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ABSTRACT Inferring the three-dimensional structure of objects from monocular images has far-reaching
applications in the field of 3D perception. In this paper, we propose a self-supervised network (SSL-Net) to
generate 3D point clouds from a single RGB image, unlike the existing work which requires multiple views
of the same object to recover the full 3D geometry. To provide the extra self-supervisory signal, the generated
3D model is simultaneously rendered into an image and compared with the input image. In addition, a pose
estimation network is integrated into the 3D point cloud generation network to eliminate the pose ambiguity
of the input image, and the estimated pose is also used for rendering the 2D image with the same pose as input
image from 3D point clouds. The extensive experiments on both real and synthetic datasets show that our
method not only qualitatively generates point clouds with more details but also quantitatively outperforms
the state-of-the-art in accuracy.

INDEX TERMS 3D reconstruction, point-cloud, self-supervised learning, 3D shape completion, single view
reconstruction.

I. INTRODUCTION
3D shape perception is a fundamental theme both in human
and computer vision. The ability to infer 3D structure from
monocular images has far-reaching applications in the field of
robotics and perception, such as AR/VR [1], scene segmen-
tation [2], object deformation, robotic grabbing and obstacle
avoidance [3], [4]. However, the task faces considerable chal-
lenges: firstly, an image does not have a one-one correspon-
dence with its 3D structure, leading to inherent ambiguity.
Secondly, information is limited in 2D inputs due to lack of
efficient image mining methods.

Although human can infer the three-dimensional structure
of a scene and the shapes of objects from limited information
due to a strong prior knowledge about shapes and geometries
of objects or scenes. It is extremely challenging for computers
to reconstruct an 3D object or a scene from one or multiple
viewpoints. It is an inherently ill-posed problem where the
variety of factors, such as shape, color, texture and illumi-
nation may lead to a correspondence between the model
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and multiple different 2D images. To tackle the problem,
most existing methods obtain information from an image
sequence [5] or multi-view stereo (MVS) [39]. However,
in many cases, such as real-time 3D reconstruction and the
environment where multiple views of the object cannot be
obtained, these multi-view reconstruction will no longer be
suitable and unable to meet actual needs. Hence, 3D recon-
struction from single-view image is an emerging research
since it is more suitable for different scenes, more conve-
nient for retrieving data and more economical and practical.
In recent years, convolutional neural network (CNN) has
made remarkable progress in the field of 3D vision [7]–[9].
Especially, several large open source 3D model repositories
have generated, such as ShapeNet [10] and Pix3D [11], which
all contribute to the further study of single-view reconstruc-
tion tasks.

A 3D model can be represented in various forms, such
as voxel or point cloud. Recent researches on 3D recon-
struction based on deep learning can directly map the input
image to a geometric model [12]–[14]. 3D CNN is utilized
on the voxel grid to reconstruct 3D structures from a sin-
gle image, in which volumetric representation is typically
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FIGURE 1. Diagram of difficulties in single-view point cloud object
reconstruction. On one side, recovering 3D structure from a single-view
image is an ill-posed problem. The result of optimizing the model only
with the supervision of ground-truth 3D data [19] may lack detailed
surfaces. On the other side, it is also found that the visual error of
generated point clouds vary with different poses. For instance,
(a) and (c) represent the same object from two different perspectives but
they look quite different, (b) and (d) are the same. The reconstructed
point clouds from 3D-LMNet miss some important detailed surfaces,
while our method can solve these difficulties effectively and receive
detailed 3D shapes.

required [15]–[17]. However, unlike image generation,
in which each pixel is equipped with specific spatial and
texture information, voxel representation is inherently more
difficult due to the rough shape surface, complicated calcula-
tion, and excessive computational consumption. In contrast,
3D point clouds effectively exploit the sparseness of the data
and can represent the surface of the shape with more details.
Recent work in this field has focused on designing neural net-
work architectures and loss functions to process and predict
3D point clouds more accurately [18]–[20]. Point clouds are
prestigious for their scalable data representations, compact
encoding of shape information, and optionally embedding
textures.

