E is the total error, y is the model output and t is the
target value. The synaptic weights are updated using (5):

ws+1m = wsm − λ∇E
s(wsm) (5)

FIGURE 1. The ANFIS model basic structure.

where s is the iteration step,m is the weights index, λ is the
learning rate and ∇E(w), the gradient, is given by (6):

∇E (w) =
[
∂E
∂w0

,
∂E
∂w1

, . . . . . . ,
∂E
∂wm

]
(6)

The goal is to get a weight vector where E has its smallest
value.

C. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS
Adaptive neuro-fuzzy inference systems (ANFIS) combine
neural networks and fuzzy-logic to take advantage of the
two techniques’ strengths and to overcome their shortfalls.
Neural networks have shortfalls such as lack of knowledge
representability and explainability. Fuzzy logic is not able to
learn from data [41]. ANFIS has been used broadly in various
aspects of power systems. ANFIS applications include load
forecasting, photovoltaics (PV) model optimization for DC-
DC converter systems and PV plants maximum power point
tracking [9], [50], [51]. Themost common neuro-fuzzymodel
is the Takagi-Sugeno type [52]. Neuro-fuzzy models are seen
to be adaptive due to their ability to learn.

Owing to this ability to learn, ANFIS models can therefore
be trained using gradient descent as opposed to being trained
using expert knowledge. The basic ANFIS structure is shown
in Fig. 1. The first layer has adaptive nodes, which compute
the input membership degree in the antecedent Gaussian
fuzzy sets. The second layer sees the application of the
fuzzy AND operator. The normalization (N ) and summa-
tion (

∑
) achieve the fuzzy mean operator. The most com-

monly used form of the Gaussian membership function is
given in (7) [52].

µAij
(
zj, gij, δij

)
= exp

(
−
(zi − gij)

2

2δ2ij

)
(7)

where δ is the variance of the Gaussian membership function
and g is the center of the Gaussian function. The TS relation-
ship between its input and output is given by (8):

y =
∑N

i=1
γi (z)(aTi z+ ci) (8)
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with

γi (z) =

∏p
j=1 exp(−(zi−g

i
j)
2
(z)/2δ2ij)∑N

i=1
∏p

j=1 exp(−(zi−g
i
j)
2
(z)/2δ2ij)

(9)

The hybrid learning process uses the least square estimator
as well as the gradient descent methods. This process involves
two key steps:

Step 1: Find the optimal number of rules.
Step 2: Partition the input space to be equally divided with

the functions’ width and slopes to allow sufficient
overlaps.

The training has a forward and backward pass. The forward
pass involves the determination of the rule consequent param-
eters from the neuron outputs which are calculated using
the input data. The backward pass involves the applica-
tion of backward-propagation, where the antecedent param-
eters are then updated using the back propagated error
signals.

D. OPTIMALLY PRUNED EXTREME LEARNING MACHINES
With data sizes increasing, big data have become a buz-
zword [53]. In [53] the authors give definitions of big data.
It has been observed that when the quantity of data used
increases the computational complexity increases [54]. High
computational power is not always accessible. There is, there-
fore, an inclination for non-linear models not to be used as
broadly as they could due to their being slow to build feed-
forward neural networks. This reduced usage is despite the
feedforward models’ overall good performance [54]. In [55],
the authors introduced an algorithm called extreme learn-
ing machine (ELM), which reduces the required training
computational time and model structure selection of neu-
ral networks. The technique is a single layer neural net-
work that was proposed in the mid-2000s by Huang et al.
These researchers also demonstrated that this method could
be utilized successfully in a variety of applications [55].
ELM has been used in many other applications by differ-
ent researchers [32], [56], [57]. In [57] ELM was shown
to perform better than traditional artificial neural networks
(ANN), radial basis function neural networks (RBFNN) and
back-propagation neural networks (BPNN) in most testing
datasets, in market clearance price forecasting. The authors
in [58] showed that optimally pruned extreme learning
machines (OP-ELM) outperform the popular machine learn-
ing techniques (ANN, ANFIS and support vector machines
(SVM)) and time series techniques (autoregressive moving
average (ARMA)). OP-ELM was found to also outperform
the standard ELM. To describe the ELM training process,
suppose a training set xi is given, where i = 1, . . . ..n, with a
target vector ti. The ELM’s goal is to decrease the training
error function E to be as low as possible. Equation (10)
represents the ELM for these conditions:∑k

j=1
f
(
wj, bj, xi

)
βj = ti (10)

where wj is the input weight vector that connects the jth hid-
den neuron and the input, βj is the output weight that connects
the jth hidden neuron and the output and the jth hidden node’s
bias is represented by bj. If the ELM model can estimate the
data sample with zero error, that is

