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ABSTRACT A new generalized volume-surface integral equation, volume integral equation-combined
field integral equation (VIE-CFIE), is proposed to analyze the electromagnetic (EM) scattering from
composite objects comprised of both perfect electric conductor (PEC) and inhomogeneous bi-isotropic
material. By discretizing the objects using triangular and tetrahedral cells on which the commonly used
Rao-Wilton-Glisson (RWG) and Schaubert-Wilton-Glisson (SWG) basis functions are respectively defined,
the matrix equation is derived using the method of moments (MoM) and the Galerkin’s testing. Furthermore,
the continuity condition (CC) of electric flux is explicitly enforced on the PEC and bi-isotropy interfaces.
In this way, the number of volumetric unknowns is reduced based on the same set of meshes, particularly
for the thin coated PEC objects. A convenient way to embed the CC into the context of MoM solution is
provided in detail. Several numerical results of EM scattering from coated PEC objects are shown to illustrate
the accuracy and efficiency of the proposed method.

INDEX TERMS Bi-isotropy, continuity condition (CC), integral equations, method of moments (MoM).

I. INTRODUCTION
With the rapid development of material science, quanti-
ties of researches focus on the bi-isotropic materials since
their applications are various, such as in antenna design [1],
waveguide mode converters [2], radar absorbers, electromag-
netic (EM) stealth [3], [4], and many other microwave and
millimeter-wave devices [5], [6]. Consequently, the EM radi-
ation or scattering properties of composite objects containing
perfect electric conductors (PECs) and bi-isotropic materials
have aroused great interests in the field of computational
electromagnetics. However, because the constitutive relations
of bi-isotropy are enforced an additional coupling between
the electric andmagnetic fields, it is quite a challenge to accu-
rately analyze such composite objects. Some articles have
discussed the power of full-wave methods [7]–[11]. In [7],
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the finite-difference time-domain method was presented to
solve the bi-isotropic coated PEC bodies. However, when
the shape of the analyzed object is arbitrary, the reliability
of this method still needs to be further investigated. In [8],
EM scattering from chiral objects above a perfectly elec-
tric or magnetic conducting plane was analyzed by the hybrid
finite element-boundary integral method. EM scattering by
arbitrarily shaped PEC objects coated with homogenous
bi-isotropic materials was calculated by using the surface
integral equation (SIE) method [9]. Later, a volume integral
equation (VIE) was formulated for objects with inhomoge-
neous bi-isotropy [10]. Nevertheless, the PECs cannot be
modeled directly, which need to be replaced by lossy dielec-
tric with sufficient high conductivity. In [11], the multilevel
Green’s function interpolation method is developed to ana-
lyze the EM scattering from objects comprised of both PEC
and bi-isotropic material. However, due to the use of hexahe-
dral meshes, whether it is suitable for objects containing sharp
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structures needs further verification. Some novel methods for
the simulation of composite objects are shown in [12]–[14].

Among numerous numerical methods, the method of
moments (MoM) solution of volume-surface integral equa-
tion (VSIE) is one of top choices to analyze the general com-
posite PEC-material objects [15], [16]. Compared to the pure
SIE-based methods such as the so-called PMCHWT or the
Müller formulations, the VSIE is more robust and gener-
alized in modeling composite objects containing thin inho-
mogeneous materials with corners and edges [17]. This
generality owes to the fact that according to the equiva-
lence principle, the VSIE implementation simultaneously
retains two generally applicable integral equations: the VIE to
model the field superposition in the material regions, and the
SIE to enforce the boundary conditions on the PEC surfaces.
For the SIE part of VSIE, the electric field integral equa-
tion (EFIE) is commonly adopted since it can be used to
model both the open and the closed PEC surfaces. However,
the EFIE is a first-kind integral equation, usually resulting
in an ill-conditioned matrix generated by the whole VSIE.
To improve the condition, when modeling the closed PEC
surfaces, the magnetic field integral equation (MFIE) can
be linearly added to the EFIE to form the well-conditioned
combined field integral equation (CFIE) which is the second-
kind. Furthermore, the CFIE can be combined with the VIE to
yield a new generalized VSIE form, called VIE-CFIE, which
is expected to make the matrix equation more easily to solve
than the conventional VIE-EFIE form. In addition, lots of the
composite objects are composed of PECs and materials in
contact. For these objects, the continuity condition (CC) of
electric flux can be explicitly enforced on the PEC-material
interfaces to eliminate the associated volumetric unknowns.
In [16], [18] and [19], how the CC is adopted in the VSIE was
discussed. However, the validity was not studied rigorously.
In [20], for the higher-order Legendre basis functions with the
property of orthogonality, the CC can be explicitly enforced
on any PEC-electrical isotropy interfaces. Nevertheless, when
the lower-order basis functions are adopted, whether the use
of CC is still valid was not considered. The validity of the use
of CC was investigated in [21]. It is stated that if the involved
PEC surfaces are open, the induced surface electric current is
actually the summation of current densities residing on both
sides [22]. In this case, the explicit enforcement of CC in the
VSIE might lead to inaccurate results.

