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ABSTRACT Recently, short-term traffic state prediction for urban transportation networks has become a
popular topic. However, due to the uncontrollable and unpredictable elements of special events, it is difficult
to get abundant data and desired predictions under such condition. As k-nearest neighbor (KNN) has a
competitive advantage over other approaches, it could predict traffic state based on a small correlative part of
data. Thus, a special event-based KNN (SEKNN)model is proposed for the short-term traffic state prediction
with three key points presented in this paper. First, the evolution of the traffic states is redefined as a multipart
object, state unit, which includes the benchmark state and the trend vector. Second, to select the nearest
neighbors, the state distances of the state units are designed to be compatible with the benchmark states and
the trend vectors by fusing the Euclidean distance and the cosine distance. Finally, the prediction results are
forced to adjust the benchmark states based on the prediction function using the Gaussian weighted method.
The proposed SEKNN is implemented in the district of the Beijing Workers’ Stadium (257 links), where
special events occur frequently. The results show that the proposed model performs significantly better under
special events than the other traditional machine-learning approaches and state-of-the-art deep-learning
approaches.

INDEX TERMS Intelligent transportation systems, k-nearest neighbor, short-term traffic state prediction,
special events, urban road network.

I. INTRODUCTION
Traffic state prediction contributes to foreknowledge of the
variation of traffic states on different future time scales,
from minutes to hours or even days. Short-term traffic state
prediction is a vital real-time decision-making tool of intel-
ligent transportation systems for traffic managers and trav-
elers who must make decisions in minutes. For instance,
in intelligent transportation systems, advanced traffic man-
agement systems and advanced traveler information systems
depend on timely and accurate predictions of traffic states.
There have been numerous studies on this topic, but only
a small percentage of them have paid attention to predic-
tion under special events. In addition to traffic accidents,
adverse weather and land closures, special events also refer
to important unexpected events or incidents that cause nonre-
current congestion [1]. Although these unexpected events or
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incidents are relatively rare, they can have a severe negative
impact on transportation systems [2]. They often exert heavy
pressure on traffic managers owing to the difficulty of man-
aging and controlling traffic under these conditions compared
with managing daily recurrent congestion.

Special events are public events, including concerts, sport
events, and parades, that may attract large crowds into trans-
portation systems in a certain place [3]. In other words, spe-
cial events are a special case of travel demand fluctuations
in which a significant difference from the typical pattern in
the vicinity of the events can be observed [4]. During the
short period when large crowds converge on a certain place,
the excess travel demand usually induces congestion and
then propagates between the bottlenecks in the surrounding
transportation network. In this study, we consider the impact
of concerts and sport events on the transportation network
surrounding Beijing Workers’ Stadium in Beijing, China,
which is one of most congested districts in Beijing owing to
these two kinds of events, according to media reports.
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Unlike day-to-day recurrent conditions, traffic states dur-
ing special events are usually difficult to predict. On the
one hand, the influence of special events on transportation
systems may be immeasurable because of uncertain and
uncontrollable elements. Special events of different types
and scales generate different magnitudes of traffic demand.
The variation of the duration, timing and location of such
events also affects the traffic of the surrounding district [5].
Most advanced commercial solutions performwell in predict-
ing recurrent traffic situations but are incapable of predict-
ing nonrecurrent traffic in advance [6]. On the other hand,
the infrequent occurrence of special events increases the
difficulty of obtaining adequate traffic data. Previous stud-
ies have highlighted the data quality in short-term traffic
state prediction [7]. However, there are limited high-quality
historical data that can be leveraged to describe dramatic
event-caused traffic changes in a timely manner, which indi-
cates that the data have low predictive quality [8]. These
limitations have an adverse impact on traditional data-driven
prediction approaches.

K-nearest neighbor (KNN) is a data-driven prediction
approach, and data quality is a critical factor on prediction
performance. Nonetheless, KNN predicts traffic states via the
most correlative part of data instead of entire known historical
data, which is categorized as instance-based learning. While
most of data-driven methods, e.g. deep-learning methods, are
constructed based on the entire dataset that the special events
data and the general data are mixed together. The prediction
performance is influenced by the attributes of datasets, e.g
uneven sample distribution. For the short-term traffic state
prediction under special events, KNN has the potential to
overcome this barrier because KNN has the ability to find
out the most similar historical patterns and ignore other dis-
similar patterns of the dataset. And it is expected to fur-
ther enhance the accuracy by adjusting the key parameters
and making other improvements. However, in common with
most other traditional machine-learning approaches, KNN
faces the curse of dimensionality in network-wide traffic
prediction [9]. There are hundreds or thousands of links in
a transportation network, and the states of these links change
every second. Thus, an unexpectedly high-dimension solu-
tion space must be searched [10].