∑n
j=1

∥∥yi − t i∥∥ = 0, a wj,
bj and βj exist so that

∑k
j=1 f

(
wj, bj, xi

)
βj = yi, i = 1, . . . .n.

Equation (10) can thus be re-written as (11):

Hβ = T (11)

where H is the hidden layer output matrix and can be written
as (12).

H =

 f (w1, b1, x1) · · · f (wk , bk , x1)
... · · ·

...

f (w1, b1, xn) . . . f (wk , bk , xn)


n×k

(12)

The input weight and hidden bias have been shown not to
require tuning [57]. Therefore, after assigning random val-
ues to the matrix H parameters at the start of the training,
the matrix can be left unchanged. If the matrix H is square,
that is k = n, it is possible to randomly assign the hidden
nodes, and the output weights can then be computed through
the inversion of H. Hence, the ELM can estimate the data
sample with an error of zero. H is in most cases not a square
matrix and is thus invertible. A wj, bj and βj so that Hβ = T
may therefore not exist. The ELM training process here cor-
responds to solving a least square problem. The ELM weight
between the output and hidden layer, unlike in conventional
neural networks (NN), can be determined through the hidden
layer output matrices’ generalized inversion. This operation
is known as the Moore-Penrose. The weights can, therefore,
be given by (13):

β = H∗T = (HHT )
−1
HT T (13)

where H∗ is matrix H ′s Moore-Penrose generalized
inverse [32]. The ELM algorithm can be summarized as
follows:

Step 1: Assign input weights and bias, wj and bj, j = 1. . .k
at random.

Step 2: Determine H, the output matrix of the hidden layer.
Step 3: Determine β, the output weight using (13)

The standard ELM has a drawback in approximating under-
lying dynamics when correlated or irrelevant variables are
included in the training data set. The authors in [54] pro-
posed an OP-ELM to overcome these shortcomings. In this
approach, the irrelevant variables are pruned bymarginalizing
the irrelevant neurons of the network built using the ELM.
The OP-ELM three key learning steps are as follows:

Step 1: Use the ELM technique to construct the multi-layer
perceptron (MLP) model

Step 2: Use multi-response sparse regression (MRSR) to
rank the neurons

Step 3: Select an optimal number of neurons using the
leave-one-out (LOO) validation method
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FIGURE 2. LSTM unit block structure.

E. LONG SHORT-TERM MEMORY RECURRENT
NEURAL NETWORKS-
Recurrent neural networks (RNN)with long short-termmem-
ory (LSTM) are highly rated as a trustworthy technique
in sequential data series modeling, forecasting and analy-
sis [59]. LSTMs are usually used in solving problems in
sequential data-related applications such as audio and lan-
guage. LSTMs are effective in capturing long-term tempo-
ral dependencies without facing the optimization challenges
faced by the simple recurrent network [28]. LSTM architec-
ture’s key is a memory cell that retains its memory over time.
Non-linear gating units regulate the flow of information in
the cell. The gating mechanism enables LSTM to succeed
in dealing with the vanishing gradient challenge experienced
by the standard RNN. The structure of an LSTM unit block,
is given in Fig. 2. shows these non-linear gates. When these
LSTM units are stacked, the deep LSTM-RNN is attained.

Take {z1, z2,.., zt} as an input sequence for an LSTM,
with zt representing a k th dimension real values array at time
step t . The memory cell state st−1 and intermediate state
ht−1 interact with zt and the previous time step outputs to
determine which of the internal state vectors’ elements to
update, erase or maintain [14].