To the authors’ best knowledge, so far the VIE-CFIE
and the CC only have been applied to the composite
PEC-electrical isotropy objects, while no literature devotes
to discussing such implementations to other kinds of
materials. In this paper, the VIE-CFIE is extended to
analyze the EM scattering from composite objects com-
prised of both closed PECs and inhomogeneous bi-isotropic
materials. By discretizing the equivalent currents using
the commonly used Rao-Wilton-Glisson (RWG) [23] and
Schaubert-Wilton-Glisson (SWG) [24] basis functions
defined on the triangular and tetrahedral cells, and com-
bining with the Galerkin’s method, the VIE-CFIE yields a

well-conditioned matrix equation. The calculation of matrix
elements is discussed in detail. Furthermore, during the
solving of the presented VIE-CFIE, in order to reduce the
volumetric unknowns and the memory requirement with-
out compromising the numerical accuracy, how to enforce
the CC to the arbitrary PEC-bi-isotropy interfaces is shown.
A convenient way to embed the CC into the context of the
MoM solution is also provided.

II. THEORY AND FORMULATIONS
A. DERIVATION OF VSIE FOR COMPOSITE
PEC-BI-ISOTROPIC OBJECTS
Consider an arbitrary PEC surface S, partly or wholly cov-
ered by inhomogeneous bi-isotropic material occupying a
region V . For the convenience of analysis, assume that this
composite object is suspended in free space, and illuminated
by an incident EM plane wave (EE i, EH i) at an arbitrary angle
to radiate the scattered field (EEs, EH s). Thus, the total EMfield
(EE, EH ) is the summation of incident and scattered fields as(

EE, EH
)
=

(
EE i, EH i

)
+

(
EEs, EH s

)
(1)

In the inhomogeneous bi-isotropic region V , the coupled
constitutive relations between the electric flux density ED,
magnetic flux density EB and the electric field EE , magnetic
field EH are written as[

ED (Er)
EB (Er)

]
=

[
ε (Er) ξ (Er)
ς (Er) µ (Er)

] [
EE (Er)
EH (Er)

]
∀Er ∈ V (2)

where all of the medium parameters, i.e. permittivity ε,
permeability µ, and bi-isotropic parameters ξ , ς , are
Er-dependent. For easy reading, the variable Er will be omitted
from the following equations. (2) can also be rewritten as[
EE
EH

]
=

1
εµ− ξζ

[
µ −ξ

−ς ε

] [
ED
EB

]
=

[
α11 α12
α21 α22

] [
ED
EB

]
(3)

As we know, the EM field in the source-free domain con-
forms to theMaxwell’s equations, which is independent of the
type of media. Thus, we can rearrange the two well-known
curl equations for the total EM field (EE, EH ) by substituting
with (2) as∇ × EE = −jωEB = −jω

(
ς EE + µ EH

)
∇ × EH = jω ED = jω

(
ε EE + ξ EH

) (4)

with the angular frequency ω and j =
√
−1, while the

time-harmonic factor is ejωt . In a similar way, the incident
wave (EE i, EH i) in a source-free free space satisfies{

∇ × EE i = −jωµ0 EH i

∇ × EH i
= jωε0 EE i

(5)

where ε0 and µ0 are the permittivity and permeability of the
free space, respectively. By subtracting (5) from (4), it is
obtained{
∇ × EEs = −jωµ0 EH s

− jω (µ− µ0) EH − jως EE
∇ × EH s

= jωε0 EEs + jω (ε − ε0) EE + jωξ EH
(6)
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According to the volume equivalence principle, the scat-
tered field from the bi-isotropy can be seen as producing by
both the equivalent volume electric and magnetic currents,
EJV and EMV , in the free space. By comparing (6) with the
two curl Maxwell’s equations, EJV and EMV for bi-isotropic
materials are derived by[

EJV
EMV

]
= jω

[
ε − ε0 ξ

ς µ− µ0

] [
EE
EH

]
(7)

Substituting (3) into (7) yields[
EJV
EMV

]
= jω

[
1− ε0α11 −ε0α12
−µ0α21 1− µ0α22

] [
ED
EB

]
= jω

[
β11 β12
β21 β22

] [
ED
EB

]
(8)

