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ABSTRACT Complex event processing (CEP) is a powerful technology for analyzing streams of
real-time events, coming from different sources, and for extracting conclusions from them. In many
situations, these events are not free from uncertainty, due to either unreliable data sources and networks,
measurement uncertainty, or inability to determine whether an event has actually happened or not. This paper
presents a proposal for incorporating and managing different kinds of uncertainty that may happen in both
events and rules of the CEP systems. We provide a library that enables the representation and propagation
of uncertain values, which can be efficiently integrated with the existing CEP languages and engines to deal
with uncertainty, and we show how the treatment of uncertainty can be smoothly added to two of them:
Esper and Apache Flink. Five applications coming from various domains serve to evaluate the proposal and
to analyze its performance and accuracy. The results show that the overhead introduced by the treatment of
uncertainty is not high and good precision and recall are achieved.

INDEX TERMS Complex event processing, measurement uncertainty, stream processing.

I. INTRODUCTION

Complex Event Processing (CEP) systems are being widely
adopted as they provide effective means for processing
and analyzing the steadily growing number of informa-
tion sources that continuously produce and offer data in
many applications of interest. Examples of such applications
include monitoring systems for critical infrastructures [1],
environmental monitoring [2]-[4], stock market analysis [5],
network analysis and surveillance [6], maritime vessels tra-
jectory monitoring [7], and social media data aggregation
[8], [9]. One domain where CEP is particularly relevant is
the Internet of Things (IoT) [10], [11], where applications
should process and react to events arriving from various kinds
of sources including wireless sensor networks, RFID devices,
GPS, etc.

In a nutshell, CEP is a stream-processing system for
analyzing and correlating streams of data about real-time
events that happen in a system, and deriving conclusions
from them [12]-[15]. A distinguishing feature of CEP, not
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present in most stream-processing systems, is that it permits
defining complex events on top of simple events (raw data),
to identify meaningful circumstances and to respond to them
as quickly as possible. Different domain-specific languages
called Event Processing Languages (EPLs) and engines for
processing events currently exist, such as Esper,! Apache
Flink,2 Microsoft Azure Stream Analytics,3 or Tesla [16].
CEP programs are usually composed by a set of rules. Each
rule defines a pattern and creates a complex event every time
the pattern matches the events in the stream.

One particular aspect that cannot be neglected when deal-
ing with physical systems and networks, is that the events
are not free from uncertainty [17]. It may be due to different
causes, including unreliable data sources and networks, mea-
surement uncertainty, or the inability to determine whether
an event has actually happened or not. Our CEP application
code may also have some associated uncertainty, when we
are not 100% confident on the rules. Some authors, e.g.

1 http://www.espertech.com/esper/
2https://ﬂink.apache.org/
3 https://azure.microsoft.com/en-us/services/stream-analytics/
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[18]-[21], have addressed these issues, using different tech-
niques and covering some of the aspects related to the
representation, management and propagation of uncertainty.
However, their proposals usually suffer from two main limita-
tions. First, they normally focus on specific aspects of uncer-
tainty in CEP systems (uncertainty in event attributes, event
occurrence, event timestamps or rules), with only partial cov-
erage of all these problems (cf. [22]). Second, propagation of
attributes’ uncertainty through operations is manually done,
which poses the burden of such a cumbersome and error prone
task on the system modeler.

This paper provides a classification of the different types of
uncertainty that may happen in CEP systems, and discusses
how to incorporate them into CEP events and rules. For this,
we use a Java library developed in a previous work [23] with
the intent to support an extension of the Object Constraint
Language (OCL) [24] and the Unified Modeling Language
(UML) [25] primitive datatypes. With this library, we are able
to represent uncertain values and transparently deal with mea-
surement uncertainty. Here, we reuse this library with a differ-
ent purpose: we show how it can be used to address measure-
ment and occurrence uncertainty in the events, in the values of
their attributes (including their timestamps), and in the con-
fidence of rules. We use two different CEP engines, namely
Esper and Apache Flink, to apply and evaluate the results of
our approach according to different dimensions: correctness,
performance, accuracy and applicability. We have applied our
approach to five different case studies, each one exhibiting
different characteristics.

This paper is an extension of [26], where we sketched the
initial ideas behind our approach. We have extended the orig-
inal paper in several directions. First, we have separated our
approach from the EPL of choice, by encapsulating the treat-
ment of uncertainty in a Java library. In this respect, we show
how our proposal can be incorporated into different EPLs,
namely Esper and Apache Flink. Secondly, we have extended
our proposal to deal with the uncertainty of dependent events,
as well as with events that have been registered but have
not happened in reality (false positives) and lost events (false
negatives). Thirdly, in this paper, we provide a more in-depth
evaluation of our approach, including an assessment of its
correctness, performance, accuracy and applicability using
five CEP applications from different domains.

The structure of the paper is as follows. First, Sect. II
briefly introduces CEP systems and their main features,
as well as the basic uncertainty issues that may happen
in CEP. A running example is used to illustrate the CEP
basic concepts and mechanisms. Then, Sect. III describes
our extension for dealing with uncertainty in CEP systems,
and the implementation that we have developed for the Esper
and Apache Flink CEP engines using our library for uncer-
tainty. The evaluation we have conducted on our proposal is
described in Sect. IV, including a set of case studies of differ-
ent nature that we have used to evaluate our approach as well
as the limitations we have found. Sect. V compares our work
with other existing proposals for dealing with uncertainty
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in CEP systems, discussing their benefits and limitations.
Finally, Sect. VI concludes and outlines some future lines of
work.

Il. BACKGROUND

A. COMPLEX EVENT PROCESSING

CEP [13], [14] is a form of Information Processing [12]
whose goal is the definition and detection of situations
of interest, from the analysis of low-level event notifica-
tions [27]. According to the Event Processing Technical
Society [28], the term simple event refers to the low-level
primitive event occurrences, and complex event to those
that summarize, represent, or denote a set of other events.
Complex events are derived by rules that define the relevant
patterns of (simple or other complex) events, their contents,
and their temporal relations.

Although several CEP systems and languages exist
[16], [29], [30], from a user’s point of view they all share
the same basic concepts, mechanisms and structure. These
will be briefly introduced below, using a running example.
In this section, we describe general CEP concepts and mech-
anisms, but to avoid ambiguity and for clarity and illustration
purposes we will use the Esper EPL language.

1) RUNNING EXAMPLE. FIRE DETECTION

IN A SMART HOUSE

To illustrate our proposal, suppose a neighborhood with smart
houses, each one equipped with sensors to detect temperature
and carbon monoxide (CO) levels. In particular, ceiling sen-
sors record the absolute value of the temperature of a house,
and CO detectors analyze the amount of CO gas present in
the air. Additionally, a sensor detects whether the entrance
door is open or closed. People living in that neighborhood are
equipped with wristbands that permit knowing their location.
Using the measurements provided by all these sensors, we are
interested in monitoring the following situations:

o TemplIncrease: The temperature of the house has
increased 2 or more degrees in less than one minute.

o TempWarning: Four TempIncrease events, whose
temperature is always above 33 degrees, occur in less
than 5 minutes.

o COHigh: The CO level of a house exceeds 5000 units.

« FireWarning: A COHigh event is detected, followed
by a TempWarning event, everything within less than
5 seconds.

« NobodyHome: The main door of the house is closed and
there is nobody within the perimeter of the house.

« CallFireDept: A FireWarning event occurs after a
NobodyHome event is detected. Therefore, the Fire
Department should be called.

2) CEP EVENTS

Luckham [14] defines an event as a record of an activity
that happens, or is contemplated as happening in a system.
Every event has a type and a set of attributes. In most of
CEP systems, events occur instantaneously, and they all have
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a timestamp attribute (either implicit or explicit) indicating
the moment in time when they are triggered.

For example, the following tuples are examples of Person
and Home events. The system receives information periodi-
cally from the sensors and notifies it by means of Home events,
which include information about the house id, the time at
which the event was produced (ts), the coordinates (x, y)
of the house, its size in square meters (sq), the temperature
(temp) and carbon monoxide levels (co), and whether the
door is open or not (dopen). Similarly, sensors in the wrist-
bands of the people in the system emit information about
them. Each Person event indicates the person id, the event
timestamp (ts), and the coordinates of the person location
(%, y). Times are expressed using the POSIX time conven-
tion, i.e., by the number of seconds elapsed since January 1,
1970 [31].

Person(id:1, ts:1533048980,
Person(id:2, ts:1533048980,
Person(id:3, ts:1533048981, :150, y:150)
Home (id:1, ts:1533048980, x:0, y:0,

sq:100, temp:20, co0:4000, dopen:false)
Home (id:2, ts:1533048980, x:0, y:200,

sq:120, temp:20, co0:4000, dopen:false)
Home (id:3, ts:1533048982, x:200, y:0,

sq:150, temp:30, co0:4000, dopen:false)

:50, y:50)
:100, y:100)

O M MW M

3) CEP RULE SPECIFICATION

A CEP rule defines a complex event, by means of a pattern
expression that combines other (simple or complex) events.
Whenever the pattern is detected in the stream (i.e., it is sat-
isfied by the stream events), the complex event is created and
added to the same stream. In the rest of this section, we will
identify and describe the most basic and representative types
of CEP patterns.

a: SELECTION PATTERNS

The simplest rule permits creating a complex event every time
a given simple event is detected. For example, the following
rule, named COHigh, creates a COHigh event every time a
Home event is detected whose CO level exceeds 5000 units.

@Name ('COHigh')

insert into COHigh

select hl.ts as ts, hl.id as id

from pattern[(every(hi=Home (hl.co>=5000)))1;

In the pattern, the label h1 acts as an alias that refers to an
expression (in this case, the Home event) and can be used in
other sub-expressions. The event COHigh has two attributes
(ts and id) whose values are obtained from those of the
Home event that triggers the rule. The use of the operator
every ensures that a COHigh event is created every time a
Home event satisfies the pattern. Otherwise, only one complex
event will be created the first time a simple event satisfies the
pattern.
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b: TEMPORAL SEQUENCING OF EVENTS
One important CEP operator captures is the sequence that
requires that all events occur sequentially. In Esper, this
operator is called followedBy (“‘~>"") and introduces a tem-
poral ordering between pairs of events or expressions. Events
related by this operator do not need to be consecutive:
“A —> B” only implies that A occurs some time before B.
For example, the pattern TempIncrease is triggered
whenever two Home events related to the same house occur
within a window of 100 seconds, and the difference between
the temperatures of the two is greater than 2.