The LSTM defines the forget gate (ft ), input gate (ii), input
node (gt ) and output gate (ot ) using (14) to (17), respectively.
Equation (18) and (19) give the memory cell state and the
state at time step t , respectively.

ft = σ (Wfzzt +Wfhht−1 + bf ) (14)

it = σ (Wizzt +Wihht−1 + bi) (15)

gt = ∅(Wgzzt +Wghht−1 + bg) (16)

ot = σ (Wozzt +Wohht−1 + bo) (17)

st = gt � it + st−1 � ft (18)

ht = ∅(st )� ot (19)

whereWfz, Wfh, Wiz, Wih, Wgz, Wgh, Woz andWoh are weight
matrices for the network activation functions’ corresponding
inputs. The functions σ and φ respectively represent the
sigmoid function and the tanh function. The element-wise
multiplication is represented by �.

FIGURE 3. Proposed hybrid AI/DL load forecasting system.

III. PROPOSED LOAD FORECASTING SYSTEM
The proposed system involves the collection of power con-
sumption data from the field equipment using power meters.
These data are then transmitted to a central database for stor-
age and utilization by the utility in different applications. The
system overview is given in Fig. 3. The data integrity is deter-
mined through a module that deploys fuzzy logic. If the data
have low integrity they raise flags to trigger investigations
into the causes of the integrity challenges. Once investigated
the database and/or field repairs are conducted. The data
with high integrity are then pre-processed. This involves the
normalization of the data. The temperature data are requested
from the weather service and stored in a database. These data
are also preprocessed. The model input variables are then
consolidated for input into the hybrid AI/DL module. The
hybrid AI /DL module is used to forecast the distribution
load. The hybrid AI/DLmodule should havemodels that have
been trained and tested offline deployed in it. The load fore-
cast results are then used to inform the distribution network
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FIGURE 4. Distribution network the substation in Case Study A is located.

FIGURE 5. Distribution network the substation in Case Study B is located.

maintenance plans. The load forecasting results for different
networks are also stored in a central database, for access by
different departments in the utility.

IV. SYSTEM AND EXPERIMENT SETUP
Two distribution substations that supply power redistribu-
tors are used as case studies in this research. This section
presents these two substations as well as their power
consumption/loading data. The experiment setup is also
presented.

A. SYSTEM SETUP
The two substations used were separated into two case
studies, Case Study A and Case Study B. The substations,
the overview of the distribution network the substations are
located in and the loading data are presented per Case Study
in this subsection.

1) CASE STUDY A SUBSTATION AND DISTRIBUTION
NETWORK OVERVIEW
The loading data used in this Case Study were for a dis-
tribution substation that was commissioned in the year
2012. These data were collected for a period between
August 2012 to May 2016. With the combination of data
integrity and the electrification programs, the limited number
of years a substation’s data are available for, can be a common
case in most substations. These loading data were obtained
from a real South African power utility database. These data
were logged from a medium voltage distribution substation,
measured at the incoming feeder. The substation is connected
to the grid through a 275 kV main transmission substation
(MTS). This connection is at T-off of an 88 kV feeder from
the MTS as shown in Fig. 4. The distribution network shown
in Fig. 4. is a 3-phase system. The substation under study
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FIGURE 6. Raw normalized loading data for the distribution substation in
Case Study A.

has two 88/11 kV, 40 MVA transformers. The logged loading
data were stored as 30 minutes average power consump-
tion values. The total/apparent power was used in the study.
The data were normalized to be between 0 and 1 by
using (20).

znorm =
z− zmin

zmax − zmin
(20)

where znorm is the normalized value, z is the variable being
normalized, zmin and zmax are the minimum and maximum
variable values, respectively. The loading data were as nor-
malized in a single batch as opposed to normalizing the data
in batches as in [37]. The station’s normalized raw loading
data are shown in Fig. 6. The time values are given in the
yymmdd and hhmm format, respectively, for the date and
time of day, for the period above. Dips were observed in the
loading data. These dips resulted from the station’s normal
operation and/or trips which led to the station being without
power. The data were cleaned up to remove these dips and
then normalized. Cleaning up data can be cumbersome and
time-consuming. Hence, the need to investigate the effect of
uncleaned data on the AI models’ performance. The cleaned
up data plot is shown in Fig. 7. The models were trained
and tested using two different subsets of the collected data
for winter periods in the same years, but different peri-
ods. The load forecasting experiments were conducted using
MATLAB. The temperature data were obtained from the
South African weather services. The temperature data used
were from a weather station in a neighboring town approx-
imately 30km away from the substation under study. These
were the closest available temperature data. The temperature
data were also normalized using (20).