The scattered field is cast in terms of mixed auxiliary
potentials due to EJV , EMV and the induced surface electric
current EJS on the PEC surface S as
EEs = −jω

(
EAJS + EA

J
V

)
−∇

(
ϕJS + ϕ

J
V

)
−

1
ε0
∇ × EAMV

EH s
=

1
µ0
∇ ×

(
EAJS + EA

J
V

)
− jωEAMV −∇ϕ

M
V

(9)

respectively, while the vector and the scalar potentials are
expressed as the convolutions of equivalent currents or their
divergences and the Green’s function as

EAJT (Er) = µ0

∫
T

EJT
(
Er ′
)
G
(
Er, Er ′

)
dT ′

ϕJT (Er) =
j
ωε0

∫
T
∇
′
· EJT

(
Er ′
)
G
(
Er, Er ′

)
dT ′

(10)

where T = S or V for surface or volume integrals over
the surface or volume currents, respectively. EAMV , ϕMV can be
found using the duality. Besides, the Green’s function of free
space is expressed as

G
(
Er, Er ′

)
=

e−jk0|Er−Er
′|

4π |Er − Er ′|
(11)

with the wavenumber k0 = ω
√
µ0ε0.

In the region V , the VIE is formed by making the total field
equal to the sum of the incident and the scattered fields as[

EE (Er) , EH (Er)
]
−

[
EEs (Er) , EH s (Er)

]
=

[
EE i (Er) , EH i (Er)

] ∀Er ∈ V (12)

On the PEC surface S, the EFIE is formed based on the
PEC boundary condition that requires vanishing the tangen-
tial component of total electric field as

n̂ (Er)× EE (Er)= n̂ (Er)×
[
EE i (Er)+EEs (Er)

]
=0 ∀Er ∈ S (13)

The EFIE is combined with the VIE to form the com-
monly used EFIE-VIE, a first-kind form of VSIE that is ill-
conditioned at the resonant frequencies. Furthermore, for the
closed PEC surface, the MFIE

1
2
EJS (Er)− n̂ (Er)× EH s (Er) = n̂ (Er)× EH i (Er) ∀Er ∈ S (14)

can be linearly added to the EFIE to form the well-
conditioned CFIE as

CFIE = αEFIE + (1− α) η0MFIE (15)

where α (0 ≤ α ≤ 1) is a real constant, and η0 is the
intrinsic impedance of free space. We can combine the VIE
in (12) and the CFIE in (15) together to build the well-
conditioned VIE-CFIE, a second-kind VSIE form, to solve
the EM scattering from composite objects involving open or
closed PEC surfaces and bi-isotropic materials. In this paper,
for the closed PEC surfaces, α = 0.5, while for the open, α
must be fixed to 1.

Furthermore, on the PEC-bi-isotropy interfaces S ′, the
CC establishes the relation between ED and EJS , which can be
written as

n̂ (Er) · ED (Er) = ρS (Er) = −
∇ · EJS (Er)

jω
∀Er ∈ S ′ (16)

with the electric charge density ρS on the PEC surface. Since
the CC conforms to the current continuity equation that is
independent of the type of media, it can be safely adopted
to the PEC-bi-isotropy interfaces.

B. MOM SOLUTION USING GALERKIN’S TESTING
Using the MoM, the VSIE is discretized into a matrix
equation. In the implementation, the RWG basis
functions Ef Si [23] and SWG basis functions Ef Vi [24] are used
to expand EJS on S and ED and EB in V as

EJS =
NS∑
i=1

ISi Ef
S
i

jω ED =
NV∑
i=1

IDi Ef
V
i

jω
η0
EB =

NV∑
i=1

IBi Ef
V
i

(17)

respectively. In (17),NS andNV are the numbers of RWG and
SWG basis functions, while the total number of unknowns
is NS + 2NV . ISi , I

D
i and IBi are the corresponding unknown

expansion coefficients, respectively. Dispersing ED and EB
instead of EJV and EMV can hold the continuity of the normal
component that is consistent with the boundary condition for
material interfaces. It is worthy to mention that at the exterior
boundary of materials, since ED and EB are not necessarily
zero, ‘‘half’’ SWG basis functions associated with only one
tetrahedron need to be defined [24]. It is further assumed
that parameters ε, µ, ξ and ς are approximately constant
within each tetrahedron, which is a generalization of that
presented in [24]. As a consequence, the 2×2 matrices [α]
and [β] defined in (3) and (8) over a single tetrahedron are
also considered as approximately matrices, the elements of
which will be denoted by αipq and βipq with p/q = 1, 2 in the
following, respectively.
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Substituting (17) into (7), we obtain
EJV =