@Name (" TempIncrease")

insert into TempIncrease

select hl.id as id,
h2.ts as ts,
h2.temp as temp,
h2.temp-hl.temp as incr

from pattern [every(hl=Home () -> h2=Home (
h2.id=h1.id and h2.temp-hl.temp>=2))]
.win:within (100 seconds);

c: WINDOWS

We can also assign windows to rules to restrict their scope.
Windows could refer to specific time intervals (time win-
dows) or the number of occurrences of events (event win-
dows). Furthermore, in Esper each window can be either
batch or sliding. Batch windows have fixed starting and end-
ing points. In contrast, Sliding windows update its starting and
ending points adding a unit to them continuously. In other
CEP languages, such as the Azure Stream Analytics Query
Language, batch windows are called tumbling windows and
correspond to fixed-sized, non-overlapping and contiguous
time intervals. Hopping windows are similar, although they
model scheduled overlapping windows (in Esper, they can
be defined using contexts). Finally, session windows group
events arriving at similar times, but filtering out periods of
time with no events. The examples in this paper use batch
(i.e., tumbling) and sliding windows.

For instance, the previous rule TempIncrease used a batch
time window of size 100, which means that the rule is trig-
gered every 100 seconds. We can also define a sliding time
window whose ending time is T, where T is the timestamp of
the event being considered, and its starting time is T — L, with
L the duration of the window. The rule NobodyHome described
below uses a sliding time window of 3 seconds.

@Name ("NobodyHome")

insert into NobodyHome

select p.ts as ts, h.x as x, h.y as y,

h.id as id
from pattern [(every h =Home(not dopen) ->
every (p=Person(

(p.x <= (h.x - Math.sqrt(h.sq)/2)) or
(p.x >= (h.x + Math.sqrt(h.sq)/2)) or
(p.y <= (h.y - Math.sqrt(h.sq)/2)) or
(p.y >= (h.y + Math.sqrt(h.sq)/2))) ))

where timer:within(3 seconds)];
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Similarly, event windows permit referring to sets of partic-
ular events of a given size (the window size). For instance,
every 100 COHigh events. Event windows can be either
batch or sliding, too.

d: TIME MODEL

In general, the behavior of time windows, and of the fol-
lowedBy operator (— >), depends on the notion of time used
by the CEP engine. Different CEP systems implement distinct
time semantics, which can be classified into event time, inges-
tion time or processing time semantics [32], [33]. In event
time semantics, each event is timestamped by the source that
produces it. Under this model, events are always processed in
the order they were generated, no matter the order in which
they are received by the CEP engine, or the time at which they
arrive. This model ensures determinism (as long as the CEP
system is not probabilistic [22]).

In ingestion time semantics, the timestamp is assigned
by the engine that receives the events (assuming a single
machine receives and timestamps all events) and the orig-
inal timestamps of the events are ignored. This model also
ensures deterministic processing, but it does not respect the
order in which the events were produced—they may arrive
out of order due to communication or network delays, for
example. Differences in the source clocks are resolved in
this way.

Finally, in processing time semantics, the timestamp of
the events are determined by the clock time of the physical
machine processing them, at the moment in time when they
are processed. Any source timestamp is ignored. Even when
this is not a deterministic model, it is common in distributed
processing systems under the assumption that the clock skew
between physical machines processing the events is negli-
gible, and that the CEP patterns processing time does not
introduce significant delays [33].

To deal with uncertain timestamps, we need to either
assume event time semantics in order to handle their val-
ues, or be able to get the timestamps from the processing
engine (assuming they have uncertain values). In the follow-
ing, to reason about the uncertainty of the timestamps we will
use the values of the event attributes, no matter how they are
obtained—i.e., we will use event time semantics.

e: COMBINATION OPERATORS

Expressions in rules can be combined in different ways by
using logical operators (or, and, etc.), comparison operators
(<, <, etc.), and temporal connectors (until, while, etc.),
among others. In addition, windows can be combined restrict-
ing their scope.

We have used these kinds of operators in the
TempIncrease and NobodyHome rules above. They are
also used in the TempWarning rule, which starting from an
event with temperature equal to or greater than 33 degrees,
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is triggered in case of increasing temperature of four
TempIncrease events collected in a five minutes interval:

@Name ("TempWarning")
insert into TempWarning
select tl1.id as id,
t4.ts as ts,
t4.temp as temp
from pattern [(every
(t1=TempIncrease(tl.temp>=33))
->(t2=TempIncrease (t2.temp>tl.temp and
t2.id=t1.id))
->(t3=TempIncrease (t3.temp>t2.temp and
t3.id=t1.id))
->(t4=TempIncrease(t4.temp>t3.temp and
t4.id=t1.1id)))
where timer:within(5 minutes)];

A similar rule, FireWarning, imposes a pattern that
requires that a TempWarning event follows a COHigh event
within less than 5 seconds.

@Name ("FireWarning")
insert into FireWarning
select tw.id as id, coh.ts as ts
from pattern [(every (coh=COHigh())
->every (tw=TempWarning(tw.id=coh.id)))
where timer:within(5 seconds)];

Another complex event in our system is created by the
rule CallFireDept, which generates an event of the same
name when the system detects that there is nobody home
and a FireWarning event is detected in the stream within
5 seconds:

@Name ("CallFireDept")

insert into CallFireDept

select fw.id as id, fw.ts as ts

from pattern [(every (mh = NobodyHome ())
->(fw = FireWarning(fw.id = nh.id)))

where timer:within(5 seconds)];

f: HIERARCHIES OF EVENTS

As mentioned above, CEP systems enable that complex
events generated by a rule are used by other rules, thus
generating hierarchies of rules and events [28]. Fig. 1 shows
the hierarchy for the smart house case study, represented
by means of a dependency graph. It shows the two simple
events at the top (with dashed lines) and the CEP rules
(with normal lines) by means of nodes. An arrow between
two nodes A and B indicates that rule B depends on the
rule (or simple event) A. In general, this graph should be
acyclic [34].

In our case study, there are rules such as TempWarning,
FireWarning, and CallFireDept that use other complex
events in their specifications. These rules should take into
account execution priorities or any other mechanism to guar-
antee their confluence and avoid event races [34], [35].
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FIGURE 1. Rule dependency graph for the smart house case study.

4) STRUCTURE OF CEP RULES
An important feature of EPLs that we exploit in this paper is
that their rules usually share a common structure:

o A Selection phase that identifies the occurrence of the
source events that will trigger the pattern. These events
constitute the antecedents of the complex event pro-
duced by the rule.

o A Matching phase that decides whether values of
the attributes of the selected events fulfill the pattern
requirements, and evaluates the combination of all pat-
tern conditions (using operators and, or, — >, etc).

o A Production phase that generates the complex event
and calculates the values of its attributes. This step may
also include the computation of aggregated values using
sums, averages, and similar operations.

B. UNCERTAINTY

Uncertainty is the quality or state that involves imperfect
and/or unknown information. It applies to predictions
of future events, estimations, physical measurements, or
unknown properties of a system [36]. For example, measure-
ment uncertainty refers to the inability to know with complete
precision the value of a quantity. Confidence refers to the
degree of belief that we have on the actual existence of an
entity (in our case, the occurrence of an event), or on the
inference of a given CEP rule.

Both types of uncertainties can be represented in different
forms, and using different formalisms. For example, measure-
ment uncertainty can be expressed by means of a probability
distribution associated to every uncertain variable, represent-
ing the distribution of the dispersion of its values. This is the
approach used by, e.g., the UML Profile for MARTE [37].
However, this approach represents some limitations when
calculating the aggregated uncertainty of the result of an
operation that involves operands with different probabil-
ity distributions. A more widely adopted approach among
engineers of different disciplines to represent measurement
uncertainty, is defined by the Guide to the Expression of
Uncertainty in Measurement (GUM) [38]. This international
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standard defines general rules for evaluating and expressing
uncertainty in measurement of physical quantities. It provides
a quantitative indication about the quality of the result so that
those using it can assess its reliability. The GUM associates
a standard uncertainty to any uncertain value, defined by
the standard deviation of the measurements for such a value.
Then, a Real number x becomes a pair (x, u), also noted x £ u,
that represents a random variable X whose average is x and
its standard deviation is u. With this, if X follows a normal
distribution N (x, u), we know that 68.3% of the values of X
will be in the interval [x — u, x + u].

Uncertainty also applies to Boolean values. For example,
in order to implement equality and comparison of numeri-
cal values with uncertainty, the traditional values of true
and false returned by Boolean operators are not enough.
Comparisons must to return Real numbers in the range [0, 1],
representing the probabilities that one uncertain value is
equal, less or greater than other. For instance, if a = 2.0£0.3
and b = 2.5 £ 0.25, then we have that the probabilities
of a < b,a = band a > b are 0.8937, 0.1062, and
0.0001, respectively. This leads to the definition of Uncertain
Booleans, which are Boolean values accompanied by the
level of confidence that we assign to them [23]. Therefore,
a UBoolean value is a pair (b, ¢) where b is true or false,
and the number ¢ € [0, 1] represents the probability that
b is correct. Thus, possible uncertain Boolean values are
(true, 0.95) or (false, 0.8). It also complies with properties
such as (b, c) = (—=b, 1 — ¢). UBoolean is a proper super-
type of Boolean and its associated operations, where true
corresponds to (true, 1.0) and false to (true, 0.0). The logical
operators, such as and, or, not or implies, are also lifted to
the UBoolean supertype and therefore extended to deal with
confidence. For example, assuming that two logical variables
(true, c1) and (true, cp) are independent, then (true, c1) A
(true, co) = (true, c1 * ¢2) [23].

To deal with uncertainty, we have used the U-Model con-
ceptual model [39] as a reference framework. When it comes
to concrete concepts that specialize some of the high-level
U-Model concepts, such as measurement uncertainty, or con-
fidence, we use standard references. In particular, we rely on
the ISO International Vocabulary of Metrology (VIM) [40]
and the GUM [36] for all measurement uncertainty related
matters, and we use probability theory [41] to express Con-
fidence and to assign probabilities to both events and CEP
rules. The confidence that we give to an event represents the
degree of trust that we have on their actual existence.