2) CASE STUDY B SUBSTATION AND DISTRIBUTION
NETWORK OVERVIEW
The substation in the second Case Study is located in a
separate network to that in Case Study A, but in a nearby
geographic location, in a neighboring town. This town is

FIGURE 7. Cleaned-up normalized loading data for the distribution
substation in Case Study A.

FIGURE 8. Raw normalized loading data for the distribution substation in
Case Study B.

approximately 30 km away from the town the substation in
Case Study A is located in. The temperature data used in this
studywere taken from aweather station in this town. This was
the closest weather station to both substations in this study.
The customer’s loading data used were from the power meter
installed at the redistributor customer’s point of supply. The
customer is supplied power at a voltage of 132 kV. This cus-
tomer is connected to the power grid via a 400/132 kV trans-
mission substation. The transmission substation also supplies
other 132 kV substations and distribution (Dx.) networks.
A switching substation connects the customer to the trans-
mission substation. A switching substation is a substation
that does not have transformers. The customer has a substa-
tion on its side with transformers to step the voltage down
for distribution. The overview of the distribution network
the substation under study in Case Study B is located in is
shown in Fig. 5. The loading data for this customer were
also stored as 30 minutes average power consumption. The
data also had dips that were cleaned out as in Case Study A.
The cleaned and non-cleaned data sets were also normalized
using (20). The plots of the raw and cleaned data are presented
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FIGURE 9. Cleaned-up normalized loading data for the distribution
substation in Case Study B.

in Fig. 8 and Fig. 9, respectively. From the data, it can be
seen that the power consumption increased dramatically from
around January 2015.

This growth in power consumption can be attributed to
an increase in the number of electrical connections due to
electrification and an increase in illegal connections, etc.
The experiments in this Case Study were also separated into
those with cleaned and non-cleaned loading data, and further
sub-experiments with and without temperature as an input
variable, respectively. The same temperature data used for
Case Study A were also used in this Case Study

B. EXPERIMENT SETUP
The experiments were set up into two main sets. One
set of experiments had models that were developed with
the uncleaned loading/power consumption data. The second
experiments set was with models developed with cleaned
loading data. Both experiments sets were divided into two
sub-experiment types based on two different input variables
groups. Input variables group 1 excluded the geographic
temperature data for where the station is located. Input vari-
ables group 2, included temperature data corresponding to
the utilized input power consumption data. This input vari-
ables’ grouping enabled the understanding of the impact of
temperature on the AI models’ load forecasting performance.
The South African winter period was used for the experi-
ments and a two-week ahead test load forecasting period was
used. The rationale for choosing the winter period was that
the utility’s maintenance departments focus on distribution
maintenance execution during this time. This preference is
mainly due to low rainfall and thunderstorms experienced in
this period. These conditions provide multiple benefits, such
as ease of performing work in non-rainy conditions, ease of
navigation on mountainous areas and gravel roads, low risk
of lightning strikes, etc. The South African winter period
falls between 1 June and 31 August. The utility engineers
gave two weeks as a sufficient period to plan maintenance.
The two input variables groups are presented in Table 1.
A variable indicating whether the load corresponds to a peak
period or non-peak period was also part of the input variables.

TABLE 1. Input variables groups.

The peak periods used for winter in this research were
06:00 to 09:00 for the morning peak and 18:00 to 21:00 for
the evening peak. Each of these variables was in 30 minutes
intervals, for a period of two weeks. The training input matri-
ces were thus 672×5 for models trained with input variable
Group 1 and 672×8 for models trained with input variable
Group 2. After training, the models were tested for the winter
period using a test data set. The test data set’s input and target
values were respectively different from those of the training
data set. The results in the next section are for a two-week
ahead load forecast using the test data set. These test load
forecasting results are for a two-week time series.

V. EXPERIMENT RESULTS
This section presents the load forecasting performance results
for the three techniques’ models. The three performancemea-
sures used to measure the different models’ performance in
this research are also presented.