NV∑
i=1

IDi
(
βi11Ef Vi

)
+

NV∑
i=1

IBi
(
βi12Ef Vi

)
EMV =

NV∑
i=1

IDi
(
βi21Ef Vi

)
+

NV∑
i=1

IBi
(
βi22Ef Vi

) (18)

Substituting (18) into (9)-(15) and combining with Galerkin’s
testing result in an impedance matrix equation, which can
succinctly be represented as ZSS ZSD ZSB

ZDS ZDD ZDB
ZBS ZBD ZBB

 IS
ID
IB

 =
 VS
VD
VB

 (19)

with

[ZSS ] = α
[
ZESS

]
+ (1− α) η0

[
ZMSS

]
[ZSD] = α

[
ZESD

]
+ (1− α) η0

[
ZMSD

]
[ZSB] = α

[
ZESB

]
+ (1− α) η0

[
ZMSB

]
{VS} = α

{
V E
S

}
+ (1− α) η0

{
VM
S

}
(20)

where {IS}, {ID} and {IB} are the vectors of unknown expan-
sion coefficients, {VS}, {VD} and {VB} are the excitation
vectors, respectively. [ZPQ] (P/Q = S, D, or B) denotes the
impedance sub-matrix representing the interactions between
various types of testing and basis functions defined above.
For convenience, three linear vector operators are defined as

EPTi
(
EX
)
=

∫
Ti

EX
(
Er ′
)
G
(
Er, Er ′

)
dT ′

EQTi
(
EX
)
=∇

∫
Ti
∇
′
· EX
(
Er ′
)
G
(
Er, Er ′

)
dT ′

EKTi
(
EX
)
=

∫
Ti

EX
(
Er ′
)
×∇G

(
Er, Er ′

)
dT ′

T =S or V

(21)

Fully taking the advantage of the symmetry of matrix entries
to simplify the matrix filling process, each submatrix entry in
jth row, ith column is then given by[
ZESS

]
ji
= jωµ0

〈
Ef Sj (Er) , EPSi

(
Ef Si
)〉

+
j
ωε0

〈
Ef Sj (Er) , EQSi

(
Ef Si
)〉

(22)[
ZMSS

]
ji
=

1
2

〈
Ef Sj (Er) , Ef

S
i (Er)

〉
+

〈
Ef Sj (Er)× n̂ (Er) , EKSi

(
Ef Si
)〉
(23)

[ZDS ]ji = jωµ0

〈
Ef Vj (Er) , EPSi

(
Ef Si
)〉

+
j
ωε0

〈
Ef Vj (Er) , EQSi

(
Ef Si
)〉

(24)

[ZBS ]ji =
〈
Ef Vj (Er) , EKSi

(
Ef Si
)〉

(25)

and 

[
ZESD

]
ji
= ZEji (βi11, βi21)[

ZESB
]
ji
= ZEji (βi12, βi22)[

ZMSD
]
ji
= ZMji (βi11, βi21)[

ZMSB
]
ji
= ZMji (βi12, βi22)

[ZDD]ji = ZVji (αi11, βi11, βi21, ε0, µ0)

[ZDB]ji = ZVji (αi12, βi12, βi22, ε0, µ0)

[ZBD]ji = ZVji (αi21, βi21,−βi11, µ0, ε0)

[ZBB]ji = ZVji (αi22, βi22,−βi12, µ0, ε0)

(26)

where

ZEji
(
βip1q, βip2q

)
= jωµ0βip1q

〈
Ef Sj (Er) , EPVi

(
Ef Vi
)〉

+
j
ωε0

βip1q

〈
Ef Sj (Er) , EQVi

(
Ef Vi
)〉

−βip2q

〈
Ef Sj (Er) , EKVi

(
Ef Vi
)〉

(27)

ZMji
(
βip1q, βip2q

)
= βip1q

〈
Ef Sj (Er)× n̂ (Er) , EKVi

(
Ef Vi
)〉

+ jωε0βip2q
〈
Ef Sj (Er)× n̂ (Er) , EPVi

(
Ef Vi
)〉

+
j

ωµ0
βip2q

〈
Ef Sj (Er)× n̂ (Er) , EQVi

(
Ef Vi
)〉

(28)

ZVji
(
αip1q, βip1q, βip2q, χ, γ

)
=

1
jω
αip1q

〈
Ef Vj (Er) , Ef

V
i (Er)

〉
+ jωγβip1q

〈
Ef Vj (Er) , EPVi

(
Ef Vi
)〉

+
j
ωχ

βip1q

〈
Ef Vj (Er) , EQVi

(
Ef Vi
)〉

−βip2q

〈
Ef Vj (Er) , EKVi

(
Ef Vi
)〉

(29)

where p1/p2/q = 1 or 2 and p1 + p2 ≡ 3. The details of the
calculation of matrix entries are described in the Appendixes.