Here, it is interesting to distinguish between the real and
the modeled events: the former ones happen in reality; the
latter are the ones included in the stream of events and
processed by the CEP system, representing the real ones.
It may be the case that the event exists in reality but the
CEP system has not captured it (i.e., a false negative), or that
the CEP rules generate an event that does not actually exist
(i.e., a false positive). The first case may be due to unreliable
sources (e.g., defective sensors) or unreliable network that
may drop packages, while the second case is normally due
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to duplication of packages at network level, or to unreliable
CEP rule that erroneously produce complex events when they
should not.

We use probability theory, and not fuzzy logic because,
although both approaches deal with states of uncertainty, and
represent degrees of subjective belief, fuzzy set theory uses
the concept of fuzzy set membership, whereby an element can
belong to different sets of one partition of the whole space.
In turn, probability theory uses the concept of subjective
probability, i.e., the likelihood of an event or condition to
belong to each set of the partition, assuming it can only belong
to one set [42].

In a previous work [23], we showed how measure-
ment uncertainty can be incorporated into OCL [24] and
UML [25] primitive datatypes, including Real, Integer and
Boolean, defining super-types for them: UReal, UInteger
and UBoolean, respectively. We also implemented in Java
all the operations on these extended types to allow modelers
to use them and to propagate the uncertainty through the
operations.

The incorporation of such a library for extended datatypes
into CEP systems enables users to define and manipulate
uncertainty in the CEP rules in a high-level and transparent
manner. In this way, users do not need to worry about the
propagation of uncertainty, which is automatically performed
by the operations of these types.

C. UNCERTAINTY IN CEP SYSTEMS

Based on the concepts defined above, we have identified dif-
ferent kinds of uncertainty that may happen in CEP systems.
Let us describe them using the common structure of the CEP
rules. Starting with the selection phase:

« Uncertain events in the stream: missing events in the
stream, despite the fact that they actually happened (we
refer to them as false negatives, FN); or events in the
stream that were wrongly inserted (false positives, FP).

o Lack of precision in the values of the attributes of the
basic events in the stream, due to imprecision of the
measuring methods or tools (measurement uncertainty).
This kind of uncertainty includes lack of precision in the
events timestamps [43].

In the matching phase:

o Lack of precision due to uncertainty of comparison
operators (=, <, >,...) between uncertain values of
attributes of matched events. For example, when com-
paring two real values with uncertainty, such as a =
20+03and b = 2.5 £ 0.25, we obtain that a < b
with a confidence of 0.893 [23]. Any decision that we
make based on such a comparison should then be subject
to uncertainty. Note that this case also includes the — >
operator, since it basically compares the timestamps of
the events.

o Lack of precision due to uncertainty of logical com-
position operators (or, and, not) between uncertain
statements. Note that under the presence of uncertainty,
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these operators no longer return a Boolean value but a
UBoolean that represents the confidence that we assign
to the result of the operation.

In the production phase:

o Lack of precision in the values of the attributes of
complex events, due to the propagation of measure-
ment uncertainty in their computation from the events’
attributes.

o Lack of precision in the probability of the occurrence of
the generated complex event, due to incomplete or erro-
neous assumptions about the environment in which the
system operates, which may influence the confidence we
have in the CEP rule.

The following sections are dedicated to discuss the existing
approaches for dealing with these kinds of uncertainties, and
how we propose to address them. Basically, we focus on
two kinds of uncertainties: measurement uncertainty (due to
imprecision in the possible values of the attributes of events)
and occurrence uncertainty (the confidence that we assign
to the events in the streams, to the ones produced by the
rules, and to the rules themselves). Measurement uncertainty
is a particular type of aleatory uncertainty, whilst occurrence
uncertainty is a type of epistemic uncertainty [44].

lIl. EXTENDING CEP WITH

MEASUREMENT UNCERTAINTY

This section describes how we have incorporated uncertainty
information to CEP systems. More precisely, we discuss
how measurement uncertainty is associated to: (a) events,
both simple and complex—i.e., the probability that can be
assigned to their occurrence; (b) the values of their attributes,
since they may be produced by imprecise or intermittently
faulty sensors (in case of simple events), or derived from
uncertain data (in case of complex events); (c¢) their times-
tamps, because clocks may not be accurate or not synchro-
nized; and (d) the CEP rules, since sometimes we are not
completely confident about their inferences.

A. UNCERTAINTY IN MEASUREMENTS

AND ATTRIBUTES VALUES

In order to include measurement uncertainty in the attributes
of events, we declare the attributes using the corresponding
uncertain datatype (UReal, UInteger, UBoolean, etc.). By
using our library [23], users do not need to worry about the
propagation of uncertainty, since it is performed internally
and in a transparent way by the corresponding operations of
each extended type. Although in many cases the events are
independent, our proposal also permits dealing with depen-
dent events, as discussed later in Sect. III-F.

B. ASSIGNING UNCERTAINTY TO TIMESTAMPS

In our proposal we assume an event time semantics time
model [33], whereby events are explicitly timestamped by
their sources, and therefore we assume that events have an
attribute that contains the value of such a timestamp.
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Similarly to other proposals, e.g., in [20], we consider
that timestamps may also have some associated measurement
uncertainty. Therefore, to represent timestamps we use either
the datatype UInteger or UReal, depending on whether
time is discrete or continuous in our system. These extended
types incorporate a real number to the base value, which
indicates its precision, in terms of the standard deviation of
the possible values [23], [36]. For example, if our timestamps
are expressed in milliseconds using the POSIX notation [31],
a possible value for a timestamp produced by a clock whose
precision is 1 ms, can be 154461672503440.58.* Notice how
the comparison between two timestamps returns a UBoolean
value, since now it is difficult to tell apart two timestamps
that differ in less than 1 ms. In fact, the comparison 34 +
0.58 < 35 4+ 0.58 yields a confidence of just 0.62. However
34 4 0.58 is less that 36 &+ 0.58 with a confidence of 0.92,
and less than 37 + 0.58 with a confidence of 0.99. Since
the uncertainty is associated to the individual values of the
timestamp attributes, we allow the value of the uncertainty
to vary from one clock to another, and even vary among
different timestamps of the same clock—hence enabling the
simulation of the degradation of the clocks’ precision when
required.

C. ASSIGNING PROBABILITIES TO EVENTS

We also need to assign probabilities to events, expressing
the confidence that we have on their occurrence. In this pro-
posal, we do this by adding an attribute called conf to every
event.

This confidence represented as a probability does not mean
how often the event is supposed to happen—something that
for simple events can be expressed in terms of a probability
distribution, or for complex events can be estimated using,
e.g., Monte-Carlo simulations [35]—, but the confidence
level that we have on the fact that the event actually occurs in
reality if the CEP system predicts its occurrence.

For a simple event e, this probability coincides with
(1 —Ppy(e)), where Py, (e) is the probability of a false positive
for that event. This information is normally obtained from
the sensor manufacturer, or similar sources. It may also be
due to unreliable communication networks that duplicate
packets, or other causes. In any case, our contribution is
a mechanism for representing and taking into account this
information explicitly in our events.

In our proposal we are able to deal with false negatives too.
Although these situations are rare in practice, there are cases
in which the critically of missing a particular kind of event
cannot be neglected. Sect. III-G describes how we deal with
false negatives.

4According to the GUM [36], assuming a uniform distribution of the
possible values of the variable, the value is taken as the midpoint of the
interval, x = (a+ b)/2, and its associated uncertainty as u = (b —a)/(2+/3).
In this case, b — a = 2 and therefore u = 0.58.
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D. ASSIGNING PROBABILITIES TO COMPLEX EVENTS
Since complex events are derived, we have to derive also
their probabilities. Our approach assumes that the proba-
bility of a complex event in CEP depends on three main
aspects: the confidence that we have on the occurrence of
the input events of the pattern (antecedents); the confidence
level that we have on matching and comparison operations
performed by the rule pattern to trigger the production
of the complex event, as well as the computation of its
attributes; and, finally, the confidence that we have on the rule
itself.

This means that, given a rule R whose antecedents are
events e, ..., e, (they can be either simple or complex
events), that performs a matching process mg and produces a
complex event e, the probability of complex event e is given
by the following expression

P(e) = P(e1, ..., ey) - P(mg) - P(R) ey

where:

e P(er,...,e,) is the combined probability of the
events. For example, in case they are all independent,
P(ey,...,e;) = P(ey) - ... - P(ey). Otherwise condi-
tional probabilities should be used, as detailed later in
Section III-F.

e P(mpg) is the confidence level of the matching pro-
cess, which not only accounts for the uncertainty in
the comparison operations between uncertain values and
their combination using logical connectors (or, and,
— >, etc.), but also the propagation of uncertainty in the
operations that calculate the values of the attributes of
the complex event.

o P(R) is the rule confidence, represented by a probability
that captures the possible imprecision due to incom-
plete or erroneous assumptions about the environment
in which the system operates, or the knowledge we
have about the system behavior. This confidence can be
calculated by Bayesian Networks, as in [21], by expert
knowledge, or by any other means.

As we can see, the inputs of this method are the confidence
of the simple events (i.e., the probabilities of being false
positives and, if required, false negatives); the conditional
probabilities of the dependent events; and the probability of
the rule, as estimated by expert users.

E. THE SMART HOUSE EXAMPLE WITH UNCERTAINTY.

Let us show how the probabilities of the simple and complex
events for the smart house example are calculated. Starting
from the simple events, they are enriched with the measure-
ment uncertainty of their attributes, and with their confidence.
Remember that, for simple events, such as confidence is given
by the probability of a false positive for that event, and stored
in the event’s conf attribute.
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The following two simple events are examples of those that
will be fed into the CEP system:

Person (id:1, ts:(153304898,1.0) ,x:(50,0.1),

y:(50,0.1), conf:0.999)

Home (id:3, ts:(153304898,1.0), x:(0,0.1),
y:(0,0.1), sq:(100,0.1),
temp:(20,0.3), co:(4000,20),
dopen: (false ,0.99), conf:0.998)

The probability of each complex event is calculated as
the product of three factors: (1) the confidence level on
its antecedents, (2) the confidence level on matching and
comparison operations, and (3) the confidence level on the
rule itself. E.g., the probability of the TempIncrease event,
created by the rule of the same name, is given by:

P(TempIncrease)

= P(Home)? % //Antedecents

P (h2.temp — hl.temp > 2.0) * /Matching ops.
P(hl.ts < h2.ts) % //Comparison ops.
P (TempIncreaseRule) //Rule confidence

@

One of the benefits of using Esper EPL is that it permits
the use of external libraries written in Java, whose methods
can be invoked in the CEP rules. The only limitation is that
these methods should be static. Then, in order to use our
library of operations for the extended types [23], we have built
wrapper classes for each of the types, with static methods. For
example, class UReals contains the static implementations
of all methods provided by class UReal. Similar classes have
been developed for the rest of the uncertain datatypes.