A. PERFORMANCE MEASURES USED IN THIS STUDY
The performance of the AI models was measured using three
error measurements. These measurements are the symmetric
mean absolute percentage error (sMAPE), mean absolute
error (MAE) and root mean square error (RMSE) and are
respectively given by (21), (22) and (23):

sMAPE =
2
N

∑N

k=1

|Fk − Tk |
|Fk | + |Tk |

(21)

MAE =

∑N
k=1 |Fk − Tk |

N
(22)

RMSE =

√∑N
k=1 (Fk − Tk)

2

N
(23)

whereFk is the k th forecast value, Tk is the k th target value and
N is the total number of forecasts. The results are summarized
in the subsections below. The sMAPE as written in (21) spans
between 0% and 200%, after multiplication by 100%. To get
the value between 0% and 100%, the 2 in the equation is
removed before multiplication by 100%.
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TABLE 2. Case Study A ANFIS experiments results with raw loading data.

TABLE 3. Case Study A ANFIS experiments results with cleaned loading
data.

B. ANFIS EXPERIMENTAL RESULTS
Using a trial and error approach, multiple ANFIS tuning
parameters were experimented with. These parameters deter-
mine the number of rules, the rules, the membership func-
tions and the overlaps between the membership functions.
The maximum training number of epochs and acceptable
training error (RMSE) were kept constant at 150 and 0.0001,
respectively, for the development of all the models. For most
of the models, the training error stopped decreasing before
reaching the 100th training epoch. The models’ performance
results are given in Table 2 to Table 5 for each of the two sub-
experiments with raw and cleaned loading data using four
ANFIS tuning parameters. The results attained with other
tuning parameters were given similar rules and a similar num-
ber of rules, and hence similar results to the results recorded
in Table 2 to Table 5. This subsection discusses the results
from the two Case Studies.

1) CASE STUDY A ANFIS RESULTS
The ANFIS models’ load forecast results showed that the
errors attained with models developed with raw/non-cleaned
data were lower than those with cleaned loading data.

TABLE 4. Case Study B ANFIS experiments results with raw loading data.

TABLE 5. Case Study B ANFIS experiments results with cleaned loading
data.

The results with the lowest error were achieved with input
variables Group 1 and the 3rd tuning parameters respectively.
These results are bolded in Table 2. The models developed
with the raw data showed lower errors than models devel-
oped with cleaned up data. The model with the lowest error
had an sMAPE of 0.138483, MAE of 0.052392 and RMSE
of 0.071799. The model, developed with cleaned loading
data, which achieved the lowest error achieved an sMAPE
of 0.207322, MAE of 0.059294 and RMSE of 0.081476. It is
thus observed that the load forecasting error without inclusion
of temperature in the development of the AI models can be
lower than when temperature is included.

2) CASE STUDY B ANFIS RESULTS
The results show that the error was lower with cleaned load-
ing data. The lowest error results were attained without the
use of temperature in the development of ANFIS models
with both cleaned and uncleaned data. The performance of
the ANFIS models’ two-week ahead load forecasts are given
in Table 4 and Table 5. The lowest attained error was an
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TABLE 6. Case Study A OP-ELM experiments results with raw loading
data.

TABLE 7. Case Study A OP-ELM experiments results with cleaned loading
data.

sMAPE of 13.05%, MAE of 10.09% and RMSE of 14.99%,
and is bolded in Table 5.

C. OP-ELM EXPERIMENTAL RESULTS
Optimally pruned extreme learning machine models were
developed, and then tested using the testing data. The effect
of model dimensions on the load forecasting performance
was studied. That is, the models’ number of hidden nodes
were adjusted for the different models that were developed.
The model’s final dimensions were determined through the
LOO method. Hence, a certain number of hidden units may
at times not be attainable. The models’ performance was then
captured for two-week ahead load forecasts. The models here
were trained to solve a regression problem as load forecasting
is a regression problem. The results are presented and dis-
cussed in this subsection.

1) CASE STUDY A OP-ELM RESULTS
In all cases with the different input parameters for cleaned
and raw data, the models showed higher accuracies when
their dimensions were smaller. It was again observed that
the models trained with raw data had lower test errors in
comparison to those trained with cleaned up data, as with

TABLE 8. Case Study B OP-ELM experiments results with raw loading
data.

TABLE 9. Case Study B OP-ELM experiments results with cleaned loading
data.

ANFIS models. The experiment results are summarized
in Table 6 and Table 7.