However, there are still unsolved problems in the task of
single-view image reconstruction with point clouds. On one
side, recovering 3D structure from a single-view image is an
ill-posed problem. The result of optimizing the model only
with the supervision of ground-truth 3D data [19] is shown
as in FIGURE 1, where the reconstructed point clouds lack
detailed surfaces. It can be seen that it is not sufficient to
induce the network to generate a reasonable and accurate
3D model relying solely on the supervision of three-
dimensional information. On the other side, it is also found
that the visual error of generated point clouds vary with
different poses.

In this paper, we propose a cascaded network based on self-
supervised learning which reconstructs 3D point clouds from
a single RGB image. Compared with the traditional structure
from motion (SFM) method [5] and MVS method [6] for
3D reconstruction, both of which require a mass of images
to cover each viewpoint of the object, the proposed network
can infer the unseen part of the object from a single image
based on the semantic learning, resulting in an intact dense
reconstruction of 3D objects. In order to solve the prob-
lem of inadequate supervision, we introduce an extra self-
supervisory signal, the generated 3Dmodel is simultaneously

rendered into an image and compared with the input image.
Meanwhile, a pose estimation network is integrated into the
3D point cloud generation network to eliminate the pose
ambiguity of the input image, and the estimated pose is also
used for rendering the 2D image with the same pose as
input image from 3D point clouds. In addition, the method
proposed in this paper can also be used as a basic method to
generate the preliminary point clouds of the object, and then
combined with the existing methods to obtain a more detailed
three-dimensional model. The key contributions of our work
are summarized as follows:
• We propose a novel self-supervised learning (SSL-Net)
pipeline for generating 3D point clouds from a single
RGB image, in which the generated 3D point cloud is
transformed into a 2D image to compare with the input
RGB image. The difference of these two images is used
as extra 2D loss for 3D point cloud generation network,
which compensates for the 3D loss that lacks of structure
information.

• An image pose estimation network is integrated into
the 3D point cloud generation network, the predicted
pose of the input image can eliminate the impact of
pose variations of input image, resulting in a pose-aware
3D reconstruction.

II. RELATED WORK
A. 3D OBJECT RECONSTRUCTION
Most works on 3D reconstruction focus on the multi-
view geometry (MVG) [21], such as structure from motion
(SfM) [5], [22], [23], simultaneous localization and map-
ping (SLAM) [6], and depth sensing devices (e.g RealSense
cameras) based methods [24]. Although these methods con-
tribute a lot in specific scenes, there are some drawbacks,
such as 1) MVG can’t rebuild missing parts of the view,
therefore enough images from every viewpoint are required
to ensure the integrity of reconstruction. 2) Reconstruction of
multi-views means an increase in computational complexity,
which is not applicable for real-time reconstruction. These
drawbacks limit the application of multi-view reconstruc-
tion. Therefore, the learning-based approaches for single-
view reconstruction are extensively investigated recently.

The learning-based approach requires sufficient training
data to learn semantic features. However, there is no large
open 3D database in the field that meets the requirements
in the early stage. Recently, the emergence of some large
3D model libraries (such as ModelNet [25], ShapeNet [10]
and Pixel3D [11]) promotes the research progress of 3D
object reconstruction. Meanwhile, a number of effective net-
works for 3D data analysis have been proposed, such as the
network FPNN [26] for voxel shapes, as well as Pointnet [27]
and PointCNN [7] for the feature extraction of point clouds.

B. DEEP LEARNING ON SINGLE IMAGE GENERATION
Prior works including 3D auto-encoder [28] and recurrent
network [14] learn a latent representation for volumetric data.
With the significant progress in 3D deep learning field, most
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FIGURE 2. SSL-Net pipeline. We propose a 3D point cloud generation network based on self-supervised learning (SSL-Net). The auto-encoder
network for pre-train is applied to both point clouds and images to obtain the latent features, which are used to supervise the SSL-Net. We
introduce an extra self-supervisory signal, that is, the generated 3D model is simultaneously rendered into an image and compared with the input
image. In addition, a pose estimation network is integrated into the 3D point cloud generation network to eliminate the pose ambiguity of the
input image, and the estimated pose is also used for rendering the 2D image with the same pose as input image from 3D point clouds..