With this, the rule TempIncrease can be written with
uncertainty as follows.

@Name (" TempIncrease")
insert into TempIncrease
select h2.ts as ts,
hi.id as id,
h2.temp as temp,
UReals.minus (h2.temp,hl.temp) as incr,
// Antecedents
hl.conf * hl.conf =
// Comparion operations
UReals.ge (UReals.minus (h2. temp,
hi.temp) ,2.0) .getC() *
UReals.lt(hl.ts,h2.ts).getC() *
// Rule confidence
P(TempIncreaseRule) as conf
from pattern [(every (hl = HomeEvent () ->
h2=HomeEvent (UBooleans.toBoolean (
UReals.ge(UReals.minus (h2.temp,
hl.temp) ,2.0)) and h2.id=h1.id)))
where timer:within (1l minutes)];

We can see how the rule computes all attributes of the
complex event, including attribute conf with the associ-
ated confidence, using the formula (2) above. It uses the
probability of the antecedents, the confidence of the opera-
tions (method getC() applied to a UBoolean value returns
its confidence) and the probability of the rule (a function
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P(TempIncreaseRule) returns that value). Notice that we
have separated the computation of the rule confidence from
its application in the formula. In this way, the function
P(TempIncreaseRule) could be a constant, a function or the
output of a Markov Logic Network or a Bayesian Network
defined for that rule [21].

The rest of the rules of our system follow the same strategy.
The interested reader can consult them in our project web site
and in our Git repository [45].

This example also illustrates the need to consider probabil-
ity in CEP systems instead of all events being equally prob-
able. This introduces an implicit prioritization mechanism,
very useful for instance when two or more critical events
occur (e.g., CallFireDept). In these cases, we could dis-
criminate among them based on their probability, attending
those most probable. These are those in which we have more
confidence that they have been correctly inferred.

F. DEALING WITH DEPENDENT EVENTS

So far we have assumed that events are independent from
each other, and that the values of its attributes are independent
variables too, i.e., the confidence we have on the occurrence
of one of them does not depend on the confidence we have
on the occurrence of others.”> Although this is the common
assumption in most proposals [22], in this section we discuss
how to deal with dependent events and dependent attributes.

1) CALCULATING THE CONFIDENCE OF

DEPENDENT EVENTS

A common situation of dependence between the confidence
of events happens when a complex event B depends on a
complex event A, and both depend on a simple event e. In this
case, the confidence of A already took into consideration the
confidence of e, and therefore we cannot simply multiply the
confidences of A and e to obtain the confidence of B, because
we would be counting twice the confidence of e.

These cases always occur during the generation of com-
plex events that depend on more than one complex event
(i.e., when complex events have more than one incom-
ing arrow from other complex events in the dependence
graph). For example, in the smart house case study, the
antecedents of the event FireWarning are the events COHigh
and TempWarning (see Fig. 1). The event TempWarning also
depends on event TempIncrease, which in turn depends
on Home. The probability of the generated FireWarning
event cannot be computed as the product of the individual
probabilities, since the antecedent events are not independent.
The situation is similar for complex event CallFireDept.

In these cases, the probability of the combined event,
P(ey,...,ey),is P(ey)-P(ex|er)-P(eslei Aen)-...-Ple,ler A
... A eu_1), where P(ejle; A ... A ej_1) is the conditional

STt is important to note here, again, that our confidence does not express
the probability of an event to happen, but the degree of belief that our CEP
rules have correctly inferred it.
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probability that event e; is correctly inferred, given that events
el, ..., ej—1 have been correctly inferred.

To compute the conditional probability of events, we need
to consider the number of incoming paths that the node
representing the event has from a common ancestor in the
rule dependency graph, and eliminate all the duplicated prob-
abilities from that ancestor. For example, in the smart house
case study (whose rule dependency graph is shown in Fig. 1),
event FireWarning receives two incoming paths from
a common ancestor: Home-TempIncrease-TempWarning-
FireWarning, and Home-COHigh-FireWarning. There-
fore, we should consider the confidence of event Home
only once when computing of the confidence of event
FireWarning. Similarly, there are three paths that lead to
event CallFireDept from a common ancestor, Home, and
therefore we should consider its confidence only once—and
not three times, as we would be doing if we simply multiplied
the probabilities of the antecedents of event CallFireDept.

With this, assuming that all the events are independent, the
confidence of FireWarning events is computed as follows:

P(FireWarning)

= tw.conf * coh.conf x //Antedecents
coh.ts.uLt(tw.ts).getC() * / Comp. operations
P (FireWarningRule) // Rule confidence

3)

Thus, the rule FireWarning could be specified in Esper
EPL as:

@Name ("FireWarning")
insert into FireWarning
select tw.id as id, coh.ts as ts,
// Antecedents
tw.conf * coh.conf *
// Comparison operations
UReals.lt (coh.ts,tw.ts).getC()*
// Rule confidence
P(FireWarningRule) as conf
from pattern [(every(coh=COHigh()) ->
every (tw = TempWarning (tw.id=coh.id)))
where timer:within(5 seconds)];

However, the events FireWarning and COHigh are not
independent, since they both depend on the simple event
Home, and therefore their probabilities should not be simply
multiplied. Thus, the formula (3) needs to be reformulated
and now the probability of the antecedents is no longer
tw.conf * coh.conf but P(tw|coh), which coincides with
tw.conf * coh.conf /home.conf. Hence, the correct way to
calculate the probability is:

P(FireWarning)
= (tw.conf xhome.conf)xcoh.confk // Antedecents
coh.ts.uLt(tw.ts).getC() * // Comp. ops.
P (FireWarningRule) //Rule conf.
@
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And the correct implementation of rule FireWarning in
Esper EPL is:

@Name ("FireWarning")

insert into FireWarning

select tw.id as id, coh.ts as ts,
// Confidence of antecedents
(tw.conf/Home.conf)*coh.conf *
// Comparison operations
UReals.lt(coh.ts,tw.ts).getC() *
// Rule confidence
P(FireWarningRule) as conf

from pattern [(every(coh=COHigh())

-> every(tw=TempWarning (tw.id=coh.id)))
where timer:within(5 seconds)];

In our implementation, we have assumed that all Home
events have the same confidence, and have stored it as a
global attribute of a class Home. This is a common situation
when the probability of a false positive of a given event is
a value that depends on the sensor that produces this type
of event, and therefore the same for all these events. If this
were not the case in a particular application, it would be
just a matter of adding attributes to the complex events, with
the confidences of their relevant ancestors, so that they are
available in the rules where they act as antecedents.

2) CALCULATING THE VALUES OF DEPENDENT VARIABLES
The attributes of the events, whose values are used in
rule patterns to decide whether the rules should be trig-
gered or not, or to compute the values of the attributes of the
complex event generated by the rule, might not be indepen-
dent. For example, the level of CO has a direct influence on
the temperature of the house, and therefore an increase in CO
normally ends up producing an increase in the temperature.
Since both attributes are subject to uncertainty, we also need
to consider their dependency when computing the uncertainty
of the result of an operation that combines them.

The process of dealing with the uncertainty of dependent
variables is described in the GUM [36], and requires taking
into account not only the variance of the possible deviations
of the values of the attributes, due to their measurement
uncertainty, but also the covariance of their joint variations.
In our case, this would affect the resulting uncertainty of those
operations performed on dependent uncertain Reals, and the
associated confidence that we obtain when comparing them.
For this, our Java library supports an additional parameter
in operations with UReals that can be used to provide the
correlation coefficient of the two variables to combine.

G. DEALING WITH FALSE NEGATIVES

The concept of “false negative’ may have different meanings
depending on the context in which it is applied. In our case,
this term denotes the non-detection of (simple or complex)
events in the stream despite the fact that they have actually
occurred. Sometimes the loss or non-detection of an event
is not very relevant. However, missing the occurrence of
one particular event in some critical applications may have
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significant consequences—mainly if it is the antecedent of
a rule that creates an essential complex event for the appli-
cation. In these situations, it is important to consider the
possibility of false negatives in the stream.

Some authors (e.g., [46]) use mining techniques to detect
false negatives. Other proposals, mainly coming from the
Very Large Databases (VLDB) community, use techniques
for the efficient representation of all possible worlds, in order
to query systems with incomplete information [47]. In our
work, we follow this latter approach and define synthetic rules
that capture the situation where an antecedent event is lost,
and therefore it is missing in the rule.

Thus, given a rule with a pattern P and with antecedent
events {ey, ..., e,}, a synthetic pattern Py, . ;) is derived
from P by removing antecedent events {e;q, ..., i} and by
adding a condition that these events are not currently present
in the stream. This simulates the fact that the “removed”
events have actually happened, but they were lost.

To illustrate how these synthetic rules are defined, we will
use the Motorbike example later detailed in Sect. IV-A.4
because these kinds of false negatives events match better
with the kinds of events handled in that case study. In partic-
ular, the Motorbike application defines one rule that creates
a DriverLeftSeat event when the seat sensor detects that
the driver is no longer sitting on the motorbike. The events
generated by this rule are used to detect accidents when the
motorbike is moving, the speed suddenly decreases, and the
driver is thrown out from the seat. In a real accident, however,
chances are that a simple event may be lost, or it is not inserted
in the stream, and hence the need to consider this possibility
in the production of critical complex events, such as the one
detecting an accident.

The probabilities of the false negatives need to be provided
by the system specifier. In this case, we assumed that this
probability is a constant, defined by attribute confFN in class
Motorbike. With this, the synthetic rule that represents the
loss of event Motorbike in rule DriverLeftSeat could be
written as follows.