In this research, we aim to propose a SEKNN model to
alleviate such problems and enhance prediction performance
under special events. We attempt to solve these by exactly
finding the limited relevant data in historical dataset with
less inputs and setting a baseline to avoid the impact due
to few historical data under special events. There are three
key points in the proposed model for the purposes. First,
the evolution of traffic states is redefined as the state unit,
amultipart object, consisting of the benchmark state and trend
vector. The state unit contributes to reducing the dimensions
of input and highlighting the dramatic traffic tendencies. Sec-
ond, to select the nearest neighbors, the state distances of the
state units are designed to be compatible with the benchmark
state and trend vector by fusing Euclidean distance and cosine

distance. This distance metric of the state units helps to find
the correlative part of historical data. Third, the prediction
results are forced to adjust the benchmark states based on the
prediction function using the Gaussian weighted method. It is
beneficial to keep the results on track and relax the constraint
of the parameter k , which reduces the impact of scare data on
the event duration.

The rest of our paper is organized as follows. Section II dis-
cusses the literature on short-term traffic state prediction and
the existing approaches to prediction under special events.
Section III proposes the SEKNNmodel and presents the state
units, the state distance and the proposed prediction func-
tion. Section IV elaborates the numerical experiments using
the traffic states depicted from GPS trajectory data (vehicle
speeds) in the Beijing Workers’ Stadium district. In addition,
other traditional machine-learning models (original KNN,
support vector regression (SVR), random forest (RF), and
gradient boosting decision tree (GBDT)) and the current
popular deep learning models (stacked autoencoder (SAE)
and spatiotemporal recurrent convolutional network (SRCN))
are compared to demonstrate the advantage of the proposed
SEKNN. The last section concludes the study and discusses
future work.

II. LITERATURE REVIEW
A. SHORT-TERM TRAFFIC STATE PREDICTION
A great deal of research has focused on short-term traffic
prediction, and the existing approaches can be divided into
two categories: parametric approaches and nonparametric
approaches [11].

1) PARAMETRIC APPROACHES
Parametric approaches predetermine the structures of the
model on the basis of theoretical or physical assumptions
regarding the time evolution of traffic [11]. Thus, these
approaches are considered to not match reality because of
their strong dependence on theoretical considerations [12].

Analytical models and traffic simulation models with
parameters and inputs tuned to real-time data are a critical
aspect of parametric approaches [11], and they depend on
theoretical mathematical models to simulate traffic evolu-
tion. Frequently cited simulators, such as DynaMIT [13],
DynaSMART-X [14], and TRANSIMS [15], predict traffic
states based on dynamic traffic assignment, traffic flow mod-
els, car-following models, cellular automata or complex net-
work theory [16].

Some statistics-based approaches are also categorized as
parametric approaches, and they usually rely on statistic
assumptions. The autoregressive integrated moving aver-
age (ARIMA) and its variants are the most common para-
metric approaches. Hamed et al. [17] attempted to develop
a simple ARIMA of order (0,1,1) to predict traffic volume
in urban arterials. Williams et al. [18] and Williams and
Hoel [19] applied seasonal ARIMA (SARIMA) to predict
urban freeway traffic flow and obtained better performance.
Ding et al. [20] proposed a space-time ARIMA (STARIMA)
to predict the traffic volume in urban areas five minutes
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in advance. The Kalman filter (KF) [21] and KF-based
approaches, such as extended KF [22] and adaptive KF [23],
also have important applications in short-term traffic predic-
tion. In addition, Markov chain [24], exponential smoothing
and other approaches have been mentioned in previous stud-
ies, respectively.

2) NONPARAMETRIC APPROACHES
Nonparametric approaches rely only on a sufficient
mass of data rather than a priori knowledge and strict
assumption [25], [26]. The majority of popular data-driven
short-term traffic state prediction approaches fall into this
category [27], which is founded on statistical learning theory
(including most traditional machine-learning approaches)
and artificial intelligence (AI, mainly deep learning) algo-
rithms. In recent decades, these approaches have been devel-
oped rapidly due to abundant data attached to extensive traffic
sensors and advanced big-data processing technology.

In the domain of machine-learning approaches, KNN,
SVR, RF and artificial neural network (ANN) are typ-
ical approaches for short-term traffic state prediction.
Cai et al. [28] proposed a spatiotemporal correlative KNN
to enhance forecasting accuracy. Yu et al. [29] developed
a multi-time-step KNN prediction algorithm based on road
link. Yu et al. [30] proposed anRF-based approach intowhich
the idea of KNN was integrated. Vlahogianni et al. [10]
developed an improved ANN model to predict traffic flow
using univariate and multivariate traffic data in urban arterial.

Deep learning approaches for short-term traffic predic-
tion have become extremely popular and successful in
recent years because of their powerful learning and gen-
eralizing ability. Lv et al. [31] applied a deep architec-
ture model (i.e., an SAE model) to predict traffic flow
for the first time. Ma et al. [32], [33] employed a long
short-term memory (LSTM) neural network and convolu-
tional neural network (CNN) to large-scale transportation
network speed prediction. For richer and more accurate spa-
tiotemporal features, deep hybrid architectures consisting
of CNN and LSTM have become acclaimed. For example,
Yu et al. [12] proposed an SRCN model and achieved accu-
rate both short-term and long-term traffic state prediction, and
Yang et al. [34] developed a convolutional long-termmemory
neural network based on critical road sections to overcome
the problem of structural missing data.