of the learning-based single-view reconstruction is generated
by 3D CNN similar to the method of 2D CNN image gen-
eration, and represented by voxel shape [17], [29]. Stutz and
Geiger [30] proposed a weak supervisory mechanism fitting
3D shapes completion through a variational auto-encoder
(VAE). Hane et al. [16] reconstructed a single RGB image
with a high-precision voxel grid. Yang et al. [15] proposed
a novel network based on generative adversarial networks
(GAN) recovering the 3D structure directly from a single
depth view, which is referred to 3D-RecGAN. However,
the voxel grid resolution obtained with these two methods
is 2563, which is extremely demanding on hardware devices.
Recently, Tatarchenko et al. [31] proposed an octree rep-
resentation, which enables higher resolution outputs in
3D reconstruction with limited memory. However, 3D voxel
is not a mainstream 3D representation in game and movie
industries. 3D shape represented by voxel increases the sur-
face accuracy by adding three-dimensional blocks, and abun-
dant information is located on the surface of the 3D object,
which expends a lot of computing resources.

In order to balance computational complexity and surface
accuracy, mesh [32], [34] and point cloud based methods
have recently been proposed. Wangle et al. [32] proposed
a coarse-to-fine mechanism to directly generate a triangular
mesh of a color image based on Graph CNN. Jack et al. [33]
proposed a free-form deformations method for learning 3D
reconstruction from a single image. Haoqiang et al. [18]

proposed a network (PSG-Net) and loss functions to gener-
ate scattered point clouds, and presented a single-view 3D
reconstruction approach superior to the voxel representation
method [14]. Mandikal et al. [19] emphasized on the impor-
tance of learning the latent representation of 3D point clouds
before mapping the image into 3D space, which improved
the reconstruction accuracy of point clouds. Lin et al. [20]
optimized the network by synthesizing new depth maps for
the input images to obtain denser point clouds.

III. APPROACH
In this paper, we propose a self-supervised learning pipeline
for 3D point cloud reconstruction from a single RGB image as
shown in FIGURE 2. It consists of a point cloud auto-encoder,
a binary image auto-encoder and a network generating 3D
point clouds from the input RGB images. In order to represent
all the characteristics of the input data with fewer parame-
ters, we introduce four latent features (F̃P, FP, F̃B and FB)
and design them into the same dimensions (512-dimensional
features) for ease of supervision and the subsequent decod-
ing process. The 3D models are composed of numerous
unordered points and RGB images are composed of Tens
of thousands of pixels, both of which are represented by a
large amount of parameters and bring much trouble to fast
feature extraction and reconstruction. According to recent
research, we found that the auto-encoder is very suitable for
handling the above problem for itself is a common method
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of dimensionality reduction. We use the appropriate feature
extraction network as the encoder for different input data. The
details of the extracted features are as follows:

1) F̃P is the latent extraction feature of the 3D point cloud
auto-encoder. As shown in the orange dotted block diagram
of FIGURE 2, we use a network structure similar to point-
net [27] as the encoder E1

P to extracting features. F̃P contains
the structure and direction information of the point clouds,
which can be used to describe the 3D shape. In addition,
F̃P will serve as a supervisor for the next point cloud gen-
eration network.

2) FP is actually the latent feature of the input RGB images
using two-dimensional convolution in the point cloud gen-
eration network as shown in the blue dotted block diagram
of FIGURE 2. To generate the preliminary point clouds,
we take the trained DP obtained by the point cloud auto-
encoder as the decoder of FP. As long as FP and F̃P are
close enough, we treat the output of DP as the generated
preliminary point clouds.

3) F̃B is the latent extraction feature of the binary image
auto-encoder. As shown in the green dotted block diagram
of FIGURE 2, the input binary image is encoded by E1

I , and
then, the obtained feature F̃B is applied to represent the deep
information of the binary image. In addition, F̃B will serve as
a supervisor for the next point cloud generation network to
restore the binary images.

4)FB is the latent feature of the generated preliminary point
clouds obtained from the decoder DP as shown in the blue
dotted block diagram of FIGURE 2. To restore the binary
images of the preliminary point clouds, we take the trained
DI obtained by the binary image auto-encoder as the decoder
of FB. As long as FB and F̃B are close enough, we keep the
encoder E2

P no longer changing. At last, the network training
of binary image restoration from the generated point clouds
is completed.