@Name ('DriverLeftSeat ')

@Priority (2)

insert into DriverLeftSeat

select current_timestamp () as timestamp,
e2.motorbikelId as motorbikeId,
e2.location as location,
true as seat_al,
e2.seat as seat_a2,
e2.confxMotorbike.confFN*

P(DriverLeftSeat) as conf

from MotorbikeEvent as e2

where e2.seat = false and

not exists (select motorbikeId

from MotorbikeEvent
.win:time(5 milliseconds) as el

where el.motorbikelId=e2.motorbikeld);

In general, some considerations should be taken into
account when defining synthetic rules. First, they only make
sense for rules that deal with simple events, since complex
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events are generated by the CEP system and therefore there
is no point in thinking that they may be lost. Furthermore,
complex events already incorporate their confidence in the
form of probabilities, thus they already capture the fact that
they might not be representing the actual events properly.
Second, they normally make more sense in the case of spo-
radic (i.e., non-periodic) events, whose loss is more difficult
to detect. From a technical perspective, they should have less
execution priority than normal rules, since synthetic rules
should only be triggered when the normal rules have not been
triggered. Finally, it is the domain expert who should decide
in which situation and for which events a synthetic rule must
be defined, given that they introduce more complexity into
the system. Incorporating these kinds of synthetic rules to the
rule set of the CEP application may have a some impact on the
number of produced events, and therefore on the performance
of the system—we analyze this later in Sect. IV-C.2. Thus,
it is up to the CEP system developer to decide when to use
these synthetic rules, depending on how critical the loss of
a particular kind of event is, and how likely this situation is.
In the next section, we explain how to combine these synthetic
rules with the use of thresholds to mitigate these problems.

H. THRESHOLDS IN RULES

In general, the probabilities associated to the complex events
generated by the synthetic rules described above will be very
low, and hence there might be no real need to produce them.
Otherwise we may be populating the stream with events
whose probability to occur is almost nil.

For instance, we can decide to create a synthetic rule only if
the probability of the false negative of the event (i.e., the prob-
ability of missing it, despite having occurred) multiplied by
the probability of the rule (that indicates our confidence on
it) is above a certain threshold, e.g., 0.5. This is an a priori
decision, which may help deciding whether the rule is created
in the first place, or not.

For those rules defined for the CEP system, it is also pos-
sible to define thresholds that may help preventing the pro-
duction of events with very low confidence. These thresholds
can be defined both for the antecedents and for the generated
events, preventing their production if the confidence of the
events is below these thresholds. For example, a rule can
state in its pattern a minimum threshold for the confidence
of one or more of their ancestors, or for their combined
confidence. If such a confidence does not reach the threshold,
the rule is not triggered. Similarly, a CEP rule can calculate
the confidence of the complex event it generates, and use
this value in the rule pattern to decide whether it is worth
triggering the rule or not.

Section IV-D discusses the effects of the use of thresholds
in rules, regarding the accuracy of the resulting application.

IV. EVALUATION
This section describes the evaluation we have conducted to
assess our proposal according to its correctness, performance,
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accuracy, and applicability. This evaluation process follows
the one defined in [48], which in turn is inspired in Adzic’s
adaptation of Moslow pyramid of human needs to software
quality [49]. Each criteria provides the necessary foundations
for the higher-level criteria. In the following, we discuss the
extent to which we can claim our proposal meets these crite-
ria. We finalize by identifying some of the current limitations
of our proposal, and with some lessons we have learned while
developing and evaluating our work.

A. APPLICATIONS

We have applied our approach to implement five differ-
ent CEP applications that are subject to uncertainty. The
applications have been chosen because they exhibit different
characteristics, and come from different domains. They are
either examples used in the CEP literature (Smart House [45],
Tunnel Ventilation System [21], Motorbike [34]) or taken
from real applications (the Madrid 2018 Marathon and the
Andalusian Air Quality Monitoring application).

The applications have been implemented first in
plain Esper, i.e., using basic events without uncertainty.
Afterwards, these implementations (and their corresponding
events) have been extended to account for measurement
uncertainty in the values of their attributes and rules.

With these experiments, our goal was to study whether we
are able to express and manage the different kinds of uncer-
tainties that happen in these systems, as well as the overhead
introduced by the uncertainty and the impact that the number
of events to process, the number of rules, and the complexity
of the rules patterns introduce—in terms of the number of
arithmetic, comparison and logical operations. To check the
applicability of our proposal to different CEP languages and
engines, the experiments were also conducted using Apache
Flink, obtaining very similar conclusions. These results are
reported in Sect. IV-E

The following subsections present the case studies we have
selected to evaluate our proposal with a description of their
main characteristics in increasing order of complexity. The
rules of all CEP applications (with and without uncertainty),
the projects to execute them, and the different sets of input
events used in the tests, can be downloaded from our web site
and from our Git repository [45].

1) THE SMART HOUSE CASE STUDY

The Smart House case study has already been described in
this paper, it has been used to illustrate the CEP concepts and
also our proposal. It defines two kinds of simple events (Home
and Person) and six rules, organized in a hierarchy tree of
depth four and width three.

2) THE TUNNEL VENTILATION SYSTEM

This case study was originally presented by Cugola et al.
in [21] to introduce CEP2U. It represents a tunnel ventilation
system (TVS) constantly monitored by several sensors to
detect possible failures, such as obstructions. In usual setups,
sensors are evenly distributed along the tunnel in sectors
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(each one every 200m, for instance), and they measure the
temperature (temp), the concentration of oxygen (02) in air,
and the presence of traffic jams. A CEP application designed
to detect TVS malfunctioning has to recognize critical sit-
uations from the raw data measured by the tunnel sensors.
Depending on the environment, the application requirements,
and the user preferences, the presence of a TVS malfunction-
ing can be due to several reasons, each one captured by a
separate CEP rule that can generate a TVSMalfunctioning
event:

R1. The oxygen concentration in a tunnel sector is lower than
18%, and the temperature in the sector has gone above
30 degrees at least once during the previous 5 min.

R2. The temperature of a tunnel sector is higher than
30 degrees in absence of a traffic jam in that sector.

R3. The oxygen concentration of a tunnel sector is lower
than 18% and the average temperature in the last 5 min
is higher than 30 degrees.

3) AIR QUALITY MONITORING SYSTEM
This real case study corresponds to the CEP application that
monitors the air sensor network for controlling the air quality
of the Andalusian region of Spain. This network is composed
of several sensor stations that gather the air pollutant mea-
surements and submit them to a main server. Each station
has sensors in charge of measuring six air pollutants: PM2.5,
PM10, CO, O3, NO2 and SO2—see [34] for a complete
description of this application. Seven CEP rules for each pol-
lutant generate complex events that warn about the air quality
level, in a 7-value scale, from Average to Hazardous.

The hierarchy tree is very different in this case: it has just
a depth of 2, with a simple event at the top, and the 43 CEP
rules in level 2. An example of a simple event that reaches the
server (without uncertainty) is as follows:

Station(ts:1480546800, id:3,
pm2_5:-1.0, pm10:-1.0, 03:0.043,
no2:10735456, s02:39346848, co0:0.302)

4) A FLEET OF MOTORBIKES

Suppose a fleet of motorbikes equipped with sensors that
produce real-time information about their state, such as the
pressure of their two tires, their location and speed. They also
sense whether the driver is on the seat or not. The system goal
is to be able to detect flat tires and vehicle crashes in real
time, as well as to identify dangerous locations. These are the
complex events that the system generates:

o BlowOutTire: The pressure of one of the tires of a
moving motorbike goes down from more than 2.0 BAR
to less than 1.2 BAR in less than 5 seconds.

o Crash: The speed of a motorbike goes from more than
50 km/h to 0 km/h in less than 3 seconds.

o DriverLeftSeat: The seat sensor detects that the motor-
bike driver has left the seat.
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« Accident: A moving motorbike suffers a blow out of one
of its tires, then a Crash event is detected, and the driver
is thrown out, everything within less than 3 seconds.

o AccidentsReport: A complex event with the number of
Accidents per day and location.

« DangerousLocation: This event is raised every time
100 events of type Crash are detected in a given location.

This example was used in [34] to analyze the confluence of

the rules of CEP applications. An example of a simple event
(without uncertainty) received by the application is shown
below:

Motorbike (ts:1488326401, id:1,
location:"Cadiz", speed:90.3,
pressurel:3.10, pressure2:3.09, seat:true)

5) THE MADRID 2018 MARATHON

This application analyzes the information obtained from
tracking the runners of the Madrid 2018 Marathon. Each
runner was equipped with a sensor that generated events every
time the runner passed one of the control points established
every 5 km (plus one at km 21.0975, the half of the marathon,
and one at the finishing line, km 42.195). The CEP rules are
in charge of detecting the following situations, which should
generate the corresponding complex events:

o Escaped: When the passing time at one of the con-
trol points between a runner and the next one exceeds
30 seconds.

o TheWall: The passing time of a runner between Km
35 and Km 30 is greater than the passing time between
Km 30 and 25, plus 1 minute.

« NegativeSplit: The time taken by a runner in the second
half marathon is less than the time taken to complete the
first one.

o Optimal: A runner finishes the race with a negative split
and without suffering the wall.

o Cheated: When the runner finishes the marathon but has
missed the control point at Km 21.097 (half marathon).

o Record: A runner finishes the race in less than 2 hours,
3 minutes and 38 seconds.

An example of one of the events managed by the applica-

tion (extracted from the data provided by the organization)
follows below:

Runner (point:10, position:5520, dorsal:104,
name :"Boris", surname:"Shvalev",
category:"D-M", officialT:"4:20:58",
netT:"4:20:50", netTS:15650)

B. CORRECTNESS

This section describes how we have evaluated the correctness
of our proposal to represent and deal with the uncertainty of
the occurrence of the events, the values of their attributes,
their timestamps, and the confidence that we have on the
rules. For this, we have conducted several tests, each one
addressing a different correctness aspect.
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In the first place, we checked that each CEP application
extended with uncertainty behaves exactly the same as the
application developed in plain CEP (i.e., without uncertainty)
when the uncertainty was nil, i.e., when the confidence of
all basic events is 1.0, the measurement uncertainty of the
values of all attributes is 0.0, and the confidence of all rules
was 1.0. In order to do this, we executed all applications
with input sequences of events of size 10K, 100K, 200K,
300K and 400K events, with no uncertainty. Afterwards,
we added nil uncertainty to the same sequences of events as
described above and executed all the CEP applications again.
The results confirmed that the sequences of generated events
without uncertainty and with nil uncertainty where the same,
1.e., contained the same events in the same order.