2) CASE STUDY B OP-ELM RESULTS
The load forecasting performance of OP-ELM models is
presented in Table 8 to Table 9. It was observed that, with both
raw and cleaned loading data, the lowest errors were attained
with a lower number of hidden nodes in the hidden layer. This
was with models developed without the use of temperature in
the input variables. With the lowest error achieved by a model
with 10 hidden nodes and developed with cleaned loading
data. This model achieved an sMAPE of 0.226413 (11.32%),
MAE of 0.09043 (9.04%) and RMSE of 0.143772 (14.38%).
Models with 100 and 110 hidden nodes could not be attained
with cleaned loading data when temperature was not used as
an input variable.

D. LSTM EXPERIMENTAL RESULTS
The LSTM models were trained using the Adam optimizer.
The number of hidden units were varied for each model’s
training. The models here were also trained to solve a regres-
sion problem. The other parameters such as learning rate,
maximum epochs, etc. were kept constant. The results for
the two case studies are presented and discussed in this
subsection.
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TABLE 10. Case Study A LSTM experiments results with raw loading data.

TABLE 11. Case Study A LSTM experiments results with cleaned loading
data.

1) CASE STUDY A LSTM RESULTS
The LSTM results showed that more hidden units do not
necessarily lead to an increase in the model’s accuracy. The
LSTM results are presented in Table 10 and Table 11. The
lowest error was attained when the number of hidden units
was 67. The models trained with raw data gave lower test
errors than models trained with cleaned data.

The models trained with weather temperature could fore-
cast the load slightly lower errors than models trained with-
out the temperature. This observation could be because of
deep learning techniques’ ability to learn more features and

TABLE 12. Case Study B LSTM experiments results with raw loading data.

TABLE 13. Case Study B LSTM experiments results with cleaned loading
data.

tendency to achieve higher accuracies with more data in their
training.

2) CASE STUDY B LSTM RESULTS
The load forecasting performance of the LSTMmodels devel-
oped with uncleaned and cleaned data is given in Table 12 and
Table 13, respectively. The inclusion of temperature in the
development of LSTM models generally led models with
both cleaned and uncleaned data. These results are bolded
in Tables 12 and 13, respectively. Here a model devel-
oped with cleaned loading data attained the lowest load
forecasting error. This performance was an sMAPE of
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TABLE 14. Summary of the lowest errors attained from each of the
3 investigated techniques in case Study A (all attained with raw data).

FIGURE 10. Case Study A ANFIS 2-week load forecast results versus the
target raw data normalized load.

FIGURE 11. Case Study A OP-ELM 2-week load forecast results versus the
target raw data normalized load.

0.2307 (11.54%), MAE of 0.0896 (8.96%) and RMSE
of 0.14065 (14.07%).

E. MODELS’ RESULTS COMPARISON AND DISCUSSION
In Case Study A, deep neural networks, LSTM, had the
lowest test errors in comparison to ANFIS and OP-ELM. All
techniques were observed to have the lowest test errors when
using raw data. The inclusion of the temperature in the input
variables was observed to reduce the load forecasting error
in LSTM models. ANFIS and OP-ELM were observed to
achieve lower errors without the inclusion of temperature in
their models’ training data. The difference in the lowest test
errors sMAPE, MAE and RMSE, for the respective models’
cases, with andwithout temperature, was within a 2%margin.

FIGURE 12. Case Study A LSTM-RNN 2-week load forecast results versus
the target raw data normalized load.

FIGURE 13. Case Study B ANFIS 2-week load forecast results versus the
target raw data normalized load.

TABLE 15. Summary of the lowest errors attained from each of the
3 investigated techniques in case Study B (all attained with cleaned data).

The lowest attained error results in Case Study A, for each of
the three techniques are summarized in Table 14. Fig. 10.,
Fig. 11. and Fig. 12. show the investigated techniques’ mod-
els’ 2-week ahead load forecast test results against the target
load profile for their lowest attained errors in Case Study A.
The models achieved lower errors with the uncleaned loading
data. The loading data can, therefore, be used without being
cleaned up to train AI models to forecast distribution network
loads similar to those in Case StudyA.Depending on the error
that the user can tolerate the hybrid AI techniques used in this
research can be deployed to forecast loadwithout temperature
data. LSTM can also be deployed without temperature. This
statement is said following the observation that the errors
attained by LSTM without temperature as an input variable
were still lower than those attained by ANFIS and OP-ELM
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FIGURE 14. Case Study B OP-ELM 2-week load forecast results versus the
target raw data normalized load.