In the process of generating delicate point clouds, the
input RGB image is first used to reconstruct the preliminary
3D point clouds with the encoder E2

I and decoder DP, and
then the preliminary point clouds are rendered into binary
images with the trained encoder E2

P and decoder DI . The
generated binary images are compared with the input binary
images, and the 2D MSE loss between these two binary
images is used as self-supervised loss, and the 3D chamfer
loss is used as a reconstruction loss. The self-supervised
learning requires less training data than the vanilla supervised
learning, and extracts latent features of the input data, which
makes the network have favorable generalization ability.
In addition, the proposed pose net used to estimate the pose
of the input image can solve the problem of pose ambiguity
during the reconstruction process.

In detail, the training process of SSL-Net can be
divided into three stages. The first stage is to generate
3D point clouds from single-view RGB images: using the
point cloud auto-encoder network (E1

P, DP) to learn the
latent features F̃P of the input point clouds, and train-
ing the image encoder E2

I to obtain the latent image

features FP, as well as generating preliminary point clouds
from the features F̃P with the trained decoder DP. In the
second stage, the binary images are recovered from the
preliminary point clouds: using the image auto-encoder
network (E1

I , DI ) to learn the latent image features F̃B, and
training the point clouds encoder E2

P to get the latent features
FB with the supervision of F̃B, as well as recovering the binary
images corresponding to the preliminary point clouds. The
third stage combines the first two stages with pose net to
achieve joint optimization. The details of each module are
described below.

A. 3D POINT CLOUD RECONSTRUCTION FROM IMAGE
The 3D point cloud reconstruction is based on a pre-trained
auto-encoder, which consists of an encoder and a decoder,
the encoder learns the latent features from the 3D point
clouds and the decoder reconstruct the 3D point clouds from
the latent features. Based on the pre-trained auto-encoder,
2D images are used as input to train a network that output the
features approximating the latent features of auto-encoder,
and the latent features can be decoded into 3D point clouds
further.

1) 3D POINT CLOUD AUTO-ENCODER
First, we train the point cloud auto-encoder network (E1

P,DP)
to obtain a priori representation of the point clouds with
small amount of data, mapping the output geometry to input
image through the iterative optimization process. As shown
in FIGURE 3, the input is represented as S̃P ⊆ RB×N×3

(B represents batch, N represents the number of points in a
target three-dimensional structure), and the output is mapped
to SP ⊆ RB×N×3. The network architecture of encoder E1

P is
similar to Pointnet [27], inwhich 5 layers of 1D convolution is
used to obtain the features with the dimension of B×N×512,
followed by max pooling to generate latent features F̃P ⊆ Rk

(k = 512) with the dimension of B × 512. The decoder DP
is composed of three fully connected layers, and the output
is reshaped to B× 2048× 3. In this process, we use chamfer
distance [18] as supervisory signal. The chamfer loss function
is expressed as:

LCD(S̃P, SP) =
∑
x∈S̃P

min
y∈SP
‖x−y‖22+

∑
y∈SP

min
x∈S̃P
‖x − y‖22. (1)

2) POINT CLOUD GENERATION
The auto-encoder enables the network to reconstruct
point clouds from latent features F̃P by decode DP.
In order to recover the point clouds from a single image,
we only need to train an image encoder E2

I to approx-
imate the image feature F̃P to the latent point cloud
features FP. The feature loss LFP is as follows:

LFP (F̃P,FP) =
∑

w∈F̃P,z∈FP
|w− z|, (2)

where w and z represent the elements in F̃P and FP,
respectively.
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FIGURE 3. 3D point cloud auto-encoder. First, the ground truth point clouds S̃P are sent to the encoder E1
P , and then the latent

features F̃P are extracted from 5 convolution layers. At last, the reconstructed point clouds SP can be obtained from F̃P through 3 fully
connected layers.

TABLE 1. Parameters of binary image auto-encoder network. The encoder is composed of convolution layers except the last layer, and the decoder
consists of a structure with deconvolution and convolution alternately.