B. SHORT-TERM TRAFFIC STATE PREDICTION UNDER
SPECIAL EVENTS
Although Kumar and Vanajakshi [35] considered the avail-
ability of limited data using SARIMA similar to the problem
faced by prediction under special events, the predicted traf-
fic flow was still normal regular patterns in urban arterials.
Previous studies [7], [34], however, have indicated that non-
parametric approaches are preferable to offer more con-
vincing results than parametric approaches under unstable
traffic conditions. The advantage of flexibility means that
nonparametric approaches remain the mainstream strategy

for prediction under special events. The following two aspects
are the strategies to enhance the performance in existing
studies: improve the quality and quantity of data; utilize more
powerful prediction approaches.

From the data perspective, the solutions use sufficient data
from long-term observations or other information sources.
With the advantages of flexibility, adaptability, learning and
generalizability, deep learning theory was considered to pre-
dict Chicago highway traffic flow during special events
in [36]. To capture the influence between downstream and
upstream in a highway, they employed up to 180-day traffic
data in their experiments. On the one hand, a high requirement
for long-term traffic data collection is indicated. On the other
hand, this study suggests a problem that is mentioned in
other studies [37]: deep learning approaches rely heavily on
feeding a great quantity of high-quality training data; other-
wise, the model will probably face the problem of overfit-
ting. Ni et al. [38] extracted effective information from social
media to understand the attention and opinions of the public
in relation to prior-event traffic prediction. With the aid of
other information sources, more features of the event-caused
impact on traffic flow can be captured.

Utilizing more powerful predictors or combining multi-
ple predictors are the available methods to enhance pre-
diction performance. In this respect, some researchers have
attempted to employ novel approaches, such as Online-
SVR [39], in prediction under special events. And others
have combined multiple predictors to reduce the instability
of single predictors. Kwoczek et al. [6] proposed a prediction
model by fusing two different machine-learning models, and
Wu et al. [40] employed a gradient boosting technique to
combine multiple KNN models.

Overall, pursuing more effective utilization of existing
information is the main idea among previous works in
addressing prediction under special events. Admittedly, it is
straightforward to follow the strategy of improving the
quality and quantity of data, but more powerful prediction
approaches work on a fundamental level when faced with
situations of unmodifiable distribution of traffic detectors or
limited data sources.

III. METHODOLOGY
Due to the simple but unusual structures and the flexible
parameter settings, KNN plays an important role to predict
short-term traffic states under special events. In this section,
we introduce KNN for short-term traffic state prediction and
then propose SEKNN for prediction under special events.

A. KNN FOR SHORT-TERM TRAFFIC STATE PREDICTION
KNN is a nonparametric approach that is widely applied
in classification and regression tasks. For short-term traffic
state prediction, the goal of KNN is to identify the similar-
ities between current and historical traffic states and inte-
grate generations of the most similar k historical states as
prediction results. The most similar k historical states are
referred to as k nearest neighbors. A typical KNN model for
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FIGURE 1. Visualization of the space-time matrix of normalized speeds in
one day.

short-term traffic state prediction consists of three fundamen-
tal elements [41]: state series(or vector), distance metric and
prediction function. As for network-wide traffic prediction,
these three fundamental elements are described in the follow-
ing sections.

1) DEFINE THE STATE SERIES
Traffic data can be acquired in various ways and expressed as
time series. The evolution of multiple road segments or net-
works can be represented by a multidimensional series called
an m × n space-time matrix [9], in which there are m state
points (rows) for m time steps and n time series (columns)
for n road links. The dimensions of the state point hinge on
the number of traffic detectors. For example, Fig.1 shows a
visual space-time matrix of normalized speeds from network
of Beijing Workers’ Stadium district in one day.

Assume that l is the size (i.e. the length of the time lag)
of the influential time steps to be aggregated as a process
of network-wide traffic evolution. The state series is usually
defined as the input of traffic predictors using these l observed
states, which is a portion of the space-time matrix employed
for the once prediction process. In other words, the state series
is a subseries of a certain vital traffic variable v during the
time lag, such as road average speeds in this study. Thus,
a state series can be described as consisting of the state
point S(t) at current time t , and (l − 1) its previous state
points S(t − 1), S(t − 2), · · · , S(t − l + 1). From another
perspective, state series can be decomposed to n sub-time
series T (l1),T (l2), · · · ,T (ln) from road link l1, l2, · · · , ln.
The state series x(t) defined at time t is expressed as follows:

x(t) =


S(t − l + 1)

...

S(t − 1)
S(t)

 = (T (l1) T (l2) · · · T (ln))

=

vl1 (t − l + 1) · · · vln (t − l + 1)
...

. . .
...

vl1 (t) · · · vln (t)

 (1)

The archived state series are organized in the historical dataset
H for the selection of the nearest neighbors. H is shown as
follows:

H = {xhist (ti)|i = 1, 2, · · · ,N } (2)

where xhist (ti) denotes the i-th state series in historical dataset
H defined at ti, and N is the size of the simples inH.

2) MEASURE THE DISTANCE BETWEEN STATE SERIES
Euclidean distance (ED) is usually employed to measure
the similarities between the predicted state series and the
archived state series in traditional KNN models [29], [42] as
follows:

EDi = ‖x(t)− xhist (ti)‖2, xhist (ti) ∈ H (3)

where x denotes the predicted state series at t , and EDi is
the Euclidean distance between x(t) and xhist (ti), which is
calculated by the second-order norm with the notation ‖ · ‖2.