FIGURE 15. Case Study B LSTM-RNN 2-week load forecast results versus
the target raw data normalized load.

In Case Study B all the techniques’ models achieved their
lowest errors when cleaned loading data were used to develop
their load forecasting models. These models’ lowest attained
error results are presented in Table 15. LSTM achieved the
lowest load forecasting error amongst the three techniques
used. This performance was an sMAPE of 0.2307 (11.54%),
MAE of 0.0896 (8.96%) and RMSE of 0.14065 (14.07%).
LSTM achieved this performance with a model developed
with input variables group 2. The two hybrid AI techniques,
ANFIS and OP-ELM, achieved their best performance with
input variable group 1, which did not have temperature as
one of the input variables. ANFIS had the lowest accuracy
in comparison to the other two techniques used. Fig. 13.
to Fig. 15. show the three techniques’ models’ two-week
ahead load forecast test results which gave the lowest error
plotted against the target load.

LSTM was found to lead to a model with the lowest
error in both Case Study A and Case Study B. In both
cases LSTM models achieved this performance when tem-
perature was used in the model’s development. ANFIS mod-
els’ highest achieved accuracy was lower than the highest
achieved accuracy by the other two techniques’ models.
It can therefore be concluded that the inclusion of tempera-
ture in the development of DL load forecasting models for

Dx redistributor loads improves their forecasting accuracy.
Hybrid AI techniques’ models’ load forecasting accuracy
decreased with the inclusion of temperature in their develop-
ment. The main difference in the two cases is that the mod-
els in Case Study A attained their highest load forecasting
accuracy with non-cleaned data, as opposed to cleaned data
in Case Study B. The combination of the steep change in
loading and the number of data points that required cleaning
up may be a cause for this. The cause of this difference can
be investigated further.

VI. CONCLUSION
This paper presented a novel hybrid AI and deep learning
distribution load forecasting system. The system was used
to introduce and investigate a state of the art hybrid arti-
ficial intelligence technique and a deep learning technique,
OP-ELM and LSTM, respectively, in SA distribution net-
works load forecasting. Two real South African distribution
redistributor customer’s power consumption data were used
for the two case studies. The first Case Studywas an 88/11 kV,
80 MVA substation, with two 40 MVA transformers. The
second Case Study, Case Study B, was a customer supplied
through a 132 kV switching substation. The impact of temper-
ature on the performance of a recent state-of-the-art hybrid AI
technique’s andDL technique’s models was also investigated.
ANFIS and OP-ELM were found to achieve higher levels
of accuracies without the inclusion of temperature in the
development of their models in both case studies. It was
the opposite for LSTM, whose models achieved their lowest
errors with the inclusion of temperature in their development.
The lowest load forecasting error by an LSTM model in the
Case Study A was an sMAPE of 6.35%, MAE of 4.78% and
RMSE of 6.33%. The best LSTM model’s performance in
Case Study B was an sMAPE of 11.54%, MAE of 8.96% and
RMSE of 14.07%. It was observed that the long short-term
memory had a forecasting error lower than adaptive neuro-
fuzzy logic and optimally pruned extreme learning machines
in both cases. The cleaning up of loading data to remove
spikes and dips led to reduced accuracies in all technique’s
corresponding models in Case Study A. The opposite was the
case in Case Study B. The effect of other weather parameters
such as humidity, rain, wind, etc. when using deep learning
techniques in South African distribution network’s load fore-
casting should be explored further. This is following the load
forecasting performance of LSTM models developed with
temperature as one of the input variables. This study showed
that recent hybrid AI techniques and deep learning techniques
can be used in South African distribution load forecasting.
The techniques can be further explored on medium-voltage
(MV) distribution reticulation networks load forecasting and
bulk power supplied, large power users. South Africa is still
lagging behind in the rollout of smart meters, hence future
work should look at the incorporation of smart meters to
improve load forecasting in distribution networks. The study
of the impact of customers’ behavior in demand response
on the load forecasting performance of hybrid AI and deep
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learning techniques may also need to be studied in the future.
This study should include the incorporation of smart meter
data.
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