As shown in the first column of TABLE 1, the encoder
E2
I is composed of convolutional layers except the last layer.

The network extracts deep features from the input image and
finally gets a 512-dimensional feature vector through the fully
connection layer. Once the extracted image features FP are fit
with point cloud latent features F̃P, the 3D point clouds can be
reconstructed by decoderDP of the point cloud auto-encoder.

B. BINARY IMAGE GENERATION FROM 3D POINT CLOUDS
For 3D point clouds lack of structure information, they are
stored as array of 3D points without adjustment relation-
ship. 3D point cloud loss is not straightforward tomeasure the
similarity of two point clouds. Thus, we project the 3D point
cloud into a binary image to recover the structure information,
and the binary image of a point cloud is compared with
the input binary image as a supervisory loss. In order to
train the network in an end-to-end manner, we propose a
binary image generation network similarly with point cloud
generation network, in which, the binary image auto-encoder
is first trained to learn the latent image features that can be
reconstructed to binary image, and an encoder is re-trained to

extract features from point clouds that can approximate the
latent image features.

1) BINARY IMAGE AUTO-ENCODER
Consistent with the subsection III-A-1), we perform image
auto-encoder (E1

I , DI ) on the binary image of the input RGB
image. The network structure is shown in FIGURE 2. Firstly,
binarization is performed on the input image to obtain the real
binary image B̃I . And then B̃I is sent to the image encoder
to obtain the latent features F̃B ⊆ Rk (k = 512) of the
binary image. The parameters of the encoder E1

I are shown
in the left column of TABLE 1. The network is composed of
convolutional layers excepspatial features are decoded, and
the image content is filled with a transposed convolutional
layer, so that the image is gradually enriched to recover
the original binary image. The parameters of each layer are
shown in the right column of TABLE 1.

Mean squared error (MSE) is used as loss function to
evaluate the reconstruction error of the binary image. Each
pixel value of the real binary image and the decoder output are
represented by p and q respectively, where p ∈ B̃I , q ∈ BI ∗.
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Each image contains M pixel values. Therefore, the loss of
the two binary images can be expressed as follows:

LMSE (B̃I ,BI ∗) =
1
M

∑
p∈B̃I ,q∈BI ∗

(p− q)2. (3)

Once the auto-encoders are trained, the next stage includes
training the image encoder E2

I and point cloud encoder E2
P to

fit their output features FP and FB, respectively.

2) BINARY IMAGE PREDICTION
The binary image auto-encoder is used to to extract latent
image features. In order to predict the binary images from
point clouds, we need to train an extra encoder to extract
features that approximate the latent image features. The net-
work structure of the encoder E2

P is the same as E1
P. Before

performing the binary image prediction, we use the learned
image pose (Rm, tm) to translate and rotate the point clouds
until they are transformed into the same coordinate system:

x ′i = Rmxi + tm, i ∈ [0,N − 1], (4)

where, N denotes the number of points, and each point xi is
transformed to x ′i by the matrix [R, t].
Given the output image pose, the transformed 3D point

cloud shape has a one-by-one correspondence with its binary
image. After the operation of the encoder E2

P, we obtain
the point cloud features FB, which is used to calculate the
L1 regularization loss with the binary image features F̃B:

LFB (F̃B,FB) =
∑

u∈F̃B,v∈FB
|u− v|. (5)

The loss function LB of binary image prediction is expressed
as:

LB = λLFB + LMSE . (6)

C. POINT-CLOUD GENERATION NETWORK WITH
SELF-SUPERVISED LEANING
The point cloud generation network reconstructs the 3D point
clouds from a single image (Section III-A), and the point
cloud is transformed into a binary image by a binary image
network (Section III-B). These two networks are combined
and fine-tuned in an end-to-end manner to provide self-
supervised signal. Since the pose information of 3D point
clouds is unobtainable, we need to estimate the pose of input
image to predict the binary image from the 3D point cloud,
and the difference of the two binary images provides the extra
self-supervised loss.