3) PREDICT THE GENERATIONS
The generation is the predicted state after f time steps by
the (1), i.e., S(t + f ), written as the simplified notation
y. After the recognition of k nearest historical state series
xhist (tc1 ), xhist (tc2 ), · · · , xhist (tck ) according to the distance
measure, the desired generation ŷ can be calculated by uti-
lizing these nearest neighbors’ generations yc1 , yc2 , · · · , yck
in the direct average method in the original KNN as (4).
However, this is not reasonable because the simple direct
average method homogenizes all candidates with the same
weights.

ŷ =
1
k

ck∑
cj=1

ycj (4)

B. SEKNN CONSTRUCTED WITH STATE UNITS AND STATE
DISTANCE
Short-term traffic is considered a complex, dynamic, and
nonlinear system with stochastic and chaotic characteristics
impacted by uncertainties [43], [44]. It is a challenge to build
an impeccable prediction model, especially for complicated
network-wide traffic under special events. With the inten-
tion to exploit SEKNN building with state units and state
distance preferable predictors for short-term traffic under
special events, the limited historical information need to be
captured more validly. Thus, we propose a SEKNN with the
improvements of all three fundamental elements.

1) REDEFINE THE PROCESS OF TRAFFIC STATE EVOLUTION
VIA STATE UNITS
The consideration is two-fold to redefine the expression of
the input of KNN model: highlight the mutational traffic
evolution tendency and use as less dimensions as possible
at same time. We propose the state unit, a multipart object,
to describe the traffic state evolution under special events by
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FIGURE 2. Two-dimensional schematic diagram of the SEKNN model.

decomposing the state series. The state unit is defined as two
parts in (5): the benchmark state and its trend vector.

x ′(t) = {S(t), Eτ (t)} (5)

The benchmark state is the last state of a state series,
which is the most relevant, influential and considerable one.
We propose the trend vector to directly indicates how the
benchmark forming, and its formula is shown in (6). The
drastic changes of traffic evolution under special events are
more prominent in such a form of expression, and the homog-
enized arrangements of state points in the state series are
discarded. The parameter of l will be determined by a large
number of experiments using real-world data, as discussed in
Section IV-B.

Eτ (t) = S(t − l + 1)− S(t) (6)

For example, state points are visualized as two-dimensional
points in Fig.2. Specifically, the blue points denote can-
didates, the black points represent other historical states,
and the red point indicates the predicted state. The bench-
mark state as an intermediate state may evolve from either
network-wide congestion forming or dissipating, which
results in two distinct generated states. Therefore, the pro-
cesses of dramatic event-caused traffic changes are consid-
erable. We redefine the formation process of the current
benchmark state as its trend. The trends are represented by
arrows pointing to the last known states. If the expression of
state series was adopted, the most similar with Ep among the
nearest neighbors may be Ee or Ef among Ea to Ehwhen trend evo-
lutions are unknown, whereas the most exactly similar with
Ep is Eh when considering trend similarity. However, different
trends usually indicate different practical meanings in traffic
evolution. It is necessary to add a section to show a definite
trend of dramatic traffic evolution instead of enumerating
traffic states as the state series.

The adoption of the state units means the representation
of short-term traffic evolution changes from scalar to vector;
and the object of the distance metric goes from calculating
the distance between multiple state points, i.e. state series,
to combining the last state point, i.e. benchmark state, with
its evolution tendency.

2) DESIGN THE STATE DISTANCE TO MEASURE THE
DISTANCE BETWEEN STATE UNITS
For the first part of the state unit, benchmark state S(t), ED is
still employed as an effective metric. The formal Euclidean
distance for the benchmark states is adjusted as (7).

EDi(t) = ‖S(t)− Shist (ti)‖2, i = 1, 2, · · · ,N (7)

The method to measure the distance between another part
of the state unit, i.e. the trend vector, use cosine distance (CD).
Cosine similarity measures the similarities between vectors
by the cosine of their angle, which has been one of most prac-
tical similarity measures applied to text document retrieval
and clustering [45]. Non-positive cosines usually conclude
the opposite trends. In this case, we define the CD to reflect
the similarity of traffic evolution trends, as shown in (8).
CD takes 1 minus the cosine similarity; thus, it is bounded by
[0, 2]. The CD increases with decreasing cosine similarity,
and cosine similarity decreases with the increasing angle
between Eτ (t) and Eτhist (ti). The CD is 0, which means that
the angle between Eτ (t) and Eτhist (ti) is zero and that these two
trend vectors are regarded as identical; meanwhile, the CD
is 2, which means that the angle between Eτ (t) and Eτhist (ti) is
180◦, and these two trend vectors are regarded as opposite.