In order to test our system under real uncertainty
(i.e., non-nil uncertainty) and using the same sequences of
events, we added measurement uncertainty to the attributes
of the events, and confidence to the events and rules, and
executed all applications again. We used the same datasets as
before with the only difference that the uncertainty associated
to the event attributes and confidence was not nil anymore,
but very small. Again, we observed that the output of the CEP
system after its execution with and without uncertainty was
the same. Of course, increasing the uncertainty of the attribute
values may make the system become non-deterministic [17].
This will be discussed later in Section IV-D, when we discuss
about the accuracy of our approach.

Another aspect to treat when talking about the correctness
of our approach concerns the correctness of the propagated
uncertainty in the generated event attributes and confidence.
In this case, we rely on the correctness of the library, which
was tested as part of our previous work [23].

C. PERFORMANCE

Performance is one of the common problems of all the pro-
posals that incorporate uncertainty into CEP systems, given
the potential degradation of performance [22] due to the oper-
ations required to compute the aggregated uncertainties and
the probabilities of the complex events. The lack of standard
benchmarks for CEP systems is a well known issue too,
which hinders the performance analysis, and the comparison
between different proposals [17], [21]. In this paper, we focus
on the evaluation of the performance overhead introduced by
the use of uncertainty in the events, in their attributes, in their
timestamps, and in the rules (Sect. IV-C.1). We will assess in
Sect. IV-C.2 the performance penalty introduced by the use
of synthetic rules to deal with critical false negatives.

1) OVERALL PERFORMANCE OVERHEAD

For each of the five case studies, one table and two figures are
shown, summarizing the results obtained when running the
experiment for input event sets of sizes 10K, 100K, 200K,
300K and 400K. The table shows, for every set of input
events, the time taken by the Esper CEP engine to process
them (with and without uncertainty), the number of rules
that were triggered (and hence the number of generated
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Performance
#Events | Time (s) | Ovhd. | #T.Rules #Opers. | Ovhd
10,000 7.199 - 22,950 91,572 -
100,000 9.938 - 68,967 585,654 -
Plain CEP | 200,000 10.273 - 91,938 684,090 -
300,000 10.563 - 114,226 771,598 -
400,000 10.929 - 135,874 848,866 -
10,000 7.803 1.08 22,950 300,931 3.00
100,000 10.842 1.09 68,967 | 1,754,746 3.07
CEP with 200,000 11.267 1.10 91,938 | 2,102,941 3.14
Uncertainty | 300,000 11.736 1.11 114,226 | 2,420,401 3.19
400,000 12.619 1.15 135,874 | 2,709,061 3.29
13 3
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12 g
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FIGURE 2. Smart House Performance, using Esper: Execution times (left) and Number of operations (right).

complex events), the total number of mathematical and
Boolean operations involved, and the overhead caused by
the introduction of uncertainty. The corresponding fig-
ures accompanying the tables show graphically the differ-
ences in execution time and the number of operations between
the ‘plain’ application (i.e, without uncertainty) and the
extended one (with uncertainty).

All tests were performed on a MacBook Pro computer,
with an Intel Core i7 processor with four 2.8GHz cores,
6 MB shared level 3 cache, 16 GB of onboard 2133 MHz
LPDDR3 SDRAM, and 256 GB of onboard flash storage.
Execution times were obtained by averaging 5 consecutive
runs of each program, after removing the first two executions
to avoid the warm-up periods. Given the sample sizes, with
five consecutive runs we could ensure a 95% confidence level
and an accuracy of 5% of the resulting Fig. [50].

a: THE SMART HOUSE CASE STUDY
Fig. 2 shows a table with the performance figures obtained
for the smart house application, depending on the number of
processed events, together with the graphical representation
of the results. Note that the performance of this application is
linear with respect to the number of input events (i.e., simple
events).

The overhead in this case is between 1.08 and 1.15.
We can see how the number of rules is the same in both
implementations because the measurement uncertainty of the
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input events does not have any effect on the rules’ selection
patterns (the same applies to every application). The overhead
in the operations is on average 3.14, since they need to be
performed not only during the selection phase, but also during
the calculation of the probabilities of the complex events
generated by the rules.

b: THE TUNNEL VENTILATION SYSTEM
Fig. 3 (upper part) shows a table with the performance fig-
ures for this application, depending on the number of pro-
cessed events. These results are shown graphically in the
lower part of Fig. 3. One of the main characteristics of this
CEP application is that it uses a not operator in one of the pat-
terns (the second one). This has an effect on its performance,
which grows polynomially (x?) with the number of events.
Accordingly, the performance (and hence the overhead) of
the CEP application with uncertainty is worse than in the
previous example. Note that in this case, and for the number
of events considered, the growth of the execution time of
the extended application can be approximated by a linear
function, which is not the case for the plain CEP application.
The overhead in this case is between 1.01 (for a small
number of input events) and 3.48 (for 200,000 events).

c: AIR QUALITY MONITORING SYSTEM

Fig. 4 shows, both numerically and graphically, the perfor-
mance results for the Air Quality Monitoring application,
depending on the number of incoming events. Although the
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Performance
#Events | Time (s) | Ovhd. | #T.Rules #Opers. | Ovhd
10,000 4.031 - 3,130 19,060 -
100,000 15.479 - 31,300 190,600 -
Plain CEP | 200,000 55.725 - 62,600 381,200 -
300,000 | 145.441 - 93,900 571,300 -
400,000 | 288.982 - 125,200 762,400 -
10,000 4.091 1.01 3,130 36,290 1.90
100,000 46.402 | 2.99 31,300 362,900 | 1.90
CEP with 200,000 196.230 3.52 62,600 725,800 1.90
Uncertainty | 300,000 | 375.349 | 2.58 93,900 | 1,088,700 | 1.90
400,000 | 548.893 1.90 125,200 | 1,451,600 1.90
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= g
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FIGURE 3. Tunnel Ventilation System Performance, using Esper: Execution times (left) and number of operations (right).

operations overhead is constant (2.60, because operations are
calculated in two occasions: one for obtaining the values of
the complex event and another for obtaining its probability),
the overhead of the time performance is higher than that of the
Tunnel Ventilation System application. Note that the number
of rules that are triggered for every simple event (and hence
the number of generated complex events) is much higher
in this case (2 million vs. 150K), as well as the average
number of operations performed per event (6.99 vs 1.59).
The overhead is much higher in this application than in the
previous one, although the overhead of uncertainty still grows
linearly.

d: A FLEET OF MOTORBIKES

Fig. 5 shows the performance figures for this applica-
tion, both numerically and graphically. The overhead is
between 1.8 and 2.7.

In comparison with the Air Quality system, this application
has less rules (only 6) and generates less events (basically,
a half), but the number of operations is much higher: roughly,
8.5 more operations per event in the plain CEP application,
and 34 in the extended application. In any case, the overhead
of the application processing time is maintained below 2.72,
and the growth with the number of events is linear (Fig. 5).
Another particular aspect of this application is that it does not
use uncertainty in the timestamps of the events. Therefore,
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we decided to use the timestamps provided by the CEP engine
(current_timestamp) instead of those in the events.

e: THE MADRID 2018 MARATHON

Fig. 6 shows the performance figures obtained for this appli-
cation, depending on the number of incoming events. For
this case study, we used the data provided by the organi-
zation of the Madrid Marathon.® A total of 9,085 runners
finished the marathon, producing a total of 90,850 simple
events. To analyze the performance of the application with
more events (we wanted to go up to 400,000), we dupli-
cated the source data up to four times. Uncertainty was
artificially added to all net times, assuming a clock accuracy
of £1 second.

This application is the most demanding from all the case
studies presented in this paper. It contains two patterns with a
negative condition (a not operation), and the numbers of trig-
gered rules and operations are much larger than those in the
previous examples. As shown in Fig. 6, for 400,000 incoming
events the application generates almost 16 million complex
events and performs more than 188 million (w/o uncer-
tainty), or 330 million (with uncertainty), operations. The
performance is reasonable since the plain CEP application
takes 8.2 seconds to process all the events produced by the

6 www.runrocknroll.com/madrid/en/
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Performance
#Events | Time (s) | Ovhd #T.Rules #Opers. | Ovhd
10,000 6.563 - 52,487 87,409 -
100,000 17.394 - 524,870 874,090 -
Plain CEP | 200,000 28.723 - 1,049,740 | 1,748,180 -
300,000 40.613 - 1,574,610 | 2,622,270 -
400,000 51.425 - 2,099,320 | 3,495,880 -
10,000 12.246 1.86 52,487 227,305 2.60
100,000 57.353 3.30 524,870 | 2,273,050 2.60
CEP with 200,000 107.437 3.74 1,049,740 | 4,546,100 2.60
Uncertainty | 300,000 157.349 3.87 1,574,610 | 6,819,150 2.60
400,000 | 209.852 4.08 2,099,320 | 9,119,240 2.60
300 10
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FIGURE 4. Air Quality Performance, using Esper: Execution times (left) and number of operations (right).

Marathon (close to 100,000) and only 13.8 seconds if uncer-
tainty is added to the events. Besides, Fig. 6 also shows that
in this case the execution time and the number of performed
operations by both the plain and the extended CEP applica-
tions do not follow a linear function, but a polynomial one.

2) PERFORMANCE OVERHEAD WHEN

INTRODUCING SYNTHETIC RULES

The addition of synthetic rules to capture false negatives
in CEP applications has an impact in the performance too.
We evaluate here the overhead that these rules introduce.

We have implemented three synthetic rules in the
Motorbike CEP application, where it makes more sense to
consider false negatives due to the loss of events, as discussed
in Sect. I1I-G. These three new synthetic rules are in charge of
dealing with the loss of critical events in the rules that detect
that the driver left the seat (DriverLeftSeat), the speed
suddenly decreased (Crash), or that the tires lost pressure
(BlowOutTire). This produces a CEP system with 10 rules,
instead of the seven rules that it originally had. An example of
one of these rules was shown in Sect. III-G, when introducing
the concept of synthetic rules.