We collect the Euler angles and translation vector of each
RGB image from ground truth to estimate its viewpoint, and
design the pose net to extract the features of the input image
as shown in FIGURE 4. The structure of pose net shares the

FIGURE 4. Image pose estimation. The feature is extracted from the
input, and the pose information of the image is then estimated, thereby
obtaining a three-dimensional model of a specific perspective.

parameters with E2
I except the last layer, which uses the fully

connected layer to output a six-dimensional vector to repre-
sent the image pose information. The six-dimensional vector
is multiplied by the reconstructed point cloud according to
equation 4. At last, a binary image with the same pose of input
RGB image can be generated from the 3D point cloud.

The image viewpoint information is composed of six
parameters (α, β, γ, a, b, c), where (α, β, γ ) represent three
direction angles (yaw, pich and roll), t = (a, b, c) represents
the translation vector. The direction angle is converted to a
rotation matrix R using equation 7, as shown at the bottom of
the next page.

The real binary image and the recovered binary image
constitute the optimization loss function:

Lopt (B̃I ,BI ) =
1
M

∑
p∈B̃I ,q∈BI

(p− q)2, (8)

where, each image containsM pixel values. Each pixel of the
real binary image and the decoder output is represented by
p ∈ B̃I and q ∈ BI ∗ respectively.

The generated 3D model is simultaneously rendered into
an image and compared with input image. In addition, a
pose estimation network is integrated into the 3D point cloud
generation network to eliminate the pose ambiguity of the
input image, and the estimated pose is also used for render-
ing the 2D image with the same pose as input image from
3D point clouds.

IV. EXPERIMENTAL RESULTS
In this section, we extensively evaluate the proposed self-
supervised network method qualitatively and quantitatively.
In addition to comparing with previous 3D shape generation
works, we also analyze the importance of each component in
our model by ablation study.

A. EXPERIMENTAL SETUP
1) DATA PREPARATION
Shapenet dataset is used to train and evaluate the per-
formance, which is provided by Chang et al. [10] and
it is a collection of 3D CAD models organized by the

R(α, β, γ ) =

cosαcosβ cosαsinβsinγ − sinαcosγ cosαsinβcosγ − sinαsinγ
sinαcosβ sinαsinβsinγ − cosαcosγ sinαsinβcosγ − cosαsinγ
−sinβ cosβsinγ cosβcosγ

 . (7)
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FIGURE 5. Ablation study of chamfer distance. These curves reflect the effect of each module on the full model
quantitatively, the full model consists of point cloud latent feature generation, point cloud auto-encoder and binary
image prediction. For CD, smaller is better.

FIGURE 6. Ablation study of EMD. These curves reflect the effect of each module on the full model quantitatively, the full
model consists of point cloud latent feature generation, point cloud auto-encoder and binary image prediction. For EMD,
smaller is better.

WordNet [34] hierarchy. Shapenet includes 50k models
belonging to 13 object categories. Each model is rendered
from various camera viewpoints, and the corresponding cam-
era intrinsic and extrinsic matrices are recorded. Each CAD
model corresponds to 24 renderedRGB images from different
azimuth angles with the resolution of 128 × 128 × 3. For
fair comparison, we used the same training/testing split as
Choy et al. [14], that is, 80% of the dataset is used for training,
and the remaining 20% is used for testing.

2) EVALUATION METRICS
In recent years, chamfer distance (CD) and earth mover’s
distance (EMD) [3] have become two widely used evalua-
tion methods in the field of 3D reconstruction. Therefore,
we report both CD (Equation 1) as well as EMD as perfor-
mance metrics. The EMD between two point sets S̃P and SP
is given by:

LEMD(S̃P, SP) = min
φ:S̃P→SP

∑
x∈S̃P
‖x − φ(x)‖2, (9)

where φ : S̃P → SP is a bijection. Obviously, for CD and
EMD, the smaller is better.

For computing the metrics, consistent with 3D-LMNet,
we re-normalize both the ground truth and predicted point
clouds within a bounding box of length 1 unit and apply

the iterative closest point algorithm (ICP) [35] on them for
better alignment, providing the predicted point clouds with
the same view pose as the ground truth to reduce calculation
errors.