CDi = 1−
EτT (t)Eτhist (ti)√

EτT (t)Eτ (t)+ EτThist (ti)Eτhist (ti)
(8)

The EDs between the current benchmark state and histor-
ical states are mapped to the scale of [0, 2] as same as CD
using the min-max scaling method. They can be combined as
a novel distance measure used for state units, called the state
distance (SD), as follows:

SDi(t) = α
2(EDi − min

i=1,··· ,N
{EDi}

max
i=1,··· ,N

{EDi}
+ (1− α)CDi (9)

where α is the equilibrium factor to determine which metric
should be more emphasized. The closer α is to 1, the more
emphasis is placed on ED; in contrast, the closer α is to 0,
the more the metric focuses on CD. The equilibrium fac-
tor makes that the SD is flexible to fit the current bench-
mark state. When facing dramatic traffic changes under
special events, the trend vectors can be underline with a
small α.

3) ADJUST THE METHOD TO PREDICT THE GENERATIONS
BASED ON THE GAUSSIAN WEIGHTED METHOD
Theweighted averagemethod based on the Gaussian function
mentioned is employed to predict generations in this study,
which reduces the impact of the severe value of k in our exper-
iments. That means SEKNN is able to adapt to the absence
of limited historical data under special events. In a variation
from (4), we adjust the result of the calculated generation
by adding the current benchmark state and integrating the
Gaussian weighted increments instead of directly integrating
the generations of the Gaussian weighted nearest neighbors.
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This adjustment is made to ensure that the prediction results
do not deviate from the benchmark states, lest the predictive
performance be severely impacted by the few similar his-
torical state units in H. The relevant equation is written as
follows:

ŷ = S(t)+
ck∑
cj

wcj∑ck
cj wcj

1ycj (10)

where the increment acquired by 1ycj = ycj − S(tcj ), wcj
is the Gaussian weight determined by the formula wcj =

exp{−
ED2

cj
2σ2
}, j = 1, 2, · · · , k .

IV. CASE STUDY
A. DATA PREPARATION
Because of rich spatiotemporal information and easy acces-
sibility, trajectory data has been used for various practical
applications and services [46] with the rapid development
of intelligent transportation and vehicle systems [47]–[49],
e.g. human mobility pattern mining [50], dynamic shuttle
bus route planning [51]. In this section, we introduce the
GPS trajectory data into the task of short-term traffic state
prediction as follow.

1) DATA SOURCE
To evaluate the predictive performance of the SEKNN, link
average speeds, which were processed from probe vehicle
speed data collected by taxis equipped with GPS devices
in Beijing, China, are applied in this study. The sampling
frequency of the GPS devices is 2 minutes, and the data of
all the days are utilized due to nonnegligible lively nocturnal
business in this district. As a result, 720 states can be observed
per day. The data were collected from June 30th, 2015 to
July 31st, 2015 (duration 32 days). The scope of the data
is the road network around Beijing Workers’ Stadium and
its gymnasium, which encompasses 257 links and has an
approximate total road length of 22.73 km and an area of
4.52 km2. An aerial image of this district is shown in Fig.3.
Particularly in summer, special events are frequently held in
the stadium and the gymnasium. Two football games and
concerts were held at Beijing Workers’ Stadium and Gymna-
sium in July 2015, which increased the burden of this traffic
network more frequently than usual. The dataset includes
the observation of several special events in the district of
interest.

According to the proportion 2 : 1 : 1, the data are divided
into the historical dataset, validation dataset and test dataset.
The historical dataset is used to query the nearest neighbors;
the validation dataset is applied to parameter calibration; and
the test dataset is utilized for performance evolution. Thus,
the number of each dataset sample is 11520, 5760, and 5760,
respectively. The number of special events archived in each
dataset is intentionally 2 for the fair-to-train, validate and
test models. Information about the special events is shown
in Table 1.

FIGURE 3. The road network of Beijing Workers’ Stadium district.

TABLE 1. Information on the datasets.

2) DATA PROCESSING
Data processing should be completed before prediction
because outliers, missing values and other unfavorable factors
in raw data impact the performance of short-term traffic state
prediction models [52]. Therefore, we followed four steps to
process the raw data.

First, we removed the abnormal values and imputed the
missing values. The abnormal values were identified and
removed by the interquartile range method, and the missing
values were imputed by the linear interpolation.

Second, the data were normalized according to the urban
road speed limit. Because of the differences in the road hierar-
chy and other factors, the speed limit of each link as a crucial
varying attribute determined the range of vehicle speeds.
Hence, the data were normalized as the ratios of observed
speed to the speed limit of each link. The normalized speeds
greater than 1 were assigned a value of 1.

Third, a loess filter of the time lags was applied to reduce
noisy and estimated trends. Smoothing/filtering techniques
are a critical class of denoising methods that are commonly
used to suppress the influence of random noises and smooth
raw data [28], [36], [53]. The reason for choosing the loess
filter is its merits of robustness to outliers, high flexibility
and independence of any assumption [54], [55]. The details
of this method are presented in the literature [53].