Table 1 shows the performance overhead caused by the
introduction of the new three rules, both with and without
considering uncertainty. The overhead is in average 1.08, and
the median is 1.06, which, in our opinion, is acceptable. It is
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important to highlight that the rules we have defined use a
small temporal window in order to minimize the impact of the
not exists operator on the stream. This operator can have
a significant impact on the performance of the rules when
carelessly applied [21].

D. ACCURACY
In this section we are interested in evaluating whether the
use of uncertainty in CEP events and rules provides more
accurate results to the CEP system users, i.e., whether it pays
off regarding the accuracy of the results of the system. We will
follow an evaluation schema similar to that of Cugola [21].
We start with a perfect system which we assume correct,
i.e., the set of input events (§) represent true (theoretical)
values, without measurement error or data uncertainty, and
the set of complex events that the CEP system generates (O)
represent the correct results. These will serve as our oracle.
We also define the precision of the attributes of the simple
events. For this, we use the information available about the
sensors and clocks used in the applications, and we enrich
the values of the set S with their corresponding uncertainty,
as we did in Sect. IV-B when checking the correctness of our
extension. Let us call 5‘1 to the set whose events are endowed
with uncertainty, and O, to the corresponding set of output
events. We already know (cf. Sect. IV-B) that if we process
this enriched set 5’1, the resulting events will be the same
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Performance
#Events | Time (s) | Ovhd #T.Rules | #Operations | Ovhd
10,000 4.134 - 15,872 45,637 -
100,000 10.058 - 256,064 827,027 -
Plain CEP | 200,000 19.122 - 512,291 1,668,555 -
300,000 25.145 - 778,777 2,514,221 -
400,000 30.979 - 1,032,622 3,361,231 -
10,000 7.549 1.83 15,872 189,366 | 4.15
100,000 25.192 | 2.50 256,064 3,355,002 | 4.06
CEP with | 200,000 44.516 | 2.33 512,291 6,774,470 | 4.06
Uncertainty | 300,000 64.573 2.57 778,777 10,194,783 | 4.05
400,000 84.243 | 272 1,032,622 13,641,946 | 4.06
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FIGURE 5. Motorbike System Performance, using Esper: Execution times (left) and number of operations (right).

TABLE 1. Motorbike System Performance with Synthetic rules.

Performance (seconds) and Overheads

#Events Plain | Plain CEP CEP | CEP+Unc.
CEP | +Synth.R. | Ovhd. +Unc. | +Synth.R. | Ovhd.
10,000 4.134 5.302 1.28 7.549 8.269 1.09
100,000 || 10.058 11.466 1.14 25.192 26.673 1.06
200,000 || 19.122 19.882 1.04 44.516 45.034 1.01
300,000 || 25.145 26.076 1.04 64.573 65896 1.02
400,000 || 30.979 33.900 1.09 84.243 89.758 1.06

as of O, but now with extra information about the proba-
bility of their occurrence and the aggregated measurement
uncertainty in the values of their attributes. Obtaining this
new set (O1), instead of with O, already provides interesting
benefits, because it enables CEP users to identify the degree
of confidence they can have on the resulting events, and make
more informed decisions.

To analyze the accuracy of our proposal, based on the
events of the set S and the nominal values of the measure-
ment uncertainty, we generate a new set S> of input events
with imprecise values using sample generators, assuming a
Normal distribution for the uncertainty values [36]. They try
to represent the actual events that we would obtain when
operating in an environment with uncertainty and imprecise
measuring tools. Then, we follow the same process as above:

VOLUME 7, 2019

the set S is processed by the CEP engine, producing the
corresponding set of complex events O, (without uncer-
tainty) and, in parallel, a set S, is generated by enriching S,
with uncertainty (using the same precision we have used to
generate the values of S). The processing of Sz produces
a new set of complex events O,. Notice that O; contains
the same events as the oracle O, and that @2 contains the
same events as O, (because our solution respects the set of
resulting events, only adding confidence to the events and
measurement uncertainty to the values of their attributes),
but O and O, may be different, and hence 0, and 0, may
differ, too. Then, 01 and 02 can be compared, looking for:
true positives (TP), which are composite events appearing in
both sets; false positives (FP), events in @2 lgut notin O;; and

false negatives (FN), i.e., those events in O1 but not in O>.
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Performance
#Events | Time (s) | Ovhd #T.Rules | #Operations | Ovhd
10,000 3.500 2,491 18,004 -
100,000 8.266 315,091 3,648,433 -
Plain CEP | 200,000 15.880 2,142,281 25,409,263 -
300,000 31.704 6,850,571 817,10,493 -
400,000 57.467 - 15,808,961 | 188,980,123 -
10,000 3.557 1.02 2,491 32,105 1.78
100,000 13.261 1.60 315,091 6,397,877 1.75
CEP with 200,000 50.791 3.19 2,142,281 44,509,047 1.75
Uncertainty | 300,000 | 137.095 4.32 6,850,571 | 143,082,517 1.75
400,000 | 293.042 5.10 15,808,961 | 330,867,287 1.75
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FIGURE 6. Marathon Application Performance, using Esper: Execution times (left) and number of operations (right).

Given that events are periodically generated, frue nega-
tives (TN) are those events that do not appear in any of the
two sets.

With this, we can define the Precision P = TP/(TP + FP)
and Recall R = TP/(TP+ FN) of the execution, as well as its
Accuracy A = (TP +TN)/(TP + TN + FP + FN). We study
these metrics for different kinds of rules: selection, combina-
tion and hierarchy, taken from the smart house example.

a: SELECTION

The CO High Level is an example of a selection rule. It creates
a COHigh event every time a simple HomeEvent is detected
whose CO level exceeds 5,000 units. We created 54 different
sets of input events, whose results are shown in Figs. 7 and 8.
For each test, we generated 20,000 simple events, half of
them with a CO level below the threshold of 5,000 CO
units (the value that triggers the rule), and the other half
with a value above that threshold. The ranges of the CO
levels of the input events varied, depending on how much
dispersed, or concentrated, they were. For example, for the
set of 20,000 input events whose CO level ranged between
2,000 and 8,000 units (indicated as [2-8] on the x-axis of
Figs. 7 and 8), we generated 10,000 events with a CO value
between 2,000 and 5,000, and the other 10,000 events with
values between 5,000 and 8,000. Thus, we always exceed the
threshold level in half of the generated events. Every one of
the 18 sets of varying ranges (shown in the x-axis) was pro-
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FIGURE 7. Accuracy of rule corigh for different uncertainties.

duced using a different measurement uncertainty for the CO
level attribute: 0.1, 0.25 and 0.5. The degree of uncertainty
has influence on the accuracy and precision of the results.
When values are spread over a wider interval, the accuracy
of the CEP system is high because the values are easy to tell
apart. The accuracy starts decreasing as values concentrate
around the threshold, because numbers with uncertainty are
difficult to differentiate when they become sufficiently close
to each other—until they become so close to the threshold that
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FIGURE 8. Precision and Recall of rule coHigh for different uncertainties.

they become almost indistinguishable, and hence the accu-
racy grows again. In any case, the accuracy is always above
0.8, and in most cases it remains above 0.9. These results are
completely on par with the ones obtained by Cugola [21] for
the similar experiment, hence replicating his conclusions.

Fig. 8 shows the results for the precision and recall of
the CO High level selection rule. They are similar to those
obtained for the accuracy: values far from the trigger thresh-
old of the rule obtain close to 100% precision and recall;
however, both measures decrease when events are grouped
with values close to the threshold. In any case, precision
always remains above 90%, which indicates a small percent-
age of false positives, while recall is always above 85%.

149
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FIGURE 9. Accuracy of rule TempIncrease.

b: COMBINATION

Fig. 9 shows the results for an event combination rule, namely
the Temperature Increase rule, which is triggered when a
2-degree increase is detected between two consecutive events.
The temperature values of the 20,000 events generated in
each test ranged between 28 and 42 degrees with temperature
increments from 1.0 to 2.9. The closer the increment is to the
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threshold value of 2, the higher the imprecision is, specially
when the uncertainty grows too. In this case, the accuracy
of the rules with uncertainty is similar to the previous one,
although with slightly smaller values when the uncertainty is
large (0.5).

Fig. 10 shows the precision and recall values for a combi-
nation rule. When temperature increases are very low, i.e., rel-
atively far from the threshold of 2, almost all events (19.995)
are TN, with only a few FP events. Therefore, the precision is
almost nil. Conversely, when the values exceed the threshold
of 2.0, most events are TP and the precision becomes close to
1.0. The Recall behavior is similar, although less pronounced
due to a lower occurrence of FN events.

¢: HIERARCHY

Finally, we have analyzed a hierarchy rule that depends
on other complex events (Figs. 11 and 12). In this case,
we use the Temperature Warning rule, which is triggered
when 4 complex Temperature Increase events arrive whose
temperature values are above a threshold of 35 degrees. As it
is dependent on the previous rule, the resulting curves are
similar, although in this case with better accuracy values
(Fig. 11). Somehow, the first rule in the hierarchy filters the
wrong values. This is also the reason why the precision and
recall results are similar (Fig. 12).

E. APPLICABILITY

To assess the applicability of our proposal, we tried to eval-
uate how much effort is needed to apply our approach to
existing CEP languages and/or engines.

Apache Flink is an open source stream processing frame-
work, similar to Spark, that provides a distributed streaming
dataflow engine written in Java and Scala. It works in both
batch and pipelined modes, using a directed graph approach
that leverages in-memory storage for significant performance
gains. We have used Flink 1.7 and its CEP library to imple-
ment some of the case studies presented in this paper. Due to
the open source nature of Flink, and the way CEP rules are
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FIGURE 10. Precision and Recall of rule TempIncrease for different uncertainties.
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FIGURE 11. Accuracy of rule TempWarning.

written in Flink, adding uncertainty to the CEP events and
rules using our library of uncertain types is straightforward.