C. APPLYING THE CONTINUITY CONDITION
Consider a composite object containing any arbitrary
PEC-bi-isotropic material contact. As shown in Fig. 1, after
discretization, assume a tetrahedron with one face exactly
overlapped by the kth PEC triangular cell. In this tetrahe-
dron, the pth ‘‘half’’ SWG basis function is defined over
the PEC face with the expansion coefficient of ED being IDp .
Besides, assume that the indices of the three associated RWG
functions defined on the corresponding PEC triangle are k1,
k2, and k3 with the corresponding coefficients ISk1 , I

S
k2
, and

ISk3 , respectively. In the traditional MoM, IDp is considered
independent of ISk1 , I

S
k2
, and ISk3 . Actually, according to the CC,

these coefficients are related however. According to (16)
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FIGURE 1. RWG and SWG basis functions on the PEC-material interface.

and (17), IDp can be directly calculated by

IDp = −

3∑
i=1

ISki∇ ·
Ef Ski (Er)

n̂ (Er) · Ef Vp (Er)
= −sgn (p)

3∑
i=1

ISkisgn (ki)
lki
Ak

(30)

where sgn(ki) = 1 or −1 means that the current direction of
the kith basis function is outward or inward relative to the
kth triangle, and sgn(p) is the pth ‘‘half’’ SWG function
relative to the tetrahedron, respectively. lki is the length of the
kith edge, and Ak is the area of the kth triangle. That is to say,
when the CC is enforced, the volumetric unknown expansion
coefficients of ED associated to the PEC-bi-isotropy interfaces
can be directly calculated by the surface unknown expan-
sion coefficients of EJS defined on the overlapped PEC sur-
face, instead of independently solving them from the matrix
equation.

The following will show how to merge the CC into the
matrix equation during the iterative solving. We further clas-
sify {ID} into two groups:

{
ID2

}
is the unknown vector related

to the ‘‘half’’ SWG basis functions defined on the tetrahe-
drons with one or more faces terminated by PEC surfaces,
while

{
ID1

}
is the vector of the other SWG functions. The

numbers of elements of
{
ID1

}
and

{
ID2

}
are NV1 and NV2 ,

respectively, while NV1+NV2 = NV . Similarly, {IS} is also
classified into two groups:

{
IS2
}
is the unknown vector of the

RWG functions defined on the PEC triangular faces overlap-
ping the tetrahedrons, while

{
IS1
}
is the vector of the other

RWG functions. The numbers of elements of
{
IS1
}
and

{
IS2
}

are NS1 and NS2 with NS1+N S2 = NS , respectively. Thus,
the matrix equation shown in (19) can be divided into

ZS1S1 ZS1S2 ZS1D1 ZS1D2 ZS1B
ZS2S1 ZS2S2 ZS2D1 ZS2D2 ZS2B
ZD1S1 ZD1S2 ZD1D1 ZD1D2 ZD1B
ZD2S1 ZD2S2 ZD2D1 ZD2D2 ZD2B
ZBS1 ZBS2 ZBD1 ZBD2 ZBB



IS1
IS2
ID1

ID2

IB


=


VS1
VS2
VD1

VD2

VB

 (31)

Besides, relating the expansion coefficients, (30) can be
rewritten as the following matrix equation{

ID2

}
=
[
D̄
] {
IS2
}

(32)

where
[
D̄
]
is a sparse matrix of size NV2 ×NS2 , and each row

has only three nonzero elements as[
D̄
]
pki
= −sgn (p) sgn (ki)

lki
Ak

i = 1, 2, 3 (33)

Substituting (32) into (31) yields
ZS1S1 ZS1S2 + ZS1D2D̄ ZS1D1 ZS1B
ZS2S1 ZS2S2 + ZS2D2D̄ ZS2D1 ZS2B
ZD1S1 ZD1S2 + ZD1D2D̄ ZD1D1 ZD1B

ZBS1 ZBS2 + ZBD2D̄ ZBD1 ZBB



IS1
IS2
ID1

IB


=


VS1
VS2
VD1

VB

 (34)

It can be seen that the unknown vector
{
ID2

}
is eliminated.

Compared (34) to (31), the size of the matrix is reduced from
(NS+2NV )×(NS+2NV ) to (NS+NV1+NV )×(NS+NV1+NV ).
Therefore, if NV2 is relatively large with respect to the total
number of unknowns N , the matrix filling time, the peak
memory requirement, and the matrix-vector product time
will be decreased significantly. Furthermore, since the use of
CC leads to less number of unknown coefficients, the total
iteration numbers are also expected less than the one without
the CC.