Finally, correlation analysis was used as the feature selec-
tion method in this study. Treating whole road links as fea-
tures means that a large number of sensors must be set in the
study district, which usually induces wide-area correlation
and high superfluous dimensionality of data [56]. Thus, it is
important to take advantage of feature selection technology to
reduce the dimensions. The Pearson correlation between the
series T (li) and T (lj) is calculated using (11). Then, a corre-
lation matrix can be constructed from the Pearson correlation
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FIGURE 4. Correlation matrix of road links.

of the data of each of the two links, as shown in Fig.4. One
of each pair of highly correlated links was eliminated in this
study. Thus, the feature dimension decreased from 257 to
94 in the condition of high correlation (ρij ≥ 0.8, referring
to [57] and it is acceptable on the basis of the discussion
in [56], which suggests that the input features of predictors
should be limited within 100. As a result, the average speeds
from these 94 links will be input into the predictor, and entire
traffic states (the average speeds from entire 257 links) will
be output.

ρij =
cov(T (li),T (lj)

√
D(T (li))

√
D(T (lj))

(11)

B. PARAMETER CALIBRATION AND SENSITIVITY ANALYSIS
The parameter combinations in the SEKNN were determined
by plentiful experiments using the validation dataset accord-
ing to the prediction performance. The performance can be
evaluated by the indicators: mean absolute error (MAE, km/h)
and mean absolute percentage error (MAPE, %), as shown
in (12) and (13), respectively:

MAE =
1

N × n

N∑
i=1

n∑
l=1

|ŷil − y
i
l | (12)

MAPE =
1

N × n

N∑
i=1

n∑
l=1

|ŷil − y
i
l |

yil
× 100% (13)

where ŷil and y
i
l are the predicted value and actual value at

i-th time at the l-th link, respectively; n denotes the number
of links in the road network; and N denotes the number of
samples in the validation or test dataset. As described in
Section IV-A.1, the value of n is 257, and the value of N is
5760 in the experiments.

The parameters to be calibrated include the length of time
lag l, the number of nearest neighbors k and the value of
equilibrium factor α on the condition of difference prediction
steps, namely, predicting the next 2 to 10 minutes (f ranges

FIGURE 5. Influence of l on MAE and MAPE of SEKNN.

from 1 to 5). The following content illustrates the relation
between the parameters and the performance indicators.

The length of time lag l is regarded as an important
parameter to determine the input of SEKNN. It is gener-
ally recognized that significant changes in traffic states can
occur within a few minutes. To determine which value of l
achieves the optimal performance, we observed the influence
of different l values in a wider range of up to 20 minutes
(l = 10) and discovered that l = 6 has the least influence
on MAE and MAPE. For example, Fig.5 shows the results
of the performance when f = 2 and other parameters are
fixed.

The value of k is the key parameter affecting the
accuracy of the KNN-based prediction model. In gen-
eral, a much higher or lower k will cause worse predic-
tion performance [58], such as the greater MAPE shown
in Fig.6(a). Reference [28] shows, however, that the Gaussian
weighted prediction function integrates the generations of
nearest neighbors so effectively that MAPE does not notice-
ably increase or even gradually decreases when k increases
by more than a certain value. Similar results of our exper-
iments are shown in Fig.6(b). Although the impact of k on
model performance is reduced due to the Gaussian weight
in terms of the distance, a greater value of k generally leads
to more program running time, as shown in Fig.6(c). Thus,
the appropriate k is supposed to minimize MAPE and be
as small as possible. In the experiments, we observed the
influence of both k and α on MAE and MAPE. For example,
for a single-step prediction, the results of the experiments
are shown in Fig.7(a) and Fig.7(b). According to the figures,
the optimal value of k is 18, and α is within an acceptable
range from 0.4 to 0.7 to minimum MAE; the optimal value
of k is 97, and α is 0.9 to minimum MAPE. On the one
hand, MAE decreases slowly with the increase in k when k is
greater than 18; on the other hand, MAE changes indistinctly
with α (e.g., it is difficult to tell the difference between α =
0.6 and α = 0.9 from the right curves of Fig.7(a)), while
MAPE changes more obviously with α. Thus, the calibration
results of the parameters referred principally to their influ-
ence on MAPE shown as other subplots in Fig. 7.
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FIGURE 6. Influence of k on prediction performance in SEKNN. (a) MAPE in original KNN. (b) MAPE in SEKNN. (c) Average program running time
for once prediction.

FIGURE 7. Influence of k and α on prediction performance in SEKNN. (a) MAE in SEKNN when f = 1. (b) MAPE in SEKNN when f = 1. (c) MAPE in
SEKNN when f = 2. (d) RMSE in SEKNN when f = 3. (e) MAPE in SEKNN when f = 4. (f) MApE in SEKNN when f = 5.

Once the optimum parameters were identified in the val-
idation dataset, the SEKNN was evaluated to predict on the
test dataset. The calibration results of the different prediction
steps are listed in Table 2. From the calibration results, k and
α decrease with the increase in prediction steps. It can be
explained that when the prediction steps increase, on the
one hand, traffic states are more variable because of longer
time-varying process, and thus it is more difficult to capture
similar state units; on the other hand, the impact of the bench-
mark state weakens gradually, and thus the distance metric is
supposed to decrease the proportion of the benchmark state
and increase the proportion of the trend vector by means of
adjusting the value of α.

TABLE 2. The calibration results of the parameters in SEKNN.