For example, in the Smart House case study, we have
defined the simple event UHomeEvent, where several fields
are declared with uncertainty using the extended types UReal,
UBoolean and UInteger:

public class UHomeEvent extends SimpleEvent{
private final UReal temp;
private final UReal colLevel;
private final UBoolean doorOpen;
private final UReal coorX;
private final UReal coorY;
private final double sqre;
private final Ulnteger ts;

These events are used normally in the rules, processing
them as other events without uncertainty. Uncertain values
are operated using the methods defined for the corresponding
extended types. For example, the following listing defines
the rule TemperatureIncrease in Apache Flink, which
generates a complex event UTempIncreaseEvent whose
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attributes are also endowed with uncertainty. In this way,
uncertainty spreads through the hierarchy of rules in a natural
way. Notice that CEP rules in Flink are defined in three steps:
first we define the pattern, then the stream to deal with the
input events, and finally we define how and when the complex
events produced by the rule are generated:

// Create a Pattern
Pattern<SimpleEvent ,?> tempIncreasePattern =
Pattern.<SimpleEvent >begin("first")
.subtype (UHomeEvent.class)
.followedBy ("second")
.subtype (UHomeEvent .class)
.within(Time.seconds (5L));
// Create pattern stream for warning pattern
PatternStream<SimpleEvent >tempPatternStream=
CEP.pattern(partitionedEventStream,
tempIncreasePattern);
// Generate temp. warning complex events
DataStream<UTempIncreaseEvent >tempIncreases=
tempPatternStream.flatSelect (
new PatternFlatSelectFunction<SimpleEvent,
UTempIncreaseEvent >() {
@0verride
public void flatSelect(Map<String,
List<SimpleEvent >> pattern,
Collector<UTempIncreaseEvent> collector)
throws Exception {
UHomeEvent first =
(UHomeEvent)pattern.get ("first") .get (0);
UHomeEvent second =
(UHomeEvent)pattern.get("second") .get (0);
UReal increment =
second.getTemp () .minus (first.getTemp ());
if (increment.ge(new UReal (2.0, DELTA)).
toBoolean ()){
collector.collect (new UTempIncreaseEvent (
first.getHomeID (), second.getTemp (),
increment, second.getTs()));

P

Table 2 shows the performance figures we obtained
for the Smart House case study using Apache Flink.
Although slightly slower than Esper (cf. Fig. 2), the overhead
introduced by the use of uncertainty in the events and in the
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FIGURE 12. Precision and Recall of rule TempWarning for different uncertainties.

TABLE 2. Smart house performance using Apache Flink.

Performance (seconds) and Overheads

#Events || Plain CEP | CEP w/Uncert. | Overhead
10,000 4.3 4.4 1.024
100,000 28.7 29.0 1.011
200,000 90.5 91.9 1.016
300,000 144.7 147.6 1.020
400,000 199.8 202.4 1.013

rules has improved: between 1.011 and 1.024 in this case,
with an average of 1.7% with Apache Flink, and of around
10% with Esper.

F. LIMITATIONS AND POTENTIAL LINES

FOR IMPROVEMENT

This final subsection describes some of the limitations that
we have found during the evaluation process of our pro-
posal, as well as some potential lines of work to improve
them.

« In principle, Esper does not seem to allow for a library
of types to be used in its aggregation functions (count,
max, sum, etc.). This means that the Esper source code
needs to be directly changed if these functions have
to operate with uncertain values—e.g., by using our
library. Although there is no particular problem with
this, since Esper is an open source software, it would
be better if this feature could be implemented in the
open source distribution version of Esper. This limitation
does not apply to Apache Flink, because its language is
completely flexible.

o Under the presence of uncertainty, in order to calculate
the values of the complex events produced by the CEP
rules, and of their probability, many operations need
to be performed twice: one to compute the values and
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one to compute the confidence. We are working for
optimization of our implementation in Esper that permits
calculating both results at the same time, whenever this
is possible.

We have realized that adding uncertainty to the rules of
an existing CEP application is in general conceptually
simple, but rather tedious and error-prone. Therefore,
it should be better automated, so human intervention is
not required (apart from defining the probabilities of the
CEP rules). In this respect, we would like to develop a
tool that is able to automatically generate the code of the
CEP patterns and rules extended with uncertainty, using
Model-Driven Engineering techniques, in a similar way
to the tool we developed for the static analysis of CEP
applications [51].

The SQL-style of Esper makes easier and more natural
the specification of the CEP rules, in contrast with the
open API style of Flink. Nevertheless, we would need
to evaluate such a claim and support it with empirical
evidences

While measurement and occurrence uncertainty are
static during the early lifetime of sensors and other phys-
ical devices, uncertainties can rapidly deviate from those
stated in the data sheets when in the field, especially with
low-quality sensors, enclosures, and wireless networks.
This requires complex models of uncertainty to repre-
sent the dynamic and transient nature of uncertainty in
these situations. Although these models can be a priori
implemented with our library, their detailed analysis
requires its own dedicated line of research.

In this paper, we have used event time semantics
to reason about time. However, other time semantics
could be able to express different uncertainties, such as
event reordering or imprecise clocks [32]. Dealing with
different kinds of time semantics [33] would be another
interesting line of future work.
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V. RELATED WORK

Several authors have acknowledged the need to handle uncer-
tainty in CEP systems, and this has been an active line of
research since 2008. The work by Alevizos et al. [22] pro-
vides a very complete survey on the proposals that try to
address uncertainty in CEP systems. In general, each proposal
has focused on a particular kind of uncertainty, from the
phases identified above in Sect. II-C.

A first set of works focuses on the uncertainty in the
selection of the antecedents, assigning probabilities to events.
These probabilities represent the confidence we have on their
occurrence. For example, R€ er al. [52] extend the Cayuga
engine [29], [53] with an efficient inference mechanism for
answering queries over probabilistic data streams of events
tagged with probabilities, assuming the events follow a first-
order Markov process. Kawashima et al. [54] extend the
SASE+ engine [55] by building a deterministic automaton
for every CEP pattern, being able to detect patterns above
a certain confidence threshold by developing a matching
tree as new events arrive, and until the time window of the
query expires. Xu et al. [56] propose an Instance Pruning
and Filter-Detection Algorithm (IPF-DA) over probabilistic
data streams, able to detect complex events satisfying the
patterns with a single scanning of the event stream. In addi-
tion, they build a Bayesian network to express and infer
the probability distribution of uncertain events. A later work
by Wang et al. [20] extends this proposal with the ability to
express event hierarchies, i.e., higher-order events.

In all these works, uncertainty is restricted to the confi-
dence on the events, while the values of the attributes are all
certain. This includes events timestamps. Up to our knowl-
edge, only one work [43] deals with uncertain timestamps,
although all the other attributes have crisp values. In that
work, timestamps follow a known probability distribution
(usually Uniform), and the authors propose an efficient algo-
rithm for constructing event matching and their intervals
without the need to enumerate all possible worlds [22]. This
method only supports sequence patterns with simple equal-
ity/inequality predicates, but it was extended in [57] to deal
with negation and user-defined predicates.

Cugola et al. [21] extend TESLA [27], [58] with proba-
bilistic modeling, in order to handle the uncertainty both in
events and in CEP rules. In their proposal, called CEP2U
and implemented over T-REX [16], events are endowed with
probabilities that indicate the degree of confidence in their
occurrence. This approach also permits associating uncer-
tainty to event attributes, which are modeled as random
variables with some measurement error. The error follows
a known probability distribution function, e.g., Gaussian.
Furthermore, using an open-world approach, CEP patterns
are associated a degree of uncertainty because they can be
based on incomplete or erroneous assumptions about the
environment of the system. Therefore, the method automati-
cally builds a Bayesian Network for each pattern. The proba-
bilistic parameters of the network are manually estimated by
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domain experts. As known limitations, CEP2U does not deal
with imprecise timestamps, and the propagation of uncer-
tainty in the calculation of the attributes’ values needs to be
computed by the user.

Another approach that permits dealing with uncertainty in
the occurrence of events and in the CEP patterns is called
KBMC, and is due to Wasserkrug et al. [19]. They use
Bayesian Networks for addressing both kinds of uncertain-
ties, but rather differently from CEP2U. In particular, KBMC
defines only one Bayesian Network for the complete system
(including its patterns and events), which is built as simple
events arrive. Each event is assigned a probability, denoting
how probable it is that the event occurred with specific val-
ues for its attributes. The nodes of the network correspond
to events, both simple and complex. This method is far
more complex and computationally expensive than CEP2U,
although in order to increase performance, the latter makes
some significant assumptions. For example, CEP2U assumes
that a complex event cannot be defined by multiple rules, but
a primitive event can participate in multiple rules. In addi-
tion, occurrence probabilities of the intermediate events
(i.e., the antecedents) are propagated to their corresponding
complex event with a value of 1, which means that the
Bayesian Networks function more like look-up tables, hence
the much lower cost of inference [22].

In our approach, we depart from these approaches in sev-
eral ways. First, we use the extended type system for Real
numbers and Boolean values defined in [23]. This greatly
simplifies the representation of the uncertainty and its prop-
agation through the operations. Furthermore, we separate
the process of calculating the probability of every CEP rule
from its application. In this way, we use a variable (that
can be a constant or just a function) that determines the
probability of a rule, independently from how such vari-
able is calculated: either using Bayesian Networks, such as
in [19] orin [21], or by any other means. Finally, we deal with
uncertain timestamps in a natural way by representing them
using uncertain integers (type UInteger). This permits asso-
ciating a confidence level to all comparisons and operations
on timestamps in a transparent manner, and without requiring
any user computation.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a proposal to deal with mea-
surement and occurrence uncertainty in CEP systems, partic-
ularly those that analyze streams of real-time events coming
from physical sources. Different kinds of uncertainties have
been identified and incorporated into the events and CEP
rules, allowing modelers to represent and manage this kind
of information. We do not propose yet another CEP engine,
but a library that can be added to existing ones, together with
a method to use it.

The proposal has been validated with several applications
that have served to assess the performance, expressiveness
and accuracy of our approach, and to identify both strong
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points and issues that would require future improvements.
These applications have been developed on top of the Esper
and Apache Flink CEP engines, and showed good results.

The examples have also served to illustrate the need to
consider uncertainty and probability in CEP systems. For
example, instead of all events being equally probable, our
proposal permits assigning confidence to events. This intro-
duces an implicit prioritization mechanism, very useful for
instance to discard events which are very unlikely to hap-
pen, or to determine the order in which we should be dealing
with two or more critical events according to the relative
confidence we have on their occurrence. The costs in terms
of the addition of uncertainty to the rules, as well as the
performance overheads, do not seem to significantly hinder
our proposal.

As part of our future work, we plan to address the issues
identified in Section IV-F. We would also like to widen the
number of case studies and apply our proposal to more CEP
applications from different domains, hence gaining more
experience on its applicability and use.
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