III. NUMERICAL RESULTS
In this section, the bistatic or monostatic radar cross section
(RCS) results of several PEC objects coated with bi-isotropic
material are calculated. Restarted GMRES with a restart
parameter m is used as the iterative solver to reach con-
vergence with relative residual error of 0.001, while m is
fixed to 50 [25]. A simple diagonal preconditioner is used
to accelerate the iterative solving process. A zero vector is
taken as initial guess for all calculations. All computations
are serially carried out on a workstation with 2.4 GHz CPU
and 384 GB RAM in single precision.

In general, the Gaussian quadrature rule with 4/5 sampling
points is applied to the inner or outer triangle/tetrahedron
domain of integrations during calculating the interactions
between the testing and basis functions [26], [27], which can
ensure accurate calculation of up to 3rd order of polynomials.
For the SIE part of the VSIE, the EFIE is known to give
relatively accurate surface current EJS with the use of RWG
basis function for the PEC surfaces with arbitrary planar
triangulations. By contrast, the MFIE is inaccurate to some
extent [28]. A probable reason is that in the MFIE, the two-
dimensional mild logarithmic singularity of the outer field
integration is usually overlooked with an insufficiently num-
ber of integration points inside the testing triangles. There-
fore, since MFIE is involved in the VIE-CFIE, the obtained
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TABLE 1. The maximal (MAX) and the Root-Mean-Square (RMS) errors of
different implements compared with exact results in dB.

EJS on the PEC surfaces may not be so accurate. When
the CC is adopted, according to (32), inaccurate

{
IS2
}
will

directly lead to inaccurate
{
ID2

}
, which will further result

in a less accurate result. Therefore, when the VIE-CFIE is
applied, to relieve the slight error caused by the MFIE [28],
13 sampling points of up to 7th order of polynomials are
used over the outer triangular integrations in the MFIE
part [26].

The first object is a PEC sphere coated with homogeneous
bi-isotropic material. The radius of the PEC sphere is 0.4λ0
(λ0 is the wavelength in free space), and the thickness of
coating material is 0.1λ0 with the medium parameters ε =
2ε0, µ = µ0, and ξ = ζ∗ = (0.5 − j0.5)

√
ε0µ0, while

the superscript ‘‘∗’’ denotes complex conjugate. After dis-
cretization with an average mesh size of 0.05λ0, the total
number of triangles, tetrahedrons and unknowns are 1,378,
10,703 and 48,367 respectively, whileNV2 = 1, 378, equaling
to the number of PEC triangular cells. The coating material is
modeled by two-layer tetrahedral meshes. This coated sphere
is illuminated by a θ -polarized plane wave across +z-axis,
and the observation range is 0 6 θ 6 180◦ and ϕ = 0.
During the calculation, both the VIE-EFIE and VIE-CFIE,
and that enforced the CC (denoted by CC-VIE-EFIE and
CC-VIE-CFIE), are used. The numerical results of bistatic
RCS are shown in Fig. 2, while the exact results from
Mie series are also given in this figure as references [10].
It is observed that for either the co- or cross-polarization,
the numerical results from VIE-EFIE or VIE-CFIE with and
without CC are almost in excellent agreement with the exact
results everywhere. Table 1 lists the maximal (MAX) and the
root-mean-square (RMS) errors of different implementations
compared with the exact results, while the maximal errors
occur over the valley range (in this case, about 100◦ for the
co-polarization and 45◦ for the cross-polarization). Table 2
(CS1) lists the computational details of these four different
types of implementations in terms of peak memory (Mem),
filling time of matrix (Tf ), time cost per iteration (Tm), and
the number of iterations.

The second object is also a coated sphere. The radius of the
PEC sphere is 0.5λ0, and the thickness of coating material
is 0.05λ0. After discretization with an average mesh size
of 0.05λ0, the total number of triangles, tetrahedrons and
unknowns are 2,110, 7,057 and 36,055 with NV2 = 2, 110,
respectively. In this case, the coating material is modeled by
single layer tetrahedral meshes. The medium parameters are
assumed to be functions of a variable ρ as well as (θ , ϕ)

TABLE 2. Computational details of the solving process for different
implementations.