C. IMPLEMENTATION
In this section, the implementation details of SEKNN and
other compared models were described. The parameters of
each compared model were optimized based on validation
dataset. And all of these experiments were performed on
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TABLE 3. Comparison of different models using the test dataset.

a computing platform with an Intel Core i7-5930K CPU
(3.50 GHz), NVIDIA GeForece GTX TITAN X GPU,
32.0 GB memory, and running Windows 10 Education.

1) IMPLEMENTATION DETAILS OF SEKNN
The state units were archived in datasets. And the historical
dataset was used to match the nearest neighbors according to
SD (as (9)). Rolling prediction was adopted to imitate real
change of the traffic states with time elapsing. The SEKNN
with calibrated parameters was implemented to predict the
traffic states using the test dataset. The tasks to evaluate
SEKNN included one to five step-ahead prediction, i.e. f ∈
{1, 2, 3, 4, 5}. The SEKNN model was written in Python
3.5 programming language.

2) IMPLEMENTATION DETAILS OF COMPARED MODELS
The same predictive tasks were performed by the following
compared models. And the implementation details of these
models were introduced briefly as follows:

• Original KNN: The details of original KNN has been
described in Section III-A. The parameter of k was deter-
mined by grid search method; and as shown in Figure 6
(a), k = 14 was adopted in experiments.

• Multiple factors combined prediction (MFCP): The
speeds in the different spatiotemporal positions were
regarded as the multiple factors to develop a MFCP
model according to [59].

• SVR: The optimization of SVR was performed by grid
search method on validation dataset, and the parameters
were determined with the kernel of Gaussian radial basis
function, C = 10 and γ = 0.01.

• RF: RF is a machine-learningmodel based on ensembles
of decision tree and bagging algorithm. The optimized
parameter (i.e. number of trees is 100) was adopted in
experiments by grid search method.

• GBDT: GBDT also is an ensemble model of decision
trees but based on boosting algorithm. Scikit-learn pack-
age helps to build model. And we optimized the param-
eter setting, including the number of trees was 100,
the depth of trees was 5, and the learning rate was 0.01.

• SAE: SAE is a novel deep-learning model for traf-
fic flow prediction proposed in [31]. We constructed a
SAE model in Keras framework. Its architecture was

FIGURE 8. The observed values and the performance of prediction error
on July 25th at link No.128894.

listed in appendix A. And we added dropout layer
and used early-stopping method to prevent overfitting
problem. The SAE was trained in a greedy layerwise
way, in which, firstly, each hidden layer was pre-trained
respectively, and then all layers were fine-tuned by back-
propagation algorithm.

• SRCN: SRCN is a typical state-of-the-art deep learn-
ing hybrid (CNN+LSTM) architecture for short-term
traffic state prediction proposed in [12]. Appendix B
shows more architectural details. The same measures
were implemented in modeling to prevent overfit-
ting. RMSprop optimizer were employed for training.
Above implementation of SRCN was aid of Keras
framework. In addition, for better performance, we also
preprocessed the inputs using grid-based network repre-
sentation method as same as [12].

D. COMPARISON
In this section, all models, including our SEKNN and seven
compared models, were conducted on multi-step-ahead pre-
diction from f = 1 to f = 5, and we compared their
performance as follows.

The overall prediction performance using the test dataset
is displayed in Table 3. SEKNN obviously outperformed the
other seven models, with the lowest MAPE in the condition
of each different prediction steps. When f ranged from 1 to 3,
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FIGURE 9. The prediction error under special event on July 25th at link No.128894. (a) Observed values. (b) Prediction error when f = 1. (c) Prediction
error when f = 2. (d) Prediction error when f = 3. (e) Prediction error when f = 4. (f) Prediction error when f = 5.

FIGURE 10. MAPE under the impact of the concert from 21:00 to 23:00 at link No.128894. (a) f = 0. (b) f = 1. (c) f = 2. (d) f = 4. (e) f = 5.

SEKNN was superior to the other models in terms of MAE,
although the advantages gradually narrow with increasing
prediction steps. When f was 4, SEKNN fell behind original
KNN only approximate 0.03 km/h; When f = 5, SEKNN

fell about 0.02 to 0.19 km/h behind original KNN, MFCP,
GBDT and SRCN. With the increase in f , it was indeed
difficult to predict because of the more complex and uncer-
tain variation. The average MAE values of SEKNN for the
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TABLE 4. The details of SAE architecture.

TABLE 5. The details of SRCN architecture.

other models, in the order listed in Table 3, decreased by
nearly 11.8%, 4.55%, 13.36%, 16.33%, 9.45%, 13.53% and
13.36%, respectively. For average MAPE values, SEKNN
for the other models decreased by approximately 25.15%,
12.19%, 22.18%, 31.20%, 28.37%, 29.93%, and 27.62%,
respectively. In general, SEKNN exhibited the best perfor-
mance on the test dataset, with lower MAE and MAPE than
the other models, especially for relatively short-term pre-
diction. Original KNN, MFCP, and GBDT obtained not-bad
MAEs but higher MAPEs than SEKNN. And deep-learning
models, i.e. SAE and SRCN, seemed mediocre for this issue.
A probable reason is that, the complex special-event evolution
in training data was limited for SAE and SRCN.