3) BASELINES
We compare our SSL-Net with several state-of-the-art sin-
gle image 3D reconstruction methods. Since the metrics are
defined on point clouds, we can evaluate PSG-Net [18] and
3D-LMNet [19] directly on their outputs. For 3D-R2N2 [14],
we can evaluate it by uniformly sampling points from mesh
created using the Marching Cube [36] method.

4) SETTINGS
In ourmethod, the input image size is 128×128×3 and binary
image size is 128× 128. The reconstructed point cloud con-
sists of 2048 points (each point consists of three coordinates
x, y and z). The network is implemented in Tensorflow and
optimized using the Adam optimizer with weight decay 1e-5.
The batch size is 32, the total number of training epoch in the
three training stages are 500, 30 and 30 respectively, and the
learning rate is set to 1e-5. The total training time is 72 hours
on Nvidia GTX 1080. It takes about 107ms to generate a
3D point cloud model in testing.
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FIGURE 7. Ablation study of the proposed method. These results demonstrate that all the components presented in this work
contribute to the final performance.

TABLE 2. Comparisons with state-of-the-art on Shapenet dataset (per category), including 3D-R2N2 [14], PSG-Net [18] and 3D-LMNet [19] (smaller is
better), where all numbers are scaled by 100. Best results under each threshold are bolded.

B. ABLATION STUDY
In this section, we perform the ablation study to analyze
the importance of each component in our model. FIGURE 5
and FIGURE 6 plot the CD and EMD evaluation results by
successive removal of one component from our full model,
the full model consists of point cloud latent feature genera-
tion, point cloud auto-encoder and binary image prediction.
We argue that quantitative analysis does not exhaustively
reflect the quality of the recovered 3D geometry, so each
component is also qualitatively visualized to show the con-
tribution in our system. The results are shown in FIGURE 7.
These results demonstrate that all the components presented
in this work contribute to the final performance.

1) POSE NET
Wefirst remove the pose net module, and the [R, t] matrix can
be only obtained from the known data. It can be seen from
the third column of FIGURE 7, the predicted point clouds

have more noise points than the full model, and the values
of CD and EMD are worse either. Therefore, the ability to
distinguish image perspective can reduce the noise in the
shape of the object, making the surface more detailed.

2) IMAGE PREDICTION BLOCK
On the basis of the previous step, we then remove the binary
image prediction module, which is used to self-supervising
with the ground truth. It can be seen that the predicted 3D
shapes become less close. The quantitative results (grey lines
in FIGURE 5 and FIGURE 6) also demonstrate the effective-
ness of the binary image prediction module.

3) PC LATENT BLOCK
Finally, we demonstrate the role of point cloud auto-encoder
networks in object reconstruction. The chamfer distance
is used as a loss function to generate 3D point clouds
without passing through the auto-encoder. As can be seen
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FIGURE 8. Qualitative results compared to state-of-the-art methods on ShapeNet, including the input images, ground truth, PSG-Net [18],
3D-LMNet [19] and our proposed method.

in FIGURE 5 and FIGURE 6 (yellow line) that both quan-
titative and qualitative results are not well. In this case, only
the outline of the model can be reconstructed without rich
detail, therefore, the point clouds tend to be very sparse. For
example, when generating a chair, the legs of the chair cannot
be fully reconstructed.

C. COMPARISONS WITH STATE-OF-THE-ART
TABLE 2 shows the performance of CD and EMD of 13 cat-
egories on the Shapenet dataset when comparing with three
different state-of-the-art methods for single-view 3D recon-
struction. Meanwhile, we also compared the average accu-
racy with more state-of-the-art methods which all generate
the 3D model from a single RGB image. Among them,
3D-R2N2 [14] proposes a voxel grid method, N3MR [38],

Pixel2Mesh [32] and AtlasNet [37] reconstruct the 3D mesh,
3D-PT-Generation [20], PSG-Net [18], 3D-LMNet [19] and
3D-PSRNet [40] represent the 3D shape with point clouds.
It can be seen that the proposed method achieves the state-of-
the-art results in both CD as well as EMD. Our network out-
performs the state-of-the-art methods in 9 out of 13 categories
in Chamfer and 8 out of 13 categories in the EMD metric,
while also obtaining lower overall mean scores. Among the
compared methods, the most advanced one is 3D-LMNet,
which uses auto-encoder to extract the latent features of
point clouds and obtains better results. However, this method
lacks of sufficient self-constrained conditions. Therefore,
we propose to apply self-supervised learning to achieve more
detailed and optimized three-dimensional shapes. To demon-
strate this, we visualize the reconstruction results and
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FIGURE 9. Visualization of binary image recovery: (a) Input binary image; (b) Input RGB image; (c) Reconstructed point cloud; (d) Recovered
binary image. For each model, the input images from three different orientations are chosen to obtain the corresponding binary images.