FIGURE 2. Bistatic RCS for a PEC sphere of radius 0.4λ0 coated with 0.1λ0
thick homogeneous bi-isotropic material with the medium parameters
ε = 2ε0, µ = µ0, and ξ = ζ∗ = (0.5− j0.5)√ε0µ0 at 0 ≤ θ ≤ 180◦ and
ϕ = 0, illuminated by a θ-polarized EM plane wave across +z axis.

defined in the spherical coordinates as
ε (ρ) = [1+ |sin θ cosϕ| ρ] ε0
µ (ρ) = [1+ |cos θ sinϕ| ρ]µ0

ξ (ρ) = ς∗ (ρ) = (0.1− j0.1) ρ
√
ε0µ0

(35)
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FIGURE 3. Numbers of iterations for four different types of
implementations with respect to various ρ as shown in Eq. (35), in the
calculation of the coated PEC sphere with inhomogeneous media.

FIGURE 4. Bistatic RCS of co-polarization for a PEC sphere of radius
0.5λ0, degraded from coated sphere with ρ = 0.

It is scarcely possible to simulate this object using the
SIEmethods. In order to investigate how themedium parame-
ters influence the performances of different implementations,
Fig. 3 shows the number of iterations with respect to
various ρ. Along with the increase of ρ, the number of
iterations will sharply decrease, while the VIE-CFIE always
converges several times faster than the VIE-EFIE, particu-
larly when ρ is large. Besides, the use of CC always slightly
reduces the number of iterations. When ρ = 0 and ρ = 5,
the numerical results of bistatic RCS from different imple-
mentations are shown in Fig. 4 and Fig. 5, respectively,
while good agreements are observed. Actually, when ρ = 0,
the coated material is fictitious, while the ‘‘coated’’ sphere
degrades into a PEC sphere. It states that even though the
material is extremely inhomogeneous, the use of CC can also
keep the accuracy. However, if ρ further increases, due to
the coarse average mesh size, the agreement among different
implementations will become poor. Table 2 (CS2) lists the
computational details with ρ = 2.

The third object is a coated PEC almond containing
sharp edges and tips [29], whose position in the Cartesian

FIGURE 5. Bistatic RCS for a PEC sphere of radius 0.5λ0 coated with
0.05λ0 thick extremely inhomogeneous bi-isotropic material with ρ = 5.

FIGURE 6. The position of the coated PEC almond in the Cartesian
coordinates.

coordinates is shown in Fig. 6. The length of the PEC almond
is 9.936 inch, and the coating thickness is 10 mm. The
medium parameters of the coated material are ε = (3− j2)ε0,
µ = (2− j)µ0, ξ = ζ∗ = υ(1− j)

√
ε0µ0, while ξ and ζ∗ are

the functions of a variable υ. The frequency of incident EM
wave is 3 GHz. A moderate mesh size is chosen to generate
totally 24,700 unknowns with respect to 1,292 triangles and
4,964 tetrahedrons with NV2 = 1, 292. The monostatic RCS
with different υ is calculated and the observation range is
−90◦ 6 θ 6 90◦ and ϕ = 0, which are shown in Fig. 7.
For comparison, the PEC almond without any coated material
is also calculated, while the cross-polarization RCS of the
PEC almond and the coated almond with υ = 0 (in this
case, the coated material degrades into isotropy) are below
70 dBsm everywhere, which are not shown. It is observed
the effect of the electric and magnetic losses on the reduc-
tion of RCS. Besides, under such parameters, with differ-
ent value of υ, the co-polarization results are almost the
same in most angles, while the cross-polarization ones are
largely varied. From Fig.6 (b), excellent agreements are
observed between the results from VIE-CFIE and those from
CC-VIE-CFIE, indicating that when the sharp structures are
contained, the use of CC is also valid. The computational
details at the direction of θ = 90◦ and ϕ = 0 are shown
in Table 2 (CA).
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FIGURE 7. Monostatic RCS for a 9.936 inch length PEC almond coated
with 10 mm thick inhomogeneous bi-isotropic material with
ε = (3− j2)ε0, µ = (2− j )µ0, ξ = ζ∗ = υ(1− j )√ε0µ0
at −90◦ ≤ θ ≤ 90◦ and ϕ = 0 at 3 GHz.

From the Table 2, it is observed that due to the
improvement of matrix condition, the convergence speed of
VIE-CFIE is several times faster than that of VIE-EFIE.
When the CC is used in either VIE-EFIE or VIE-CFIE, all
of the memory usage, the number of iterations, the filling
time, and the single iteration time are reduced to some extent.
However, for the first coated object CS1, since NV2 occupies
a quite small proportion in the total number of unknowns N ,
this reduction is quite slight. Compared to themethodwithout
the CC, the reduction for peak memory usage (Mem) using
the method with CC is about 6.77%. For the second and the
third objects, the reduction of memory requirements and time
cost is relatively obvious about 11.1% and 10.7% for peak
memory usage (Mem), respectively. Therefore, we may draw
the conclusion that the CC is more suitable for the calculation
of thin-coated objects.