For example, Fig.8 shows the observed values and the
prediction errors of SEKNN, original KNN, MFCP, SVR,
RF, GBDT, SAE and SRCN at link No.128894 (a part of
the major avenue) on Saturday, July 25th, 2015, when a
concert was held. In the upper part of the figure, the black
line is the observed values; and in the lower part of the
figure, the prediction errors, namely the residuals of predicted
values deviating from the observed values, are described as
the values of colored line deviating from the horizontal line

of zero. Form the figure, the speedwas relatively smooth from
0:00 to 16:00. In general, all models predicted stably except
the slight fluctuation in morning peak hours. During that
afternoon (after 16:00), traffic states changed distinctly, with
the speeds decreasing and low speeds being maintained until
the concert began (approximately 19:30). Two hours later
(approximately 21:30), the traffic congestion occurred again
at the end of the concert. This series of event-caused traffic
evolution was also predicted by all models with different
prediction steps.

In fact, what concerned more is the performance under
the influence of special events (approximately from 16:00 to
23:00). Fig.9 shows the zoomed Fig. 8 during this period.
In the Fig.9 (a), the black line is the observed values; the
red line is the smoothed values; and the influenced period of
the concert is zoomed on purpose. In the subplots from Fig.9
(b) to (f), the higher the value taken by f was, the stronger the
fluctuations yielded by all of themodels. The error of SEKNN
wasmostly closer to zero when f was small.With the increase
in prediction steps, SEKNN still performed well relative to
the other models, although it produced fluctuations. We focus
on the performance during the event-caused congestion at the
end of the concert in which traffic states changed rapidly, and
Fig.10 shows the MAPE under the influence of the concert
from 21:00 to 23:00 at link No.128894. Because the lower
speed value under special events easily causes the higher
MAPE, we can clearly realize the abilities of different models
to predict traffic state under special events. From Fig.10,
SEKNN still outperformed the other models for the different
multi-step-ahead prediction tasks. It is noteworthy that the
models, e.g.MFCP, GBDT, and SRCN,who had considerable
MAE’s performance on the overall test dataset when f = 5,
while they had the highMAPE under special events, as shown
in Fig.10(e).

Generally, SEKNN showed the best short-term prediction
performance compared with the other seven models, i.e. orig-
inal KNN,MFCP, SVR, RF, GBDT, SAE, and SRCN, in both
the overall dataset and special-event conditions, especially
for relatively short-term prediction tasks. Therefore, it can
be said that SEKNN provides a more accurate prediction of
short-term traffic states under special events.

V. CONCLUSION
Short-term traffic state prediction is an important manage-
ment tool for traffic guidance and control and an effective
decision-making tool to help travelers plan en-route trip and
avoid congested road sections. However, prediction under
special events faces enormous challenges because of its non-
recurrent nature and limited available data to describe dra-
matic traffic changes. In this paper, SEKNN is improved
based on the original KNN in all three basic elements around
network-wide traffic state evolution, including the multiapart
state unit, a novel distance metric and prediction function.

We used real-world traffic speed data collected from GPS
devices in taxis in the Beijing Workers’ Stadium road net-
work with 257 links to test the proposed model. The dataset
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contains valuable information on network-wide traffic states
and evolution processes during football games and concerts.
The experimental results indicate that SEKNN is the most
effective model to predict the dynamics of traffic evolution
under special events compared with original KNN, RF, SAE
and SRCN. However, with the increase in prediction steps,
the great lead of SEKNN gradually disappears. This suggests
that SEKNN has a scope of application in which it predicts
more accurately than other models.

In future studies, SEKNN can be usefully developed as a
submodel affiliated with a fusion approach, so that SEKNN
and other submodels can give full play to their respective
strengths and make up for each other. Every short-term traffic
prediction approach has unique characteristics. Fusion-based
approaches use the framework and strategies to generate a
final prediction by combining the output of two or more
individual predictors; thus, complementary predictive charac-
teristics of different approaches can be leveraged [60]. Con-
sequently, multiple prediction approaches should be used in
a proper fusion framework to fully exhibit their advantages
and enhance overall prediction performance in later research
and practical applications.

APPENDIX A
ARCHITECTURE OF SAE
We developed a SAE model according to the literature [31].
The architecture of SAE consisted of one input layer, three
hidden layers and one output layer. The number of hidden
units was 400 in each layer. We added the dropout layer to
prevent overfitting before the final output layer. The details
of the architecture were shown in Table 4.

APPENDIX B
ARCHITECTURE OF SRCN
The SRCN was constructed referring to the literature [12].
As shown in Table 5, there were one input layer, five convo-
lutional layers with (3,3) kernels, three max-pooling layers
with (2,2) kernels, two LSTM layers with 800 units, and
one output layer. Between the sections of convolution-based
spatial features capturing and LSTM-based temporal features
capturing, the flatten layer and fully connected layer were
used to reshape the output of previous layers and prepare for
the later LSTM layers. Relu and the hyperbolic tangent (tanh)
are the activation functions after convolutions and LSTMs,
respectively. Two dropout layers were employed to prevent
overfitting. And batch normalization was applied to acceler-
ate training.
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