FIGURE 10. Qualitative results of real-world images. We use the model trained from the ShapeNet dataset to run directly on the real
images using the image cropping method and each point cloud model consists of 2048 points.

compare it with the predicted shapes of PSG-Net [18] and
3D-LMNet [19] as shown in FIGURE 8. We can see that the
3D point clouds generated by PSG-Net only uses 1024 points

to represent the shape of the object, the resolution of which
is too low to describe the complete surface details of the
object. 3D-LMNet uses 2048 points to represent the shape
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TABLE 3. Comparisons with more state-of-the-art on Shapenet dataset
(average CD value of each category), where all numbers are scaled by 100
(smaller is better). Best results under each threshold are bolded.

of the object. The reconstruction result is much better than
PSG-Net, but it still can’t achieve quite detailed surface in
some cases. For example, in the first row of FIGURE 8,
some noise points around the aircraft fuselage cause the
wing partial missing, and the shape of the object is not
clear enough. While our method has stronger applicability to
images of different blurred perspectives by joint optimization
network. The design of multiple loss functions also enables
the predicted point clouds to have reasonable constraints
and detailed surface while having high degrees of freedom.
For fair comparison, we adopt the same evaluation method
as 3D-LMNet, whose metric is calculated at 1024 points after
ICP alignment [35] with the ground truth.

D. VISUALIZATION OF BINARIZATION OF 3D POINT
CLOUDS
The binarization of 3D point clouds enables the network to
compared with input image, which provides a complete self-
supervised signal. This section visualizes the predicted binary
image from the 3D point clouds. For images with different
viewpoints of the same object, the network can generate
an 3D point cloud with the corresponding perspective by
estimating image pose matrix [R, t], and the binarization of
the 3D point clouds retain the same pose with the input image.

FIGURE 9 shows some visualization examples of each
component of SSL-Net, including the input binary image,
input RGB image, generated 3D point clouds, and recovered
binary image. For eachmodel, the input images from different
poses are chosen to recover their own 3D point clouds, and
predict the corresponding binary images. Although the edge
of the restored binary image is slightly blurred, it still can
accurately distinguish the poses of the same object. The
restored binary image is similar to the input binary image.
By comparing these two binary images, a self-supervised
network is formed, and the 3D point clouds are optimized by
the self-supervised signal from 2D binary images.

E. MORE RESULTS AND APPLICATIONS TO
REAL WORLD DATA
To evaluate the generalization ability of the proposedmethod,
we qualitatively evaluate our network on real-world images.
We use the model trained from the ShapeNet dataset to
run directly on the real images using the image cropping

method provided by PSG-Net [18], and the results are shown
in FIGURE 10. It is illustrated that our model trained on
synthetic data has excellent generalization capabilities over
the real-world images with various categories.

V. CONCLUSION
In this paper, we propose a cascaded self-supervised network
to reconstruct 3D point clouds from a single image, after
generating 3D point clouds, the network framework can fur-
ther restore the binary image of the input as an extra self-
supervision. In addition, the image pose estimation enables
the network to distinguish image viewpoints even when the
angle is blurred, so that it can still be effectively constrained to
generate reasonable point clouds. Our network outperforms
the current prestigious methods in both chamfer distance and
EMDmetric. The experimental results of the single-image 3D
reconstruction indicate that we can generate more accurate
and more detailed 3D shapes than state-of-the-art methods.
The visualization of binarization of input images and point
clouds depicts that the extra self-supervised loss can improve
the accuracy of 3D point clouds. The self-supervised learning
pipeline for 3D generation is well worth studying and can
achieve great improvements in 3D object reconstruction.
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