IV. CONCLUSIONS
In the modeling of the EM scattering from the compos-
ite objects involving closed PEC surfaces and bi-isotropic

materials, the well-conditioned CFIE is used to model the
closed PEC surface, which is combined with the VIE to form
the VIE-CFIE, a second-kind VSIE form. Compared with the
existing articles, the VIE-CFIE scheme is more suitable for
the composite closed PEC-bi-isotropic objects. A rigorous
MoM solution of the VIE-CFIE has been presented. Based
on the commonly used triangular and tetrahedral meshes,
the continuity condition (CC) of electric flux is explicitly
enforced on the PEC-material interfaces to eliminate the
associated volumetric unknowns as well as to reduce the
memory usage without compromising the accuracy. The pro-
posed scheme is attractive in analyzing EM problems of thin
material coating PEC objects, since the number of unknowns
is reduced by a proportion of the total unknowns. Further-
more, the VIE-CFIE enforce CC is convenient to combine
with the fast algorithm such as the multilevel fast multipole
algorithm (MLFMA) [21]. The efficiency and accuracy of
the proposed scheme have been demonstrated by several
illustrative numerical examples.

APPENDIX
In this Appendix, we will show how to evaluate the matrix
entries in the matrix equation (19). It can be seen that the
matrix entries rely on the evaluation of four kinds of inte-
grations as

I1 =
〈
Egj, Efi

〉
I2 =

〈
Egj, EPTi

(
Efi
)〉

I3 =
〈
Egj, EKTi

(
Efi
)〉

I4 =
〈
Egj, EQTi

(
Efi
)〉

Egj = Ef Sj (Er) , Ef
S
j (Er)× n̂ (Er) , Ef

V
j (Er)

Efi = Ef Si , Ef
V
i

(36)

Apparently, I1 is nonzero only when the jth testing and
ith basis functions have a common domain, which is
non-singular everywhere and can be evaluated analyti-
cally or numerically. When Er is far from Er ′, I2, I3 and I4 can
be easily evaluated using a universal quadrature rule. The
inner integration of I2 has singularity of order one during
Er → Er ′, which can be expediently handled using either
singularity extraction method [30] or Duffy transform [31].
For I3, the inner integration needs to be translated according
to ∫

Ti

(
Er ′ − Eri

)
×∇G

(
Er, Er ′

)
dT ′

=

∫
Ti

[
(Er − Eri)+

(
Er ′ − Er

)]
×∇G

(
Er, Er ′

)
dT ′

= (Er − Eri)×
∫
Ti
∇G

(
Er, Er ′

)
dT ′ (37)

where Eri is the free vertex of the ith RWG/SWG basis func-
tion. This translation leads to an integration with a singular
kernel ∇G that can be numerically handled [30].
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I4 can be rewritten as

I4 =
∫
Tj
Egj · ∇

∫
τi

∇
′
· EfiG

(
Er, Er ′

)
dT ′dT

= −

∫
Tj
∇ · Egj

∫
τi

∇
′
· EfiG

(
Er, Er ′

)
dT ′dT

+

∫
Tj
∇ ·

[
Egj

∫
τi

∇
′
· EfiG

(
Er, Er ′

)
dT ′

]
dT (38)

The first term has the singularity of order one during Er → Er ′,
which can be expediently calculated. Especially when Egj =
Ef Sj (Er) × n̂ (Er), since ∇ · Egj ≡ 0, the first term is equal to 0.
According to the Gauss theorem, the second term of I4 can be
transformed as∫
τj

∇ ·

[
Egj

∫
τi

∇
′
· EfiG

(
Er, Er ′

)
dT ′

]
dT

=

∮
∂Tj

n̂∂Tj ·
[
Egj

∫
Ti
∇
′
· EfiG

(
Er, Er ′

)
dT ′

]
d (∂T ) (39)

where ∂Tj denotes the three edges bounding the triangle
for T = S or the four triangular faces bounding the tetra-
hedron for T = V , while n̂∂T j denotes the outward unit
normal direction of edges or faces. Then, (39) has singu-
larity of order one during Er → Er ′, which can be evaluated
numerically. Actually, only when Egj is a ‘‘half’’ SWG func-
tion or Ef Sj (Er) × n̂ (Er), does this term need to be evaluated.
Otherwise, when Egj denotes a RWG or ‘‘full’’ SWG function,
due to the property of RWG basis function at ∂Sj or that of
SWG function at ∂Vj, the value of (39) is identically equal
to 0.

The above expressions (36)-(39) lead to straightforward
evaluation of matrix elements of (19).
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